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Transcriptomics is a developing field with new methods of analysis being produced
which may hold advantages in price, accuracy, or information output. QuantSeq is
a form of 3′ sequencing produced by Lexogen which aims to obtain similar gene-
expression information to RNA-seq with significantly fewer reads, and therefore at a
lower cost. QuantSeq is also able to provide information on differential polyadenylation.
We applied both QuantSeq at low read depth and total RNA-seq to the same two sets
of mouse spinal cord RNAs, each comprised by four controls and four mutants related
to the neurodegenerative disease amyotrophic lateral sclerosis. We found substantial
differences in which genes were found to be significantly differentially expressed by
the two methods. Some of this difference likely due to the difference in number of
reads between our QuantSeq and RNA-seq data. Other sources of difference can be
explained by the differences in the way the two methods handle genes with different
primary transcript lengths and how likely each method is to find a gene to be differentially
expressed at different levels of overall gene expression. This work highlights how
different methods aiming to assess expression difference can lead to different results.
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INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease with multiple
causes. Only 10% of cases have a family history (Kurland and Mulder, 1955; Taylor et al., 2016)
with the rest being sporadic. Mutations in genes which encode RNA binding proteins have been
associated with the development of ALS. There is therefore increasing interest in how genetic
mutations can affect changes in RNA expression and lead to ALS (Boylan, 2015). One of the genes
that has been shown to cause ALS is Fused in sarcoma (FUS); mutations in its coding sequence cause
FUS, which is usually prevalently nuclear, to mislocalize to the cytoplasm. This mislocalization leads
to cytoplasmic inclusions that are the hallmark of disease and further to nuclear depletion of the
protein (Kwiatkowski et al., 2009; Vance et al., 2009). Whether the excess of FUS in the cytoplasm
or its loss from the nucleus are the drivers of disease remains an open question, and although there
is evidence supporting FUS mutations causing gain of function, the loss of nuclear function may
also contribute to disease (Scekic-Zahirovic et al., 2016; Birsa et al., 2020).

Alterations in the levels of FUS induce significant changes in splicing and expression (Ishigaki
et al., 2012; Coady and Manley, 2015; Humphrey et al., 2020). In order to assess effects of FUS
mutations on RNA-expression, we previously generated mouse models that carry mutations in the
endogenous Fus gene to avoid overexpression artifacts, allowing us to more accurately see any true
effects of mutations and separate them from noise caused by FUS overexpression. These mutant
mice carry a mutation inducing the skipping of the penultimate exon 14, and will henceforth be
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referred to as d14 mice (Devoy et al., 2017). In order to address
whether the differences caused by FUS mutations differ from the
loss of FUS, we have previously conducted total RNA sequencing
in parallel on a set of FUS knockout (FUS KO) and control
mice and FUS mutants (FUS d14) with their respective controls,
and found the expression changes induced by the mutations are
mostly due to loss of function (Humphrey et al., 2020).

We have now also sequenced the same samples using a form
of 3′ sequencing called QuantSeq to compare the performance
of these two different approaches in evaluating gene expression.
QuantSeq aims to be able to provide useful information about
differential expression at lower read depths than other methods,
as well as providing data on differential polyadenylation.

In order to investigate the viability of using QuantSeq as
a possible replacement for total RNA-seq, we compared the
results of the sequencing of two datasets; FUS KO and FUS
d14, each against their own wild-type (WT) littermate controls.
We observed significant differences between the genes that are
found to be differentially expressed using the two methods.
While some of the differences will have come from the fact that
QuantSeq uses only mRNA and total RNA-seq uses all RNA-
present in the cell, we have identified some other possible causes
of the differences in which genes are recognized as differentially
expressed, including differences in how the two methods handle
genes based on the number of reads they have and the length of
their primary transcript.

METHODS

Preparation of Mouse Models
Fus d14 models were created as previously described (Devoy
et al., 2017). Fus knockout mice were obtained from the
Mouse Knockout Project [FUStm1(KOMP)Vlcg]. All procedures
for the care and treatment of animals were in accordance
with the Animals (Scientific Procedures) Act 1986 Amendment
Regulations 2012.

