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Circular RNAs (circRNAs) regulate mRNA translation by binding to microRNAs (miRNAs),
and their expression is altered in diverse disorders, including cancer, cardiovascular
disease, and Parkinson’s disease. Here, we compare circRNA expression patterns
in the temporal cortex and hippocampus of patients with pharmacoresistant mesial
temporal lobe epilepsy (MTLE) and healthy controls. Nine circRNAs showed significant
differential expression, including circRNA-HOMER1, which is expressed in synapses.
Further, we identified miRNA binding sites within the sequences of differentially
expressed (DE) circRNAs; expression levels of mRNAs correlated with changes in
complementary miRNAs. Gene set enrichment analysis of mRNA targets revealed
functions in heterocyclic compound binding, regulation of transcription, and signal
transduction, which maintain the structure and function of hippocampal neurons. The
circRNA–miRNA–mRNA interaction networks illuminate the molecular changes in MTLE,
which may be pathogenic or an effect of the disease or treatments and suggests that
DE circRNAs and associated miRNAs may be novel therapeutic targets.

Keywords: circular RNAs, microRNAs, epilepsy, mesial temporal lobe epilepsy, RNA-Seq, gene expression

INTRODUCTION

Circular RNAs (circRNAs) are a unique class of non-coding RNA found in human tissues and are
linked to diverse diseases (Chen et al., 2016, 2018). CircRNAs originate from backsplicing of the
precursor-mRNA (pre-mRNA) transcript. This alternative (back) splicing of pre-mRNA transcripts
occurs when the spliceosome covalently joins the 3′ end of a downstream exon to the 5′ end
of an upstream exon. Thus, circRNAs are covalently closed and lack polyadenylated 3′-tails or
5′-caps, making them exonuclease resistant and longer lived (∼48 h) than linear RNA (∼10 h;
Curry-Hyde et al., 2020). The stability of circRNAs allows for packaging in extracellular vesicles,
suggesting a role in cell-to-cell communication (Lasda and Parker, 2016). circRNAs may also act
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as microRNA (miRNA) sponges; that is, some circRNA sequences
are complementary to miRNAs and may sequester these miRNAs,
preventing them from binding to target mRNA (Hansen et al.,
2013; Jeck et al., 2013).

Mesial temporal lobe epilepsy (MTLE) is a common human
epilepsy and is often accompanied by hippocampal sclerosis (HS;
Engel, 2001): a pathology associated with pharmacoresistance
(Blümcke et al., 2013). HS is characterized by neuronal loss
and gliosis, granule cell dispersion, and aberrant mossy fiber
sprouting (axonal projection) maximal in the CA1 and dentate
gyrus. The hippocampus is critical for short-term memory
(Bauman et al., 2019). MTLE patients with HS (MTLE-
HS), especially in the dominant (or both) hemisphere(s),
exhibit memory deficits. Pharmacoresistant epilepsy and memory
impairment may result from cell loss, synaptic reorganization,
altered excitatory–inhibitory balance, and aberrant hippocampal
discharges (Scharfman et al., 2003; Blümcke et al., 2009; Gelinas
et al., 2016). Many MTLE patients undergo surgical resection if
seizures are pharmacoresistant, with seizure-free rates of 60–80%,
and reduced seizures in 95%. However, many surgical candidates
do not undergo epilepsy surgery due to limited health care
resources or fears of complications (Kang et al., 2016).

We recently reported linear RNA and small RNA
transcriptome analysis in the temporal cortex and hippocampus
of MTLE individuals. We found large transcriptomic changes
for linear RNA in the hippocampus but not in the cortex.
By contrast, differentially expressed (DE) small RNAs (e.g.,
miRNAs) were identified across both brain regions (Mills et al.,
2020). Two other studies compare circRNAs in MTLE patients
and controls, although brain regions from controls did not
precisely match MTLE patients. The first, a microarray analysis,
sampled a 5639 probe circRNA chip for human circRNA splicing
sites. A > 3-fold DE was identified for 586 circRNAs; the top 10
dysregulated circRNAs were validated with real-time PCR (Gong
et al., 2018). The second study found 254 DE down-regulated
circRNAs and 188 DE up-regulated circRNAs (Li et al., 2018).
These results may reflect tissue-specific differences in circRNA
expression owing to the different source of tissues in MTLE
patients versus controls.

