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The polymorphic trinucleotide repetitive region in the FMR1 gene 5′UTR contains AGG
interspersions, particularly in normal-sized alleles (CGG < 45). In this range repetitive
stretches are typically interrupted once or twice, although alleles without or with three or
more AGG interspersions can also be observed. AGG interspersions together with the
total length of the repetitive region confer stability and hinder expansion to pathogenic
ranges: either premutation (55 < CGG < 200) or full mutation (CGG > 200). The AGG
interspersions have long been identified as one of the most important features of FMR1
repeat stability, being particularly important to determine expansion risk estimates in
female premutation carriers. We sought to compute the combined AGG interspersion
numbers and patterns, aiming to define FMR1 repetitive tract complexity combinations.
A mathematical model, the first to compute this cumulative effect, was developed
and validated using data from 131 young and healthy females. Plotting of their allelic
complexity enabled the identification of two statistically distinct groups – equivalent and
dissimilar allelic combinations. The outcome, a numerical parameter designated allelic
score, depicts the repeat substructure of each allele, measuring the allelic complexity
of the FMR1 gene including the AGGs burden, thus allowing new behavioral scrutiny of
normal-sized alleles in females.

Keywords: FMR1 gene, CGG repeats, AGG interspersion pattern, modeling allelic complexity, allelic score

INTRODUCTION

The fragile X-related disorders result from the expansion of a CGG-repeat tract in the 5′
untranslated region of the FMR1 gene (Xq27.3), coding for the fragile X mental retardation
protein (FMRP), an RNA-binding protein that regulates expression of several genes (Man et al.,
2017). Depending on the number of CGG repeats, FMR1 alleles can be categorized into four
classes: normal (CGG < 45), intermediate or “gray zone” (45 < CGG < 54), premutation
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(55 < CGG < 200), and full mutation (CGG > 200) (Biancalana
et al., 2015). Premutations causing FMR1 mRNA overexpression
and reduced FMRP synthesis, underly both fragile X-associated
tremor/ataxia syndrome (FXTAS, OMIM #300623) and fragile
X-associated primary ovarian insufficiency (FXPOI, OMIM
#311360). The full mutation alleles undergo hypermethylation,
leading to gene silencing and absence of FMRP, causing fragile
X syndrome (FXS, OMIM #300624), the most common heritable
cause of intellectual disability (Man et al., 2017). Due to the repeat
tract instability, above a threshold expansions and contractions
can be observed both in the germline and in the somatic
cells. Some rare contraction events can originate mosaicism
with mutated and normal alleles in clinically typical fragile-
X phenotypes (Maia et al., 2016). In the normal population,
the vast majority of the alleles contain one or more AGG
interspersions within the repetitive tract, usually at every 9
or 10 CGG repeat intervals, being highly stable. In higher
repeat ranges, the number of AGGs tends to be progressively
smaller as the size of the repetitive tract increases (Yrigollen
et al., 2012; Mila et al., 2018; Manor et al., 2019). The AGG
interspersions together with the repetitive region’s total length
confer stability and hinder expansion to pathogenic size-ranges
(Latham et al., 2014; Domniz et al., 2018; McGinty and Mirkin,
2018). In premutation female carriers, the risk of having a
child with FXS depends on both the repeat length and AGG
interspersions (Ardui et al., 2018). The incidence of normal pure
alleles (without interspersions) is low and their origin as well
as the phenotypic impact in females, are still debatable. It has
been proposed that “low zone” alleles, variably determined to be
CGG≤ 26 or CGG≤ 23, are associated with different phenotypic
outcomes (Mailick et al., 2014; Gleicher et al., 2015; Rehnitz
et al., 2018). Some studies show that they are associated with
decreased ovarian reserve and fertility issues, due to a mechanism
not yet elucidated, possibly different from that involved in
premutated alleles (Gleicher et al., 2015; Wang et al., 2017),
although such negative effects were not corroborated by others
(Spitzer et al., 2012; Ruth et al., 2016). These contradictory
assumptions require further studies to elucidate the clinical
impact of “low zone” alleles.