RNA Sequencing
For RNA sequencing experiments Fus d14 or KO heterozygous
and homozygous mice were compared to their respective WT
littermates. Spinal cords were collected from E17.5 mouse
embryos. Tissues were snap frozen, genotyped and total RNA was
extracted from the appropriate samples using Qiazol followed
by the mini RNAeasy kit (Qiagen). RNA samples used for
sequencing all had RIN values of 9.9 or 10. The same samples
were used for total and QuantSeq sequencing. For total RNA-
seq, cDNA libraries were made at the Oxford Genomics facility
using a TruSeq stranded total RNA RiboZero protocol (Illumina).
Libraries were sequenced on an Illumina HiSeq to generate paired
end 150 bp reads. For QuantSeq libraries the 3′mRNA-seq library
prep kit REV for Illumina (Lexogen) was used QuantSeq and
samples were sequenced by the Lexogen facility (Austria). In
QuantSeq the average number of reads was 933,955 in d14 and
1,453,108 in KO. In RNA-seq the average number of reads was
35,678,902 in d14 and 39,159,292 in KO.

Alignment
Alignment of the RNA-seq samples was performed using an in
house pipeline. It trims the samples using trim galore (Krueger,
2016), sequences using STAR (Dobin et al., 2013), then uses
HTSeq (Anders et al., 2015) to get the per exon counts which
are added together to get the per gene counts. To align our
QuantSeq samples we used a pipeline created by Gregor Rot
designed for 3′ end sequencing. The description of this pipeline
can be found in Rot et al. (2017).

Differential Expression
The per gene counts for both RNA-seq and QuantSeq data
were imported to R. Differential expression analysis was then
performed using DESeq2 (Love et al., 2014). These results were
then used to perform the analysis for our dataset in combination
with information from the polyA atlas (Gruber et al., 2016).
Z-scores were calculated as a derivative of the p-value. Some
analysis was done using the R packages Enrichment Browser
(Geistlinger et al., 2016) and limma (Ritchie et al., 2015), as
well as extensively using the tidyverse. All code used in order
to perform the analysis can be found here: https://github.com/
SethMagnusJarvis/QuantSeqComparison. The number of genes
that are differentially expressed differ slightly from our previously
published data (Humphrey et al., 2020) because we use a cut-
off for lowly expressed genes that was not included our previous
analysis. Sampling of our RNA-seq data was performed by
producing a list with a gene name in the list once for each read
in our initial dataset, then using the sample function in R to get
random rows in this list a certain number of times, the number
of times each name was found was then counted and used as
the new read list.

RESULTS

Preparation and Information on Samples
We performed our methods comparison on two sets of samples
derived from embryonic spinal cords of: (a) four Fus KO mice
and WT littermate controls, and (b) four Fus d14 mice with
their own littermate WT controls. The same RNA samples were
then sequenced either using standard total RNA-seq for library
preparation or QuantSeq kits produced by Lexogen. QuantSeq
selectively amplifies regions of RNA close to a polyA signal, whilst
total RNA-seq sequences all pieces of RNA present within the cell
regardless of a presence of a polyA signal. The core differences
between the two methods are illustrated by Figure 1A.

QuantSeq and RNA-Seq Have Similar
Levels of Reads PER Gene
We investigated how expression of single genes (Figures 1B,C)
compared between methods and found that the BaseMean value
correlated in both d14 and KO samples (cor = 0.3515, p < 0.0005
in the d14 datasets, and cor = 0.3586, p < 0.0005 in the KO
datasets). This means that the two methods see roughly the same
number of reads after normalization overall in each gene and that
any differences observed are due to other factors.
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FIGURE 1 | Core differences between QuantSeq and RNA-seq. (A) Comparison of the methods of QuantSeq and total RNA-seq; (B,C) gene by gene plot
comparing log of the BaseMean from DESeq2 between RNA-seq and QuantSeq in (B) d14 and (C) KO datasets; (D,E) comparison of Z-scores (a normalized
version of the unadjusted p-value) in QuantSeq and RNA-seq in (D) d14 and (E) KO datasets; (F,G) Venn diagrams showing overlap of significant genes
(padj < 0.05) between QuantSeq and RNA-seq in (D) d14 and (E) KO datasets.