Here, we investigated circRNA expression in the temporal
cortex and hippocampus of MTLE and healthy individuals.
Our results identify aberrant circRNA expression in MTLE
individuals. We hypothesize that altered circRNA expression
perturbs gene networks in MTLE by sequestering miRNAs from
their target genes. Using bioinformatic techniques, we analyzed
the miRNA sponging potential of DE circRNAs and assessed
altered gene networks. To our knowledge, this is the first study
to combine linear, circular, and miRNA transcriptome profiles in
assessing MTLE molecular signals.

MATERIALS AND METHODS

Data Acquisition
Our patient and control cohorts, tissue sampling, and RNA
sequencing and analysis methodologies were reported in a
previous study (Mills et al., 2020). This data set contains

14 postmortem control samples (6 temporal cortex and 8
hippocampal) and 24 surgical MTLE samples (7 cortical and 17
hippocampal). Demographic and clinical characteristics for each
patient and control are summarized in Supplementary Table 1.
Control tissues were obtained during the autopsy of age-matched
individuals without neurological disease. The MTLE tissues were
obtained at surgical resection. For total and small RNA-seq
library preparations, ribosomal RNA (rRNA) was depleted, and
paired-end sequencing was performed using HiSeq 4000 with
read lengths of 151 nucleotides (nts) to a depth of 50 million and
20 million reads, respectively (Mills et al., 2020).

Read Quality Analysis
To assess the quality of sequencing, each forward and reverse
read file was analyzed with FastQC (Andrews, 2018; version
0.11.8). Trimmomatic (Bolger et al., 2014; version 0.36) was
used to remove low-quality reads and sequencing adaptors from
each read. Trimmomatic was run in paired-end mode with a
phred33 score. Low-quality leading and trailing reads of 3 nt were
removed with a sliding window of 4:15 and a minimum length of
30 nt. After trimming, FastQC determined the quality of trimmed
reads. The small RNA data sets were assessed with FastQC and
sequencing reads trimmed with Trimmomatic, which was run in
paired-end mode with a phred33 score. Low-quality leading and
trailing reads of 3 nt were removed with a sliding window of 4:15
and minimum length of 17 nt.

Read Alignment
Sequencing reads were aligned to the human reference genome
GRCh38 accessed from UCSC (Kent et al., 2002). Reads were
mapped with STAR (Dobin et al., 2013; version 2.6.1b) to rapidly
generate linear and chimeric reads and information pertaining to
the uniquely mapped read quantity.

Linear Detection
To analyze linear and small RNA transcripts, the indexed.bam
file generated by STAR was parsed to StringTie (Pertea et al.,
2015; version 1.3.4d) with the GRCh38 Ensembl or miRbase
annotation.gtf for the small RNA data sets. StringTie was run
with the -e flag to identify an abundance of known linear
transcripts and ignore novel transcripts. The StringTie Python
script prepDE.py created a matrix file of each gene and its
respective expression across all samples.

CircRNA Detection
We used the CIRCexplorer2 (Zhang et al., 2016; version 2.3.6)
and DCC (Cheng et al., 2016; version 0.4.8) programs to
detect circRNAs. Each program provides different degrees of
functionality. For example, the output of CIRCexplorer2 provides
information regarding the coding strand and how many exons
compose a circRNA. Using DCC, we removed potential circRNAs
with <2 reads and that were not expressed in at least 10 samples
to reduce false positives.

With a custom Python script, the output files of these two
programs were merged and filtered for counts per million
mapped reads (CPM) values of ≥0.1. CPM normalizes circRNA
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abundance to account for the differences in the number of
uniquely mapped reads across the samples. This filtration
guarantees that the circRNAs detected by both tools are highly
expressed and deemed as bona fide.

Analysis of Expression Distribution
To determine whether detected circRNAs and linear transcripts
cluster with respect to tissue or disease type, we performed a
t-distributed stochastic neighbor embedding (t-SNE) machine
learning algorithm with the R (R Development Core Team, 2013)
package Rtsne (Van Der Maaten et al., 2014).