Few studies focus on AGG interspersion patterns to
assess allele stability, within the normal range. Given the
importance of understanding the cumulative effect of the
CGG repeat tract length and its AGG interspersions, we
developed a mathematical model that considers these patterns
and produces a functional model predicting the complexity of
allele combinations (allelic score).

MATERIALS AND METHODS

Study Population
Young and potentially fertile females were recruited among
candidates for oocyte donation at the Portuguese Public
Gamete Bank, Centro Materno-Infantil do Norte Dr.
Albino Aroso (CMIN), Centro Hospitalar Universitário do
Porto (CHUP). The donor population, originating from the
entire national territory, includes actively recruited students

from major Portuguese universities, with a wide range of
nationalities. Around 10% of the donor candidates were
of foreign nationality, 95% were Caucasian and about 30%
of those who donated at our center lived outside Porto
(Galvão et al., 2017). Two independent cohorts were used for
development (cohort 1) and for validation (cohort 2) studies.
Cohort 1, n = 50, mean age 25.4 ± 3.93 years (range 18–33),
recruited between 2016 and 2017. Cohort 2, n = 81, mean age
26.5 ± 3.86 years (range 19–33), collected between 2018 and
2019. All participants provided written informed consent, and
this project was approved by the Hospital’s Ethics Committee
(2018.231/201-DEFI/200-CES).

FMR1 Repeat Region Substructure
Profile
Sizing of FMR1 alleles had been previously obtained as
part of the routine oocyte donor’s protocol, on blood
samples. Categorizing the respective genotype followed the
ACMG/EMQN guidelines: normal (CGG < 45), intermediate or
“gray zone” (45 < CGG < 54), premutation (55 < CGG < 200),
and full mutation (CGG > 200) (Monaghan et al., 2013;
Biancalana et al., 2015). AGG interspersion pattern was
determined by Triplet Repeat Primed-PCR using FRAXA PCR
kit LabGscanTM (Diagnostica Longwood, Zaragoza, Spain),
according to the manufacturer’s instructions. This method
allowed the confirmation of the total repeat length and the
characterization of the CGG/AGG substructure. Thirteen
samples with different patterns were additionally verified
by Sanger sequencing to confirm the previously determined
CGG/AGG pattern.

Statistical Analysis
Hierarchical Cluster Analysis using euclidean distance as a
metric to evaluate similarity was used in statistical software
SPSS R© version 26 (IBM developer, 2019: SPSS Statistics
version 26 – Armonk, New York, United States). Linear
regression of the linearized form of an exponential model
[i.e., regression of ln(score 2) against score 1] was used
to obtain a functional model to relate the complexity of
both alleles in each sample. The analysis of covariance
(ANCOVA), as outlined by Zar (2010), was used to compare
the regression models, and derive common regression lines,
with allelic scores as variables [i.e., score 1 and ln(score
2)]. All statistical tests were carried out for a significance
level of 0.05.

Determination of X-Chromosome
Inactivation Pattern and FMR1
Methylation Status
X-chromosome inactivation (XCI) pattern was determined by
the human androgen-receptor assay (HUMARA), resorting
to the CAG trinucleotide repeat located in the first exon
and two methylation-sensitive endonuclease sites located
upstream of the AR gene (Allen et al., 1992). The percentage
of allele activity was determined using the peak heights,
and normalized to the corresponding undigested allele peak
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height. The FMR1 methylation status was determined using
AmplideX R© mPCR FMR1 kit (Asuragen, Inc., Austin, TX,
United States), according to the manufacturer’s instructions.
The mPCR assay determines both the number of CGG
repeats and the percentage promoter methylation of each
FMR1 allele.