QuantSeq and RNA-Seq Only Have a
Moderate Overlap in Significantly
Differentially Expressed Genes
Our RNA-seq pipeline found several pseudogenes and genes
which had not been experimentally confirmed to be significant.
These were removed. We then assessed whether the differential
expression between each mutant and its control group was similar
using the two sequencing methods. The Z-scores do show that
changes do occur, with rare exceptions, in the same direction, and
show a weak correlation in both datasets (Figures 1D,E). This
was especially true for genes where the absolute Z-score was >2,
the genes that are most likely to be significant. A comparison of
genes which were significant at an adjusted level (padj < 0.05)
(Figures 1F,G) showed that in our d14 dataset (Figure 1F),
only 2 of the 70 genes that RNA-seq found to be significantly
differentially expressed, were also found to be significantly
differentially expressed in QuantSeq. These genes are Pspc1
and Selenop. QuantSeq also found one gene – Mt2 – to be
significantly differentially expressed that was not observed in
RNA-seq. The percentage of significant genes which overlap in
KO (Figure 1G) is even smaller. Only about 10% of the genes
found to be significantly differentially expressed in QuantSeq
were also found significant by RNA-seq. The genes that were
found to be significantly differentially expressed Trim72, Fus,
Bcas1, Gjd2, Ahi1, and Chodl are linked to, among other things,
cell repair and development of the nervous system.

Since the overlap in which genes were found to be significant
was poor, we decided to compare unadjusted p-values in
one dataset to adjusted p-values in the other (Supplementary
Figure 1) in order to determine whether the issue was genes that
showed some significance, but missed the threshold for adjusted
significance possibly due to poor read depth. In the KO data
we found that when we relaxed the QuantSeq threshold, the
percentage of RNA-seq genes that overlapped rose from 5 to
10%. There was a bigger increase when we relaxed the RNA-seq
threshold, where the overlap with QuantSeq rose from 10 to 36%
of the total genes QuantSeq found to be significant.

To further investigate the discrepancy observed between the
differentially expressed genes from the RNA-seq and QuantSeq
experiments, we compared the rank of gene expression in one
dataset to the rank in the other. As expected, we found a positive
correlation between techniques, and interestingly transcripts
found to be significantly changed by only one technique, were
also detected at higher level using that same technique, further
supporting read depth and coverage as a major source of the
discrepancies (Supplementary Figure 2). Ten genes significantly
differentially expressed in QuantSeq were not present in the
RNA-seq differential expression dataset. Of those, eight had been
classified as fusion-gene candidates detected from split reads by
our RNA-seq pipeline and two had been filtered out due to having
very few reads. The majority of genes that were significantly
differentially expressed in the RNA-seq dataset were not found
in the differential expression results of our QuantSeq dataset.
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Supplementary Figure 3 shows the division of these genes. The
majority of which had been filtered out because they had too low
expression or no expression. Of those which were not found, most
were antisense or long non-coding RNAs.

In order to demonstrate that the methods see what we would
expect biologically, we plotted the Z-scores in KO against those
in d14. While RNA-seq did have a more pronounced correlation,
and was more likely to find genes to be more highly differentially
expressed in KO than d14, for the most part a similar correlation
was seen in QuantSeq (Supplementary Figure 4).

We then compared the size of the detected differential
expression between methods and found that RNA-seq both
tended to show larger fold change in differential expression in
the genes that were differentially expressed, and tended have a
smaller p-value (Supplementary Figures 5–8).

GO Terms Using QuantSeq and RNA-Seq
Differentially Expressed Genes Show a
Moderate Overlap
We compared the biological process GO terms arising from the
different analyses using genes which were found to be significant
with an unadjusted p-value < 0.05. This allowed us to have a
broader base of GO-terms to potentially see any overlap. Table 1
shows the results of this comparison. The majority of GO terms
in both datasets did not overlap, however we could see, especially
in the KO dataset (where more GO-terms were found to be
significant) that there was a 25% overlap of the total number
of GO terms found to be significant. These included GO terms
related to sensory perception, localization, transport, and RNA-
metabolic processes. This tells us that while the two datasets do
differ in which genes they find significant, the processes that
those genes serve do overlap to an extent. The full results of
which GO terms were found to be significant can be found in
Supplementary Tables 1, 2.

RNA-Seq Finds Fewer Genes When
Downsampled to Have the Same
Number of Reads as QuantSeq
As stated in the methods, RNA-seq has about 30 times the average
number of reads per sample as QuantSeq. We used the sample
function in R to take random reads from our RNA-seq dataset, at
several different levels between 1.5 million reads and 20 million
reads per sample to see how they compared. There was a positive
correlation overall, with more reads resulting in more genes
found to be differentially expressed. The results in KO can be
observed in Supplementary Figure 9. At these lower levels of
sampling, QuantSeq does find more genes to be differentially

TABLE 1 | Number of significant GO terms and how they overlap in each dataset.