Differential Expression Analysis
For the DE analysis, we used the R program edgeR (Robinson
et al., 2009; Law et al., 2018). Two DE experiments were
performed in which the control-cortex was compared to the
MTLE-cortex and the control-hippocampus was compared to
the MTLE-hippocampus. A circRNA or mRNA was removed if
its read count was zero across ≥10 samples. DE analysis was
carried out using the edgeR decideTests function; genes with a
Benjamini–Hochberg adjusted p-value < 0.05 were considered
statistically significant.

miRNA Response Elements Analysis
To identify miRNA response elements (MREs) within the DE
circRNAs, the ENCORI (Li et al., 2014; Dori and Bicciato, 2019)
Argonaut (AGO)-CLIP-seq database was queried. A custom
Python script searched for miRNA binding sites located
within the specific circRNA transcript coordinates. Using a
curl command to access the ENCORI API, we collected the
miRNA–mRNA interaction data for all miRNAs binding to
each circRNA. Within this command, we filtered the output for
≥1 supporting CLIP-seq experiments and ≥2 miRNA target-
predicting programs. A custom Python script collected the read
coverage determined by StringTie for each target gene’s transcript
for each sample.

We employed edgeR to identify DE transcript sets for
circRNAs of interest. For example, if the circRNA was DE in the
hippocampus, we performed a linear DE of the target genes of
the miRNAs predicted to bind that circRNA between the control-
hippocampus and the MTLE-hippocampus. The DE matrix was
input to ggplot (Wickham, 2006), ggrepel (Slowikowski, 2017),
and dplyr (Wickham et al., 2017) to generate volcano plots to
visualize DE patterns. To convert ensemble transcript identifiers
to more readable gene symbols, we used the biomaRt (Durinck
et al., 2009) R package.

Gene Set Enrichment Analysis
To investigate the significance of DE linear transcripts, we
utilized the SetRank (Simillion et al., 2017) GSEA algorithm.
This algorithm increases the confidence of a gene ontology (GO)
analysis by removing gene sets that are flagged as significant
if their significance is due to an overlap with other gene sets.
SetRank analyzed the tables of top-ranked genes generated
by edgeR against a background gene set filtered for all GO
databases, including biological processes, molecular function,
cellular compartment, and REACTOME.

RESULTS

Read Mapping and CircRNA Detection
The average percentage of uniquely mapped reads for
each sample was 90%, illustrating the high quality of RNA
template preparation and sequencing. CIRCexplorer2 detected
significantly more circRNAs than DCC owing to DCC’s high
stringency and low false-positive rate. After merging the
circRNAs to find those commonly detected by both tools, 1515
circRNAs were detected across all samples; the quantity of
circRNA was expected, as circRNA is highly abundant in the
brain (Gokool et al., 2020). All uniquely mapped read values
and circRNAs detected by CIRCexplorer2 and DCC and those
detected by both tools are provided in Supplementary Table 1.

t-SNE Analysis
To assess sample clustering, we employed the R package
Rtsne to perform a t-SNE machine learning analysis on
the detected circRNA expression levels for each sample
(Figure 1A). CircRNA expression was clustered by brain
region rather than disease versus control, suggesting
region-specific functionality of circRNAs. A t-SNE analysis
of detected linear transcripts revealed less organized
clustering of samples (Figure 1B). Cortex samples were
clustered closely together, and hippocampus samples
were less clustered.

CircRNA Differential Expression in MTLE
Two separate differential gene expression comparisons were
performed: control-cortex versus MTLE-cortex and control-
hippocampus versus MTLE-hippocampus. Within the cortex
samples, there was a single DE circRNA that is derived
from the calmodulin regulated spectrin associated protein
1 (CAMSAP1) gene. Comparisons between MTLE and
control hippocampal tissue revealed eight DE circRNAs.
Table 1 summarizes the metrics of the nine DE circRNAs
in both tissues.

Next, we investigated expression patterns of linear transcripts
expressed by genes co-expressing DE circRNAs. Figure 2 shows
the distribution of circRNA and linear transcript expression
levels within individual biological replicates. Only two genes
(Figure 2), Homer protein homolog 1 (HOMER1), and
NMD3 ribosome export adaptor (NMD3), revealed significant
DE of linear and circular products between MTLE and
control hippocampus.

Estimation of miRNA Binding Capacity
by DE CircRNAs
The ENCORI database provides AGO-CLIPseq data for
circRNAs with miRNA-AGO complex binding sites. Because
ENCORI uses the GRCh37 coordinates, each DE circRNA
backspliced junction (BSJ) coordinate was converted to
GRCh37 using the NCBI remap tool1. Using a custom Python
script, we identified miRNA binding within the start and end

1https://www.ncbi.nlm.nih.gov/genome/tools/remap
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FIGURE 1 | (A) t-SNE clustering of detected circRNAs. CircRNAs from the same tissue cluster together regardless of disease state. (B) t-SNE clustering of linear
transcripts. Cortex samples cluster together, and hippocampal samples show more disorganized clustering.