RESULTS

A similar FMR1 CGG size distribution was obtained in
both cohorts with normal alleles, ranging from 15 to 40
CGG in cohort 1 and from 15 to 44 CGG in cohort 2
(n = 127, 97%) and intermediate genotypes, one allele with
48 CGG in cohort 1 and three alleles with 45 CGG in
cohort 2 (n = 4, 3%) (Tables 1, 2). Homozygosity was
observed in eleven samples (22%, cohort 1), of which nine
shared the same CGG/AGG substructure, and in seventeen
samples (21%, cohort 2), of which thirteen shared the same
AGG pattern. In line with previous publications, the vast
majority of the alleles (93%) showed one or two AGGs, 5%
were pure (4, cohort 1 and 9, cohort 2) and the remaining
2% showed three AGG interspersions. The most common
structure, (CGG)10AGG(CGG)9AGG(CGG)9, was identified in
29 (29%, cohort 1) and 40 alleles (25%, cohort 2). Similar to
other worldwide populations, a highly polymorphic CGG/AGG
substructure was observed: forty-one and fifty-five unique
patterns were identified in cohorts 1 and 2, respectively
(Tables 1, 2; Yrigollen et al., 2014).

Development of the Mathematical Model
A mathematical model was developed to integrate the AGG
interspersion number and pattern and the total repeat length,
reflecting the CGG/AGG substructure. The result score, named
allelic score, was calculated separately for each allele as follows:

Allelic score =

( n∑
i=1

Ri × 4i−1

)
+
(
Rn+1 × 4n

)
where,

Ri: number of CGG repeats before the first AGG interspersion
of order i;

i: CGG repeat order number;
n: total number of AGG interspersions;
Rn+1: number of CGG repeats after the last

AGG interspersion.
Base-4 numeral system was used to ensure that the allelic

score is unique to each of the AGG interspersion patterns and
sufficiently spaced.

For the purpose of addressing allelic complexity, two different
aspects of the allelic structure are considered: number of
AGG interspersions and number of CGG repeats between
interspersions. Higher relevance is given to the number of
interspersions as, for alleles with identical number of CGG
repeats, higher number of AGG interspersions is usually linked
with allelic stability (Maia et al., 2016; Manor et al., 2019). As
example, an allele with two AGGs shows an allelic score of 193

whereas an allele with a similar length but only one AGG has an
allelic score of 59.

Allelic score
[
(CGG)9 AGG (CGG)10 AGG (CGG)9

]
=

[(9× 41−1)+ (10× 42−1)] + (9× 42) = 193

Allelic score
[
(CGG)10 AGG (CGG)19

]
=

(19× 41−1)+ (10× 41) = 59

This mathematical model is protected with a national
patent (reference – 115244) and international patent
application submitted on december 6, 2019 (reference –
PCT/IB2019/060520).

Application and Validation of the
Mathematical Model
Allelic scores ranged from 15 to 825 (cohort 1) and 15 to
828 (cohort 2), with most samples scoring below 220 (95.4%)
and six with a score in the order of 800, due to the presence
of three AGG interspersions (Tables 1, 2). Scores under 220
either represent zero, one or two AGG interspersions; above
two AGG interspersions, the allelic score grows exponentially.
An exploratory cluster analysis identified four major clusters,
with observations within each quadrant separated in both axes
by an allelic score of 150 (Supplementary Figures 1, 2). Similar
behaviors were observed among the two quadrants where allelic
scores were both lower than 150 or both higher than 150, and
the other two where alleles show low and high allelic score,
allowing the definition of two groups. The equivalent group
contains samples where both alleles show a similar complexity,
and the dissimilar group with samples where alleles show a
different complexity. These groups include samples with three
AGGs as the behavior of their alleles fits that of other samples
in the same quadrant (Supplementary Figures 1, 2). In both
groups, an exponential model was used to describe the correlation
between the allelic score of each allele. Significant correlations
were found: cohort 1 – equivalent group: r = 0.8092; df = 24;
p < 0.0001 and dissimilar group: r =−0.7067; df = 22; p < 0.0001
(Supplementary Figure 3). To validate the mathematical models
and their reproducibility, a covariance (ANCOVA) analysis
was used to compare the models calculated for cohort 1 and
the same models computed using cohort 2 data (equivalent
group: r = 0.8603; df = 43; p < 0.0001 and dissimilar group:
r = −0.8716; df = 33; p < 0.0001) (Supplementary Figure 4).
There was no statistically significant difference between cohort
1 (development cohort) and cohort 2 (validation cohort) with
respect to the equivalent and dissimilar group’s models, as
demonstrated by the coincident regression lines (Supplementary
Figure 5). A more robust model including all observations
(both cohorts) was derived: equivalent group – F(2,68) = 1.8048;
p = 0.1723: ln(score 2) = 3.6452 + 0.0088× score 1 and dissimilar
group – F(2,55) = 0.9574; p = 0.3902: ln(score 2) = 5.6944 –
0.0065× score 1.

