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Background: Ovarian cancer (OC), one of the most prevalent gynecological
malignancies, is characterized by late detection and dismal prognosis. Recent studies
show that long non-coding RNAs (lncRNAs) in competitive endogenous RNA (ceRNA)
networks influence immune infiltration and cancer prognosis. However, the function of
lncRNA in OC immune infiltration and prognosis remains unclear.

Methods: Transcriptomes of 378 OC samples and clinical data were retrieved from the
TCGA repository. Modules related to immune cells were identified using weighted gene
co-expression network analysis (WGCNA). Functional enrichment analysis and survival
analysis were then performed for the identification of immune-related lncRNAs in the
brown module using Cox regression model. Finally, a ceRNA network was constructed
by using the lncRNAs and mRNAs from the brown module.

Results: We found lncRNAs and mRNAs in the brown module to be significantly
associated with immune cells in OC and identified 4 lncRNAs as potential OC
prognostic markers. We further established that lncRNAs in the ceRNA network
influence OC immune infiltration and prognosis by regulating miRNA, ultimately
modulating mRNA levels.

Conclusion: We have identified 4 lncRNAs as independent immune prognostic factors
for OC. Furthermore, our findings offer novel insight into lncRNAs as OC immune and
prognostic biomarkers.

Keywords: immune cell abundance, weighted gene co-expression network analyses, long noncoding RNA,
ceRNA network analysis, ovarian cancer

INTRODUCTION

Ovarian cancer (OC) is one of the most prevalent gynecological cancers, with more than 200,000
new cancer cases and 125,000 fatalities annually (Zhao et al., 2016). OC is often diagnosed at
advanced stage and is associated with dismal prognosis. Approximately 75% of recurrent OC cases
are incurable (Lheureux et al., 2019), and its 5 years survival rate is < 45% (Webb and Jordan, 2017).
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Despite tremendous advances in cancer treatment, OC survival
remains poor (Shuang et al., 2015). Given that accurate and
effective biomarkers may improve early cancer diagnosis and
overall survival (Jin et al., 2015), we sought to identify
potential biomarkers.

Immunotherapy is an effective anticancer treatment
(Rodriguez et al., 2018; Shen et al., 2019; Farkkila et al.,
2020). Immune cells have also been reported to affect OC
prognosis (Drakes and Stiff, 2018; Cheng et al., 2020; Jiang et al.,
2020). Therefore, understanding immune cell infiltration in
ovarian tissue may help determine the specific role of immune
modulation in OC (Kulbe et al., 2012; Reinartz et al., 2014;
Montfort et al., 2020). Currently, the role of lncRNA in immune
modulation is not clear and deserves further exploration (Fok
et al., 2018; Yu et al., 2018; Yang C. et al., 2019).

Long non-coding RNAs (lncRNAs) are comprised of > 200
nucleotides (Zhang et al., 2019), and modulate cancer cell
proliferation in tumors either through nucleotide mutation or
gene expression alteration (Lv et al., 2020). Although a large
number of lncRNAs are known, their role in the immune
modulation of OC is unclear (McAninch et al., 2017). There
have been many studies on the prognosis-related lncRNA of OC;
for example, Li and Zhan (2019) identified 16 survival-related
lncRNAs and TF-lncRNA STAT3-FOS has been proved to affect
the prognosis of OC by Guo et al. (2020). More useful and
potential lncRNA should be explored as a prognostic marker for
OC, so that there are more possibilities to find the most effective
cancer treatment targets.

Competitive endogenous RNA (ceRNA) is a model regulatory
network in which RNA species mutually modulate each other via
competitively shared miRNA response elements (Li and Zhan,
2019; Liu H. et al., 2019). In ceRNA networks, lncRNAs interact
with mRNA by competitively binding miRNA. Besides advancing
our understanding of mRNAs and lncRNAs regulatory networks,
the discovery of ceRNA has offered new perspectives of exploring
the incidences of various cancers (Profumo et al., 2019; Ye et al.,
2019; Yue et al., 2019).

Weighted gene co-expression network analysis (WGCNA)
clusters genes by gene expression (Yang M. et al., 2019) and has
previously been used to study biological systems networks. This
approach elucidates regulatory correlation between genes and
identifies new modules (Pol et al., 2017; Favreau et al., 2019).