TABLE 1 | List of DE circRNA in MTLE cortex and hippocampus.

CircRNA ID—GRCh38* Gene ID Gene Descriptions Strand LogFC** AveExp
(CPM)***

p-value Adjusted
p-value

chr9:135866456–135883078 CAMSAP1 Calmodulin Regulated Spectrin Associated Protein
1

– +3.78 -4.309 2.85E-06 0.011

chr3:161224930–
161235212

NMD3 NMD3 Ribosome Export Adaptor + +3.37 −3.5 3.18E-06 0.008

chr8:26391243–26408376 BNIP3L BCL2 Interacting Protein 3 Like + +2.63 −4.63 4.56E-06 0.008

chr6:98899268–98934879 FBXL4 F-Box and Leucine Rich Repeat Protein 4 – +2.68 −4.59 8.57E-06 0.01

chr4:165989381–
166025431

TLL1 Tolloid Like 1 + +2.56 −4.71 2.37E-05 0.019

chr2:220630379–
220634128

AC067956.1 Long non-coding RNA SLC4A3-8 + −2.95 −4.49 2.64E-05 0.019

chr1:213077696–
213129889

RPS6KC1 Ribosomal Protein S6 Kinase C1 + +2.43 −4.8 3.29E-05 0.02

chr11:113202379–
113214511

NCAM1 Neural Cell Adhesion Molecule 1 + +2.3 −4.88 6.65E-05 0.03

chr5:79439010–79457018 HOMER1 Homer Scaffold Protein 1 – −0.61 1.3 5.22E-05 0.03

*Values underlined indicate cortex-specific circRNA.**FC: fold change in reference to healthy control.***AveExp: average expression.

coordinates, defining the BSJ of each DE circRNA. All DE
circRNAs, except neural cell adhesion molecule 1 (NCAM1)
and AC067956.1, exhibited miRNA binding potential (Table 2).
The miRNAs with binding sites on each circRNA and their
binding locations as GRCh38 coordinates are included in
Supplementary Table 2.

CircRNA–miRNA–mRNA Interaction
Analysis
We explored potential associations between DE circRNAs,
the miRNAs predicted to bind these circRNAs, and linear
RNA targets that interact with these miRNAs. For example,
circRNA-HOMER1 was DE in the hippocampus, so DE

analysis of mRNAs, targeted by the 12 miRNAs predicted
to bind to circRNA-HOMER1 (Table 2), was conducted on
hippocampus samples. The edgeR-generated adjusted p-values
were plotted to visualize transcript distribution as a volcano
plot (Figure 3A). For circRNA-HOMER1, of the 7629 total
linear transcripts, 37 linear transcripts were DE with 12
up-regulated and 25 down-regulated in the MTLE samples.
A DE of the targets of the 15 miRNAs with binding sites
on circRNA-NMD3 revealed that, of the 10,830 total linear
transcripts, 27 were DE with 11 up-regulated and 16 down-
regulated in the hippocampus (Figure 3B). All volcano plots
for linear transcripts interacting with miRNAs are shown in
Supplementary Figures 1A–G.
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FIGURE 2 | Box plots of CPM and TPM values for the nine differentially expressed circRNAs and linear transcripts across the two conditions in the cortex and
hippocampus. CircRNA and parent gene expression do not correlate, which suggests that these circRNAs are not dependent on the linear expression of their host
genes. No linear transcripts were detected for AC067956.1. ∗<0.05 and ∗∗<0.01.

Gene Set Enrichment Analysis
For the transcripts targeted by bound miRNAs, a GO analysis was
performed with SetRank, a GSEA algorithm that removes false-
positive hits. By utilizing detailed significance tests and graph
theory, SetRank addresses the gene overlap and multiple testing
problems associated with most GSEA algorithms and allows
for querying of multiple different databases simultaneously
(Simillion et al., 2017).

For the circRNA-HOMER1 interaction network, the proteins
were revealed to be located in the intracellular organelle,

TABLE 2 | miRNA binding capacity to DE circRNAs.