Seven samples from each group (cohort 2) were tested for
XCI pattern (Supplementary Table 1). Interestingly, in a sample
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TABLE 1 | Cohort 1 data used to calculate the allelic scores, and identify the two groups, equivalent (white background) and dissimilar (gray background).

Allele 1 Allele 2

CGG/AGG Pattern Repeat length Allelic score CGG/AGG Pattern Repeat length Allelic score

(CGG)8AGG(CGG)9 18§ 41 (CGG)23AGG(CGG)9 33 101

(CGG)10AGG(CGG)9 20§ 49 (CGG)10AGG(CGG)9 20§ 49

(CGG)9AGG(CGG)8AGG(CGG)9 20§ 185 (CGG)10AGG(CGG)8AGG(CGG)9 29 201

(CGG)10AGG(CGG)9 20§ 49 (CGG)20AGG(CGG)9 30 89

(CGG)10AGG(CGG)9 20§ 49 (CGG)13AGG(CGG)9 23§ 61

(CGG)9AGG(CGG)11 21§ 47 (CGG)12AGG(CGG)16 29 64

(CGG)10AGG(CGG)11 22§ 51 (CGG)13AGG(CGG)16 30 68

(CGG)9AGG(CGG)13 23§ 49 (CGG)12AGG(CGG)25 38 73

(CGG)9AGG(CGG)15 25§ 51 (CGG)10AGG(CGG)19 30 59

(CGG)9AGG(CGG)9AGG(CGG)9 29 189 (CGG)10AGG(CGG)9AGG(CGG)9 30 205

(CGG)9AGG(CGG)9AGG(CGG)9 29 189 (CGG)10AGG(CGG)9AGG(CGG)10 31 206

(CGG)9AGG(CGG)9AGG(CGG)9 29 189 (CGG)10AGG(CGG)9AGG(CGG)9 30 205

(CGG)9AGG(CGG)9AGG(CGG)9 29 189 (CGG)9AGG(CGG)9AGG(CGG)9 29 189

(CGG)9AGG(CGG)9AGG(CGG)9 29 189 (CGG)10AGG(CGG)9AGG(CGG)9 30 205

(CGG)9AGG(CGG)9AGG(CGG)9 29 189 (CGG)10AGG(CGG)9AGG(CGG)9 30 205

(CGG)9AGG(CGG)10AGG(CGG)9 30 193 (CGG)10AGG(CGG)9AGG(CGG)14 35 210

(CGG)9AGG(CGG)10AGG(CGG)9 30 193 (CGG)10AGG(CGG)11AGG(CGG)9 32 213

(CGG)10AGG(CGG)9AGG(CGG)9 30 205 (CGG)10AGG(CGG)9AGG(CGG)9 30 205

(CGG)10AGG(CGG)9AGG(CGG)9 30 205 (CGG)10AGG(CGG)9AGG(CGG)9 30 205

(CGG)9AGG(CGG)9AGG(CGG)10 30 190 (CGG)10AGG(CGG)9AGG(CGG)8AGG(CGG)9 39 825

(CGG)10AGG(CGG)9AGG(CGG)9 30 205 (CGG)10AGG(CGG)9AGG(CGG)9 30 205

(CGG)10AGG(CGG)9AGG(CGG)9 30 205 (CGG)10AGG(CGG)9AGG(CGG)9 30 205

(CGG)10AGG(CGG)9AGG(CGG)9 30 205 (CGG)10AGG(CGG)9AGG(CGG)9 30 205

(CGG)10AGG(CGG)9AGG(CGG)9 30 205 (CGG)10AGG(CGG)9AGG(CGG)9 30 205