GO terms only
significant in total

RNA-seq

GO terms only
significant in

QuantSeq

GO terms
significant in

both

d14 28 12 5

KO 186 109 98

expressed than RNA-seq in KO aside from at 20 million reads
per sample and finds as many/more genes differentially expressed
below 10 million reads per sample in the d14 dataset.

Whilst the number of detected differentially expressed genes
may depend mostly on the number of reads as shown above,
our investigation progressed to investigate reasons for the
differences between genes that were differentially expressed
observed between the two methods. RNA-seq finds about 5× the
genes that QuantSeq does represented in the top 10% of reads,
and about double the number of genes in the top 50% of reads
(Table 2). There are about half the number of genes with reads
in QuantSeq compared with RNA-seq meaning by the time 50%
of reads have been accounted for, the proportion of total genes
represented is similar. This seems to suggest that RNA-seq tends
to distribute reads more evenly across genes whereas QuantSeq
has a large number of reads concentrated in relatively few genes.

Expression Levels and Transcript Length
May Contribute to the Differences in
Differential Expression Detection
We then considered whether features of transcripts can impact on
the analysis. We first asked whether the two methods performed
differently on high or lowly expressed genes, and we compared
proportions of genes that are significantly differentially expressed
(p-value < 0.05) based on the number of reads, as shown in
Figures 2A,B,E,F. We observed a positive correlation between
the number of reads and the likelihood that a gene was found
to be significantly differentially expressed for both types of library
preparation. Total RNA-seq’s correlation plateaued at∼100 reads
while QuantSeq’s did not plateau, suggesting QuantSeq may be
less able to detect changes in expression in lowly expressed
genes compared to RNA-seq. When using adjusted p-values, the
correlation in QuantSeq remains, but and RNA-seq is still no
more likely to find a gene to be significant over a certain number
of reads (Supplementary Figures 10A–D).

We then asked whether the length of the primary transcript
impacted on the likelihood of a gene being found significant
(Figures 2C,D,G,H). There is a strong positive correlation in
RNA-seq, and a strong negative correlation in our QuantSeq
datasets suggesting that part of the differences we observe
may be linked to how the two methods handle genes with
different primary transcript lengths. The negative correlation
persists when using adjusted p-values in QuantSeq (although all
significant genes are concentrated within two groups), but there
is no longer obvious correlation in RNA-seq (Supplementary
Figures 10E–H).

Finally, as QuantSeq sequences specifically the polyA region,
we asked whether either of the two methods found a bias in

TABLE 2 | Minimum number of genes required to cover 10 and 50% of total reads
in all datasets.

d14
QuantSeq

d14
RNA-seq

KO
QuantSeq

KO
RNA-seq

First 10% 15 61 16 64

First 50% 698 1159 646 1224
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FIGURE 2 | Possible sources of difference between QuantSeq and RNA-seq using d14. (A,C,E,G) and KO (B,D,F,H) datasets: (A–D) bar plots showing the
proportion of genes that are significantly differentially expressed (p-value < 0.05) separated by the mean number of reads in the gene using (A,C) QuantSeq, and
(B,D) RNA-seq sequencing; (E–H) bar plots showing the proportion of genes that are significantly differentially expressed (p-value < 0.05) separated by the length of
the Appris Primary 1 transcript in the gene using the (E,G) QuantSeq, and (F,H) RNA-seq sequencing.

how likely a gene was to be differentially expressed depending
on how many polyA signals each gene had. When we compared
the number of polyA signals to the proportion of genes that were
significantly differentially expressed (Supplementary Figure 11)
there was no correlation in any of the QuantSeq data or in
the RNA-seq KO dataset (A–C), and an unexplained negative
correlation in RNA-seq (D), this negative correlation disappears
when using adjusted p-values (Supplementary Figure 12).

The Differences Are Not Due to the
Method of Differential Expression Used
We also looked at how Z-scores changed when using different
methods of calculating differential expression, specifically we
used the R packages limma and edgeR as well as DESeq2
(Supplementary Figures 13, 14). We also compared how the
Z-scores of the top 25% of genes looked (Supplementary
Figure S15), and the Z-scores compared in genes with
only a polyA signal in the polyA atlas (Supplementary
Figure 16). None of these tests showed substantial differences
between the methods.