CircRNA ID—GRCh37 Gene ID No. of miRNAs bound

chr9:138758302–138774924 CAMSAP1 11

chr3:160942718–160953000 NMD3 15

chr8:26248759–26265892 BNIP3L 15

chr6:99347144–99382755 FBXL4 57

chr4:166910533–166946583 TLL1 7

chr2:221495100–221498849 AC067956.1 0

chr1:213251038–213303232 RPS6KC1 11

chr11:113073101–11308523 NCAM1 0

chr5:78734833–78752841 HOMER1 12

cytoplasm, and nucleus cellular components and had the
molecular functions of heterocyclic compound binding and
biological process response to stimulus. For circRNA-NMD3,
the proteins were attributed to the nuclear lumen cellular
compartment and had the molecular functions of heterocyclic
compound binding and catalytic activity. Gene set interaction
networks for HOMER1 and NMD3 generated by SetRank and
visualized within Cytoscape (Su et al., 2014) are shown in
Figure 4 and represent how each of the GSEA terms relate to
each other. Nodes are color-coded by their corrected p-values,
and the thickness and direction of the edges represent the
size of the intersection and points from the least to the most
significant. A full list of enriched terms ranked in order of
importance for each DE circRNA–miRNA–mRNA network is
included in Supplementary Table 3. Additionally, SetRank-
generated GSEA membership files reveal to which GSEA
terms each protein is attributed, and these are included as
Supplementary Files 1A–F.

DISCUSSION

In this study, we present, for the first time, changes in the
circular transcriptome landscape within the temporal cortex and
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FIGURE 3 | (A) Volcano plot of the linear transcripts that are targeted by the miRNAs (see Table 2), which were predicted to interact with circRNA-HOMER1.
(B) Volcano plot of the linear transcripts that are targeted by the miRNAs, which were predicted to interact with circRNA-NMD3. The X- and Y-axes of this plot show
the log fold change and -log10 adjusted p-value, respectively, indicating how differentially expressed a transcript is when compared to controls. Red indicates the
transcripts with adjusted p-values of <0.05, which suggests that these linear transcripts were affected by this set of miRNAs interacting with circRNA. Labeled
transcripts are the top 10 most DE.

FIGURE 4 | (A) Gene set interaction network for the miRNA targets composing the HOMER1 circRNA–miRNA–mRNA interaction network. (B) Gene set interaction
network for the miRNA targets composing the NMD3 circRNA–miRNA–mRNA interaction network. Node color indicates the corrected p-value, edge thickness
relates to the size of intersection between two gene sets, and edge direction points from the least significant to the most significant.

hippocampus of MTLE patients. An integrated bioinformatics
analysis revealed circRNA–miRNA–mRNA regulatory networks
that are specifically formed in MTLE brains, thus showing that

multiple compartments of the transcriptome are perturbed
in this type of epilepsy. Among the thousands of neuronally
expressed circRNAs, we identified one DE circRNA in the
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cortex and eight DE in the hippocampus of MTLE patients.
Both linear and circular transcripts for two genes, NMD3
and HOMER1, were DE in the hippocampus. The concurrent
expression pattern suggests that these circRNAs may be
co-expressed with linear transcripts. Alternatively, these
circRNAs may be regulating their own transcription through
interactions with U1 small nuclear ribonucleoprotein (snRNP)
or by regulating RNA polymerase II-mediated transcription
(Kristensen et al., 2019).

We compared our detected circRNAs to the list of
circRNAs detected by Li et al. (2018) and found overlapping
circRNAs, which showed a similar direction of expression.
For circRNAs detected in the cortex, there was an overlap
of 23 circRNAs and, in hippocampus, an overlap of 26
circRNAs. None of our DE circRNAs were detected. The
lack of complete overlap may be explained by differences in
bioinformatic analysis and the lack of tissue specificity in the
aforementioned study.

Our bioinformatics pipeline established that seven of the
nine DE circRNAs could be classified as miRNA sponges,
i.e., they contained sequences complementary to miRNAs. Our
interaction network analysis determined the effects of circRNA
expression relative to miRNA binding to target mRNAs. These
DE target mRNAs revealed functions in signal transduction
and transcription for neurons of the hippocampus, implying a
potential role in the etiology of MTLE-HS.

For circRNA-NMD3 and the set of miRNAs binding to
circRNA-FBXL4, there was an overlap of miRNAs from the
same family (Supplementary Table 2). This may reflect sequence
conservation across miRNAs of the same family because
miRNA families often share sequence, structure, and function
(Kaczkowski et al., 2009).