(CGG)9AGG(CGG)10AGG(CGG)9 30 193 (CGG)10AGG(CGG)11AGG(CGG)9 32 213

(CGG)10AGG(CGG)9AGG(CGG)9 30 205 (CGG)10AGG(CGG)9AGG(CGG)9 30 205

(CGG)9AGG(CGG)9AGG(CGG)12 32 192 (CGG)10AGG(CGG)9AGG(CGG)18 39 214

(CGG)8AGG(CGG)9AGG(CGG)21 40 185 (CGG)9AGG(CGG)8AGG(CGG)29 48# 205

(CGG)15 15§ 15 (CGG)10AGG(CGG)9AGG(CGG)9 30 205

(CGG)7AGG(CGG)9 17§ 37 (CGG)10AGG(CGG)9AGG(CGG)9 30 205

(CGG)10AGG(CGG)9 20§ 49 (CGG)10AGG(CGG)9AGG(CGG)9 30 205

(CGG)10AGG(CGG)9 20§ 49 (CGG)10AGG(CGG)9AGG(CGG)10 31 206

(CGG)10AGG(CGG)9 20§ 49 (CGG)10AGG(CGG)9AGG(CGG)9 30 205

(CGG)10AGG(CGG)9 20§ 49 (CGG)10AGG(CGG)10AGG(CGG)10 32 210

(CGG)9AGG(CGG)10 20§ 46 (CGG)10AGG(CGG)8AGG(CGG)9AGG(CGG)9 39 813

(CGG)9AGG(CGG)10 20§ 46 (CGG)10AGG(CGG)8AGG(CGG)9 29 201

(CGG)9AGG(CGG)10 20§ 46 (CGG)10AGG(CGG)9AGG(CGG)9 30 205

(CGG)10AGG(CGG)9 20§ 49 (CGG)10AGG(CGG)9AGG(CGG)8AGG(CGG)9 39 825

(CGG)9AGG(CGG)10 20§ 46 (CGG)10AGG(CGG)8AGG(CGG)7AGG(CGG)9 37 805

(CGG)9AGG(CGG)10 20§ 46 (CGG)9AGG(CGG)12AGG(CGG)9 32 201

(CGG)25 25§ 25 (CGG)10AGG(CGG)9AGG(CGG)10 31 206

(CGG)15AGG(CGG)9 25§ 69 (CGG)10AGG(CGG)9AGG(CGG)10 31 206

(CGG)9AGG(CGG)9AGG(CGG)9 29 189 (CGG)9AGG(CGG)29 39 65

(CGG)9AGG(CGG)9AGG(CGG)9 29 189 (CGG)11AGG(CGG)20 32 64

(CGG)10AGG(CGG)9AGG(CGG)9 30 205 (CGG)10AGG(CGG)22 33 62

(CGG)10AGG(CGG)9AGG(CGG)9 30 205 (CGG)10AGG(CGG)20 31 60

(CGG)10AGG(CGG)9AGG(CGG)9 30 205 (CGG)10AGG(CGG)22 33 62

(CGG)30 30 30 (CGG)10AGG(CGG)9AGG(CGG)9 30 205

(CGG)10AGG(CGG)9AGG(CGG)9 30 205 (CGG)10AGG(CGG)20 31 60

(CGG)30 30 30 (CGG)10AGG(CGG)9AGG(CGG)9 30 205

Homoallelism for CGG-repeat length (black background) and homozygosity for both CGG-repeat length and AGG pattern (allelic score in green background).
# intermediate size.
§ normal “low zone” alleles (see section “Discussion”).
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TABLE 2 | Cohort 2 data used to calculate the allelic scores, and identify the two groups, equivalent (white background) and dissimilar (gray background).