DISCUSSION

RNA-sequencing is a rapidly evolving form of technology. As
such there are often new methods developed. It is important
to compare these methods to existing methods to evaluate their
relative performance. This is especially true in cases where one
method seems to offer substantial advantages in one area. In
this case, QuantSeq claims to obtain similar results to total
RNA-seq at far lower read depths, as well as providing easily
accessible information on differential polyadenylation. Our read

depth in QuantSeq is about 30× lower than our depth in
RNA-seq, and is lower than some recommendations for use of
QuantSeq. However, our dataset was sequenced at Lexogen and
this read depth was approved by them, so we believe it is a valid
use of the method.

We have found differences between the genes that RNA-seq
and QuantSeq find to be differentially expressed. This does not
necessarily say that any one method is better than another. It
is promising that most genes that are significant in one dataset
are at least present in the other dataset and are either not
significant or too lowly expressed to run meaningful differential
expression on them. This suggests that in QuantSeq, a substantial
culprit for some differences in the genes which are found to be
significantly differentially expressed is the low number of reads
in the dataset. This seems to imply that while QuantSeq does
identify the same genes as RNA-seq, the depth at which the
sequencing was performed in this experiment may not allow
QuantSeq to operate optimally.

We had several hypotheses for why the differences we saw
in the Z-Scores may have come about given how both of the
methods of sequencing work. While we have done our best
to remove batch effects by ensuring each mutation has a case
control and sequencing each mutant dataset with its relevant case
control to hopefully reduce noise, different sequencing centers
may introduce biases that we are not aware of. Our investigation
showed that QuantSeq performs best when a gene has a high
number of reads: by contrast, RNA-seq only requires a baseline
number of reads in a gene before it finds a gene to be differentially
expressed. RNA-seq does not seem to show a substantial bias
toward genes with longer primary transcript length contrary to
results by others (Ma et al., 2019). There did seem to be an inverse
correlation between length of primary transcript and likelihood
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of a gene to be differentially expressed in QuantSeq. There did
not appear to be a particularly strong correlation in any of the
other possible sources of difference we tested.

Splicing changes have been shown to impact on polyA
selection, but we have previously investigated the overlap
between splicing and expression changes in these datasets
(Humphrey et al., 2020) and found this to be modest,
therefore making the impact of splicing changes on the different
sensitivities likely not to be relevant.

When sampling the dataset, RNA-seq did have reads in more
genes, this may have led to RNA-seq finding fewer genes to be
significant, it is obvious that QuantSeq is more likely to find
genes to be significantly differentially expressed at low levels of
reads, this is to be expected since QuantSeq only has one read
per transcript so can hopefully get more information, but most of
the genes which QuantSeq finds to be significant are not found
to be significant by RNA-seq at any level so we cannot be sure
how many are real hits. Since Illumina recommends upwards of
30 million reads (Illumina Inc, 2017), when measuring at levels of
reads from 3× lower than this, to 20× lower than this, the poor
performance of RNA-seq is somewhat expected.

A large number of the genes which are differentially expressed
exclusively in RNA-seq have been subsequently validated
elsewhere. While we have not been able to experimentally validate
the QuantSeq genes, some of them, including three of the five
most differentially expressed ones in KO (Mcur1, FTSJ1, and
GPR17) have been linked to neurodegeneration (Liao et al., 2017;
Angelova et al., 2020; Bonfanti et al., 2020), or in the case of
GPR17, directly linked to ALS. Many of the rest have not.

It is possible that other methods are better optimized for
use with QuantSeq. Corley et al. (2019) found a much stronger
correlation in results than our study, although RNA-seq still
found more genes to be differentially expressed than QuantSeq.
Since the QuantSeq data used in this article has 30× higher read
depth than our data, most of the differences observed are likely
in part due to this difference in read depth. Combining QuantSeq
with a fast method of quantification like salmon may allow for
rapid, inexpensive differential analysis for less focused or more
exploratory questions than existing methods.