CircRNA-NMD3 is expressed from the NMD3 ribosome
export adaptor gene locus. NMD3 encodes a protein that
transports the ribosomal 60S subunit to the cytoplasm (Trotta
et al., 2003). In MTLE, the dentate gyrus is where excitatory
mossy fiber axons lose contact with mossy cells and migrate
back into the molecular layer as the densely packed granule
cells migrate and disperse (Schmeiser et al., 2017). CircRNA-
NMD3 is shown to be DE in the hippocampus of MTLE
patients. CircRNA-NMD3 interacts with 15 miRNAs, and further
investigation of those miRNAs identified DE of their target
linear transcripts. Of the 27 DE transcripts, 11 were up-regulated
and 16 were down-regulated in the hippocampus. GSEA of
those proteins revealed involvement in molecular function,
cellular component, biological processes, and REACTOME
pathways. The first ranked term, heterocyclic compound binding,
might be of significance as these compounds have been
used in multiple antiepileptic drugs (Wei et al., 2015). These
DE proteins in the hippocampus of MTLE individuals may
inhibit the binding of these compounds and may explain
the high rates of pharmacoresistance associated with the
disease. REACTOME pathways for these proteins include signal
transduction and metabolism of proteins, which may be affecting
synaptic stimulation. As similarly revealed by Mills et al.
(2020), the DE transcripts are shown to have a function in
the immune system.

CircRNA-FBXL4 is expressed from the gene locus of
the F-Box and leucine-rich repeat protein 4. The FBXL4
protein colocalizes with mitochondria to maintain mtDNA
(Bonnen et al., 2013). CircRNA-FBXL4 exhibits binding
sites for 57 miRNAs of which seven comprise the miRNA
family hsa-miR-378. There were 83 DE transcripts, and 33
were up-regulated and 50 down-regulated. GSEA revealed
that the proteins involved in this network have biological
processes of protein localization and regulation of the
protein modification process. REACTOME terms included
gene expression and metabolism of proteins. The cellular
compartment location of these proteins is shown to be in the
endoplasmic reticulum, which has a clear relation to these
protein-specific functions. The unspecific functions of these
proteins may be due to the enrichment for miRNA binding
sites on circRNA-FBXL4 and the subsequently large pool
of mRNA targets.

We observed significant differences in the expression levels
of circRNA-HOMER1 and linear transcripts between MTLE
hippocampus and controls. The HOMER1 gene encodes
proteins involved in neuronal activity that bridge Group I
metabotopic glutamate receptors (mGluR1/5) with inositol
1,4,5-triphosphate receptors (IP3Rs) on the endoplasmic
reticulum, synaptic calcium ion channels, and NMDA receptor
signaling complexes (Aloisi et al., 2017). After synaptic
activity, a short splice variant HOMER1a is expressed as an
immediate early gene and may antagonize group I mGluR
activation (Tappe and Kuner, 2006). HOMER1a is implicated
in epileptogenesis (Potschka et al., 2002; Celikel, 2007; Wagner
et al., 2013). CircRNA-HOMER1 has binding sites for 12
miRNAs. There were 37 transcripts shown to be DE with
12 up-regulated and 25 down-regulated. GSEA of these
proteins similarly revealed a molecular function in heterocyclic
compound binding and ion binding. This may have the
effect of modifying the hippocampal neurons’ ability to bind
heterocyclic neurotransmitters and antiepileptic medications
and maintain the ion exchange required for generating
action potentials.

Our study identified nine DE circRNAs between the cortex
and hippocampus of individuals with MTLE. Of these, seven
exhibited miRNA sponging characteristics, which likely have
phenotypic roles in MTLE by contributing to, or resulting from,
HS. Dissecting the effects of each miRNA to these interaction
networks can advance our understanding of the individual
roles played by miRNA sponging in MTLE pathogenesis and
identify targets for further research. Future studies should
investigate the effects of knocking down these target circRNAs
in neuronal cell lines using in vivo circRNA-specific knockdown
(Zimmerman et al., 2020) and assessing the subsequent changes
in miRNA activity. If unbound miRNAs regulate mRNA
translation, quantitative changes in protein expression should
result. Additionally, more experimental validations are required
to define the mechanisms of circRNA–miRNA binding and how
the secondary RNA structure of a circRNA can facilitate these
interactions. For circRNAs that do not interact with miRNAs,
other mechanisms of action should be explored, such as RBP
binding and protein scaffolding.
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