Allele 1 Allele 2

CGG/AGG Pattern Repeat length Allelic score CGG/AGG Pattern Repeat length Allelic score

(CGG)15 15§ 15 (CGG)10AGG(CGG)9 20§ 49

(CGG)18 18§ 18 (CGG)10AGG(CGG)9 20§ 49

(CGG)10AGG(CGG)9 20§ 49 (CGG)25AGG(CGG)9 35 109

(CGG)10AGG(CGG)9 20§ 49 (CGG)10AGG(CGG)9 20§ 49

(CGG)10AGG(CGG)9 20§ 49 (CGG)20 20§ 20

(CGG)10AGG(CGG)9 20§ 49 (CGG)10AGG(CGG)19 30 59

(CGG)11AGG(CGG)9 21§ 53 (CGG)12AGG(CGG)10 23§ 58

(CGG)9AGG(CGG)13 23§ 49 (CGG)9AGG(CGG)19 29 55

(CGG)9AGG(CGG)13 23§ 49 (CGG)12AGG(CGG)32 45# 80

(CGG)13AGG(CGG)9 23§ 61 (CGG)24 24§ 24

(CGG)10AGG(CGG)13 24§ 53 (CGG)13AGG(CGG)16 30 68

(CGG)16AGG(CGG)9 26§ 73 (CGG)29 29 29

(CGG)9AGG(CGG)18 28 54 (CGG)9AGG(CGG)28 38 64

(CGG)9AGG(CGG)9AGG(CGG)9 29 189 (CGG)9AGG(CGG)9AGG(CGG)9 29 189

(CGG)9AGG(CGG)9AGG(CGG)9 29 189 (CGG)10AGG(CGG)9AGG(CGG)9 30 205

(CGG)10AGG(CGG)8AGG(CGG)9 29 201 (CGG)10AGG(CGG)9AGG(CGG)8 29 204

(CGG)9AGG(CGG)9AGG(CGG)9 29 189 (CGG)9AGG(CGG)9AGG(CGG)9 29 189

(CGG)9AGG(CGG)9AGG(CGG)9 29 189 (CGG)10AGG(CGG)9AGG(CGG)9 30 205

(CGG)9AGG(CGG)9AGG(CGG)9 29 189 (CGG)9AGG(CGG)12AGG(CGG)9 32 201

(CGG)9AGG(CGG)9AGG(CGG)9 29 189 (CGG)10AGG(CGG)9AGG(CGG)9 30 205

(CGG)9AGG(CGG)9AGG(CGG)10 30 190 (CGG)10AGG(CGG)9AGG(CGG)16 37 212

(CGG)9AGG(CGG)10AGG(CGG)9 30 193 (CGG)10AGG(CGG)11AGG(CGG)9 32 213

(CGG)9AGG(CGG)10AGG(CGG)9 30 193 (CGG)10AGG(CGG)11AGG(CGG)9 32 213

(CGG)9AGG(CGG)9AGG(CGG)10 30 190 (CGG)10AGG(CGG)9AGG(CGG)9AGG(CGG)8 39 828

(CGG)10AGG(CGG)9AGG(CGG)9 30 205 (CGG)10AGG(CGG)10AGG(CGG)10 32 210

(CGG)10AGG(CGG)9AGG(CGG)9 30 205 (CGG)10AGG(CGG)9AGG(CGG)9 30 205

(CGG)9AGG(CGG)10AGG(CGG)9 30 193 (CGG)10AGG(CGG)14AGG(CGG)9 35 225

(CGG)10AGG(CGG)9AGG(CGG)9 30 205 (CGG)10AGG(CGG)9AGG(CGG)9 30 205