This study does not demonstrate improved performance
in measuring differential expression for either method, but
highlights substantial differences between the two methods that
should be taken into consideration when designing experiments.
QuantSeq finds a lot more genes to be differentially expressed
with smaller library sizes than RNA-seq does. The fact that it
does seem to provide useful information at lower read depth may
mean QuantSeq can act as a cost-effective method to sequence
large numbers of samples at low read depth to find genes for
further investigation. It is especially worthwhile in this situation
if differential polyadenylation is an area of interest.

However, it must be borne in mind that most of these genes
are not seen to be differentially expressed by RNA-seq, so some
of them may be called into question. RNA-seq is a more widely
used library preparation method and, while it is possible that the
differences between the two methods are either false positives or
false negatives on the part of QuantSeq, more standard library
preparation may be preferable for general standardization of

results since they have a proven track record of finding true
differential expression in genes. The low read depth of our
QuantSeq data is likely responsible for a large portion of the
difference between the datasets, but we have highlighted some of
how the two methods do differ in their handling of data.

The goal of this article is not to disprove QuantSeq’s capability
of producing useful results. A demonstration of its utility can be
found in Oh et al. (2020) which found that the levels of expression
of various cytokines correlated with changes in gene expression
found using QuantSeq. As with all methods though, we advise
care is taken and validation is performed before any conclusions
are reached. Studies conducting multiple approaches in parallel,
including qPCR and nanostring, will be informative to compare
expression techniques.

DATA AVAILABILITY STATEMENT

The QuantSeq data has been uploaded to the Sequence Read
Archive, accession number PRJNA668024. The total RNA-seq
data was uploaded to the Gene Expression Omnibus, accession
number GSE147288.

ETHICS STATEMENT

The animal study was reviewed and approved by the UCL
Institutional Ethical Review Committee.

AUTHOR CONTRIBUTIONS

SJ performed the data analysis. NB generated the data. SJ, PF, and
VP designed the study. PF and MS assisted with revisions and
improving the final manuscript. PF, MS, and VP supervised the
project. SJ wrote the manuscript. All authors contributed to the
article and approved the submitted version.

FUNDING

SJ was funded by an MNDA Ph.D. studentship (VP and PF).
PF was funded by the MRC, MNDA, and the NIHR UCLH
Biomedical Research Centre. UK Medical Research Council
and MNDA (MR/M008606/1 and MR/S006508/1 to PF) Motor
Neurone Disease Association (885-792 to VP and PF).

ACKNOWLEDGMENTS

Thank you to Gregor Rot for aligning our sequenced
QuantSeq data.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2020.
562445/full#supplementary-material

Frontiers in Genetics | www.frontiersin.org 6 November 2020 | Volume 11 | Article 562445

https://www.frontiersin.org/articles/10.3389/fgene.2020.562445/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2020.562445/full#supplementary-material
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-562445 November 12, 2020 Time: 15:10 # 7

Jarvis et al. Comparison of QuantSeq and RNA-Seq

REFERENCES
Anders, S., Pyl, P. T., and Huber, W. (2015). HTSeq—a Python framework to

work with high-throughput sequencing data. Bioinformatics 31, 166–169. doi:
10.1093/bioinformatics/btu638

Angelova, M. T., Dimitrova, D. G., Da Silva, B., Marchand, V., Jacquier, C., Achour,
C., et al. (2020). tRNA 2-O-methylation by a duo of TRM7/FTSJ1 proteins
modulates small RNA silencing in Drosophila. Nucleic Acids Res. 48, 2050–2072.
doi: 10.1093/nar/gkaa002

Birsa, N., Bentham, M. P., and Fratta, P. (2020). Cytoplasmic functions of TDP-
43 and FUS and their role in ALS. Semin. Cell Dev. Biol. 99, 193–201. doi:
10.1016/j.semcdb.2019.05.023

Bonfanti, E., Bonifacino, T., Raffaele, S., Milanese, M., Morgante, E., Bonanno,
G., et al. (2020). Abnormal upregulation of gpr17 receptor contributes to
oligodendrocyte dysfunction in SOD1G93A mice. Int. J. Mol. Sci. 21:2395.
doi: 10.3390/ijms21072395

Boylan, K. (2015). Familial amyotrophic lateral sclerosis. Neurol. Clin. 33, 807–830.
doi: 10.1016/j.ncl.2015.07.001

Coady, T. H., and Manley, J. L. (2015). ALS mutations in TLS/FUS disrupt target
gene expression. Genes Dev. 29, 1696–1706. doi: 10.1101/gad.267286.115