(CGG)10AGG(CGG)9AGG(CGG)9 30 205 (CGG)10AGG(CGG)9AGG(CGG)9 30 205

(CGG)9AGG(CGG)9AGG(CGG)10 30 190 (CGG)10AGG(CGG)9AGG(CGG)20 41 216

(CGG)10AGG(CGG)9AGG(CGG)9 30 205 (CGG)10AGG(CGG)9AGG(CGG)9 30 205

(CGG)9AGG(CGG)10AGG(CGG)9 30 193 (CGG)10AGG(CGG)11AGG(CGG)9 32 213

(CGG)10AGG(CGG)9AGG(CGG)9 30 205 (CGG)10AGG(CGG)9AGG(CGG)9 30 205

(CGG)9AGG(CGG)9AGG(CGG)10 30 190 (CGG)10AGG(CGG)9AGG(CGG)19 40 215

(CGG)10AGG(CGG)9AGG(CGG)9 30 205 (CGG)10AGG(CGG)9AGG(CGG)9 30 205

(CGG)10AGG(CGG)9AGG(CGG)9 30 205 (CGG)10AGG(CGG)9AGG(CGG)9 30 205

(CGG)10AGG(CGG)9AGG(CGG)9 30 205 (CGG)10AGG(CGG)9AGG(CGG)9 30 205

(CGG)10AGG(CGG)9AGG(CGG)9 30 205 (CGG)10AGG(CGG)9AGG(CGG)9 30 205

(CGG)9AGG(CGG)9AGG(CGG)10 30 190 (CGG)9AGG(CGG)11AGG(CGG)9 31 197

(CGG)9AGG(CGG)10AGG(CGG)9 30 193 (CGG)10AGG(CGG)11AGG(CGG)9 32 213

(CGG)10AGG(CGG)9AGG(CGG)9 30 205 (CGG)10AGG(CGG)10AGG(CGG)9 31 209

(CGG)9AGG(CGG)10AGG(CGG)9 30 193 (CGG)10AGG(CGG)11AGG(CGG)9 32 213

(CGG)10AGG(CGG)9AGG(CGG)9 30 205 (CGG)10AGG(CGG)12AGG(CGG)9 33 217

(CGG)10AGG(CGG)9AGG(CGG)10 31 206 (CGG)10AGG(CGG)9AGG(CGG)10 31 206

(CGG)9AGG(CGG)9AGG(CGG)11 31 191 (CGG)10AGG(CGG)9AGG(CGG)17 38 213

(CGG)9AGG(CGG)9AGG(CGG)19 39 199 (CGG)9AGG(CGG)9AGG(CGG)9AGG(CGG)15 45# 771

(CGG)10AGG(CGG)5 16§ 45 (CGG)10AGG(CGG)9AGG(CGG)10 31 206

(CGG)10AGG(CGG)9 20§ 49 (CGG)10AGG(CGG)9AGG(CGG)9 30 205

(CGG)9AGG(CGG)10 20§ 46 (CGG)10AGG(CGG)9AGG(CGG)8 29 204

(CGG)10AGG(CGG)9 20§ 49 (CGG)10AGG(CGG)9AGG(CGG)9 30 205

(Continued)
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TABLE 2 | Continued

Allele 1 Allele 2

CGG/AGG Pattern Repeat length Allelic score CGG/AGG Pattern Repeat length Allelic score

(CGG)10AGG(CGG)9 20§ 49 (CGG)10AGG(CGG)10AGG(CGG)10 32 210

(CGG)10AGG(CGG)9 20§ 49 (CGG)10AGG(CGG)9AGG(CGG)9 30 205

(CGG)9AGG(CGG)10 20§ 46 (CGG)10AGG(CGG)11AGG(CGG)9 32 213

(CGG)9AGG(CGG)10 20§ 46 (CGG)10AGG(CGG)8AGG(CGG)9 29 201

(CGG)20 20§ 20 (CGG)9AGG(CGG)9AGG(CGG)9 29 189

(CGG)10AGG(CGG)9 20§ 49 (CGG)10AGG(CGG)9AGG(CGG)9 30 205

(CGG)9AGG(CGG)10 20§ 46 (CGG)10AGG(CGG)9AGG(CGG)9 30 205

(CGG)10AGG(CGG)9 20§ 49 (CGG)10AGG(CGG)9AGG(CGG)9 30 205

(CGG)9AGG(CGG)10 20§ 46 (CGG)10AGG(CGG)8AGG(CGG)9 29 201

(CGG)10AGG(CGG)9 20§ 49 (CGG)10AGG(CGG)9AGG(CGG)9 30 205

(CGG)10AGG(CGG)11 22§ 51 (CGG)12AGG(CGG)7AGG(CGG)9 30 229

(CGG)13AGG(CGG)9 23§ 61 (CGG)10AGG(CGG)9AGG(CGG)9 30 205

(CGG)12AGG(CGG)10 23§ 58 (CGG)9AGG(CGG)10AGG(CGG)9 30 193

(CGG)13AGG(CGG)9 23§ 61 (CGG)10AGG(CGG)9AGG(CGG)9 30 205

(CGG)13AGG(CGG)9 23§ 61 (CGG)10AGG(CGG)9AGG(CGG)9 30 205

(CGG)13AGG(CGG)9 23§ 61 (CGG)10AGG(CGG)9AGG(CGG)9 30 205

(CGG)27 27 27 (CGG)10AGG(CGG)9AGG(CGG)9 30 205

(CGG)9AGG(CGG)9AGG(CGG)9 29 189 (CGG)29AGG(CGG)9 39 125

(CGG)9AGG(CGG)9AGG(CGG)9 29 189 (CGG)38 38 38

(CGG)9AGG(CGG)19 29 55 (CGG)10AGG(CGG)9AGG(CGG)9 30 205

(CGG)9AGG(CGG)9AGG(CGG)9 29 189 (CGG)10AGG(CGG)20 31 60

(CGG)9AGG(CGG)19 29 55 (CGG)10AGG(CGG)9AGG(CGG)10 31 206

(CGG)10AGG(CGG)9AGG(CGG)9 30 205 (CGG)22AGG(CGG)9 32 97

(CGG)10AGG(CGG)19 30 59 (CGG)10AGG(CGG)9AGG(CGG)10 31 206

(CGG)9AGG(CGG)10AGG(CGG)9 30 193 (CGG)10AGG(CGG)19 30 59

(CGG)30 30 30 (CGG)10AGG(CGG)9AGG(CGG)10 31 206

(CGG)10AGG(CGG)9AGG(CGG)9 30 205 (CGG)33AGG(CGG)9 43 141

(CGG)10AGG(CGG)9AGG(CGG)9 30 205 (CGG)10AGG(CGG)19 30 59

(CGG)10AGG(CGG)20 31 60 (CGG)10AGG(CGG)9AGG(CGG)23 44 219

(CGG)9AGG(CGG)21 31 57 (CGG)10AGG(CGG)8AGG(CGG)25 45# 217

(CGG)10AGG(CGG)20 31 60 (CGG)10AGG(CGG)9AGG(CGG)10 31 206

Homoallelism for CGG-repeat length (black background) and homozygosity for both CGG-repeat length and AGG pattern (allelic score in green background).
# intermediate size. §normal “low zone” alleles (see section “Discussion”).

belonging to the dissimilar group, FMR1 mPCR showed extreme
skewing (85%) toward the smallest “low zone” allele.

DISCUSSION

Our study focused on developing a tool to score and evaluate
the complexity of the FMR1 gene repetitive tract structure. To
this end, a mathematical model was designed that computes
the FMR1 gene CGG repeat length, as well as the AGG
interspersion number and pattern. The output, a number
designated allelic score, deciphers a functional model to predict
the complexity of allele combinations. Two cohorts of young,
healthy, and potentially fertile females were used independently
for development and validation studies. The fact that two
statistically significant groups, equivalent and dissimilar, were
identified in both cohorts, justified the pooling of data.

Furthermore, the identification of two groups shows the model’s
ability to compare the complexity of the two alleles. Interestingly,
the dissimilar group is enriched with “low zone” heterozygous
samples (herein defined as CGG ≤ 26). It has been proposed
that these “low zone” alleles may exert negative effects, although
controversial (Spitzer et al., 2012; Mailick et al., 2014; Gleicher
et al., 2015; Ruth et al., 2016). Another study claims that
normal FMR1 repeat length outside 26 > CGG > 34 concur
with a higher XCI skew, a putative mechanism underlying the
ovarian reserve impairment (as assessed by AMH), particularly
in infertile older females (Barad et al., 2017). Moreover, the AGG
“protective” effect toward a decreased risk of ovarian malfunction
was observed in females carrying premutated alleles with two
or more interspersions (Lekovich et al., 2018). According to
our model, these alleles would show a high allelic score, which
seems to suggest a correlation between the allelic complexity and
a protective effect. Replication of these results is still required
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using larger control and patient cohorts. Nonetheless, with this
mathematical model developed to calculate the FMR1 allelic
score, further research can now be undertaken with a different
perspective in terms of FMR1 characterization.
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