Corley, S. M., Troy, N. M., Bosco, A., and Wilkins, M. R. (2019). QuantSeq. 3’
Sequencing combined with Salmon provides a fast, reliable approach for high
throughput RNA expression analysis. Sci. Rep. 9:18895. doi: 10.1038/s41598-
019-55434-x

Devoy, A., Kalmar, B., Stewart, M., Park, H., Burke, B., Noy, S. J., et al.
(2017). Humanized mutant FUS drives progressive motor neuron degeneration
without aggregation in ‘FUSDelta14’ knockin mice. Brain 140, 2797–2805. doi:
10.1093/brain/awx248

Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., et al.
(2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21.
doi: 10.1093/bioinformatics/bts635

Geistlinger, L., Csaba, G., and Zimmer, R. (2016). Bioconductor’s
EnrichmentBrowser: seamless navigation through combined results of
set- & network-based enrichment analysis. BMC Bioinformatics 17:45. doi:
10.1186/s12859-016-0884-1

Gruber, A. J., Schmidt, R., Gruber, A. R., Martin, G., Ghosh, S., Belmadani,
M., et al. (2016). A comprehensive analysis of 3′ end sequencing data sets
reveals novel polyadenylation signals and the repressive role of heterogeneous
ribonucleoprotein C on cleavage and polyadenylation. Genome Res. 26, 1145–
1159. doi: 10.1101/gr.202432.115

Humphrey, J., Birsa, N., Milioto, C., Robaldo, D., Bentham, M., Jarvis, S., et al.
(2020). FUS ALS-causative mutations impact FUS autoregulation and the
processing of RNA-binding proteins through intron retention. Nucleic Acids
Res. 48, 6889–6905. doi: 10.1093/nar/gkaa410

Illumina, Inc (2017). Illumina Considerations for RNA-Seq Read Length and
Coverage. Available online at: https://support.illumina.com/bulletins/2017/04/
considerations-for-rna-seq-read-length-and-coverage-.html (accessed May
21, 2020).

Ishigaki, S., Masuda, A., Fujioka, Y., Iguchi, Y., Katsuno, M., Shibata, A., et al.
(2012). Position-dependent FUS-RNA interactions regulate alternative splicing
events and transcriptions. Sci. Rep. 2:529. doi: 10.1038/srep00529

Krueger, F. (2016). Trim Galore. Babraham Bioinform. Available online at: http:
//www.bioinformatics.babraham.ac.uk/projects/trim_galore/

Kurland, L. T., and Mulder, D. W. (1955). Epidemiologic investigations of
amyotrophic lateral sclerosis. 2. Familial aggregations indicative of dominant
inheritance. II. Neurology 5, 249–268. doi: 10.1212/WNL.5.3.182

Kwiatkowski, T. J., Bosco, D. A., LeClerc, A. L., Tamrazian, E., Vanderburg, C. R.,
Russ, C., et al. (2009). Mutations in the FUS/TLS gene on chromosome 16
cause familial amyotrophic lateral sclerosis. Science 323, 1205–1208. doi: 10.
1126/science.1166066

Liao, Y., Dong, Y., and Cheng, J. (2017). The function of the mitochondrial calcium
uniporter in neurodegenerative disorders. Int. J. Mol. Sci. 18:248. doi: 10.3390/
ijms18020248

Love, M. I., Huber, W., and Anders, S. (2014). Moderated estimation of fold
change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:550.
doi: 10.1186/s13059-014-0550-8

Ma, F., Fuqua, B. K., Hasin, Y., Yukhtman, C., Vulpe, C. D., Lusis, A. J., et al. (2019).
A comparison between whole transcript and 3’ RNA sequencing methods using
kapa and lexogen library preparation methods 06 biological sciences 0604
genetics. BMC Genomics 20:9. doi: 10.1186/s12864-018-5393-3

Oh, S., Gim, J., Lee, J. K., Park, H., and Shin, O. S. (2020). Coxsackievirus B3
infection of human neural progenitor cells results in distinct expression patterns
of innate immune genes. Viruses 12:325.

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., et al.
(2015). limma powers differential expression analyses for RNA-sequencing
and microarray studies. Nucleic Acids Res. 43:e47. doi: 10.1093/nar/gk
v007

Rot, G., Wang, Z., Huppertz, I., Modic, M., Lenče, T., Hallegger, M., et al.
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