Here, we retrieved lncRNA and mRNA expression profiles
from TCGA and used WGCNA to identify lncRNAs associated
with OC immune modulation and prognosis.

MATERIALS AND METHODS

Data Collection and Processing
TCGA OC transcriptome datasets on OC were retrieved from the
GDC data portal1. Level 3 RNA-seq V2 (including lncRNA and
mRNA expression data) and clinical data for 378 OC patients
were analyzed. The sequencing data of normal ovarian tissue
was obtained from the Genotype-Tissue Expression (GTEx)

1https://portal.gdc.cancer.gov/

database2. In addition, the data for the validation set (GSE26193
and GSE63885) came from the NCBI Gene Expression Omnibus
(GEO)3. Prior to bioinformatics analysis, we used microarray
annotation data to match probes with analogous gene IDs. Genes
with multiple deleted expression values (expression level= 0, and
20% more) were excluded. These data were obtained from open
access resources, thus ethical approval was not required.

Evaluation of Tumor-Infiltrating Immune
Cells (TIICs)
We used CIBERSORTx4 (Newman et al., 2019), an online
analytical tool that utilizes RNA expression data to determine the
proportion of specific cells, to determine the proportion of 22
TIICs in the dataset. We used R packages to visualize the results
and evaluate correlation between immune cells and prognosis.

Weighted Correlation Network Analysis
of lncRNAs and mRNAs
WGCNA was used to examine correlation between co-expression
modules and immune cells infiltration. We processed the OC
TCGA data and selected the top-2,500 lncRNAs and top-2,500
mRNAs based on RNA expression variance. The relationship
between corresponding samples and immune cells infiltration
was visualized using the WGCNA R package (Langfelder and
Horvath, 2008). After selecting an optimal soft threshold, a
weighted gene co-expression network was constructed using a
suitable scale-free character of biological gene networks. Next, a
co-expression network was summarized in a cluster dendrogram
based on gene correlation. Association between the co-expression
module and infiltration by three immune cells was presented as
a Pearson correlation coefficient and visualized on a heatmap
using the R Heatmap tool package. Correlation between sample
traits was evaluated by calculating genetic significance (GS) and
module significance (MS) based on the WGCNA results.

CeRNA Network Construction and
Analysis
WGCNA results were used to construct the ceRNA network
based on total lncRNAs and mRNAs in the most relevant
modules. First, the miRcode repository5 (Jeggari et al., 2012)
was used to predict interaction between lncRNAs and miRNA.
Next, we predicted target mRNAs for miRNAs using TargetScan6

(Lewis et al., 2005), miRDB7 (Wong and Wang, 2015), and
miRTarBase8 (Hsu et al., 2014). Intersections between target
mRNAs and mRNAs in the brown module were then selected
for subsequent analysis. Finally, Cytoscape 3.7.29 (Shannon et al.,
2003) was used to create and visualize the lncRNA–miRNA–
mRNA ceRNA network based on the above findings.

2https://gtexportal.org/
3https://www.ncbi.nlm.nih.gov/gds/
4https://cibersortx.stanford.edu/
5http://www.mircode.org/
6http://www.targetscan.org/
7http://mirdb.org/
8http://mirtarbase.mbc.nctu.edu.tw/
9https://cytoscape.org/
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Gene Ontology, Pathway, and Function
Enrichment Analysis
The R packages clusterProfiler (Yu et al., 2012) and GOplot were
used for GO term and KEGG enrichment analyses. Additionally,
function enrichment analysis was performed within the mRNA
network to identify OC-related functions using GenCLiP310

(Wang J. H. et al., 2019), which explores functions and regulatory
networks of human genes on PubMed.

Construction of Prognostic Signature
Within the Brown Module
Prognostic data were generated on the RNAs matrix involved
in the brown module and matched with follow-up data. First,
we screened for lncRNAs and mRNAs related to OC prognosis
using univariate Cox regression analysis (Stel et al., 2011).
Least absolute shrinkage and selection operator (LASSO) Cox
regression analysis was then used to determine the prognostic
value of the lncRNAs and mRNAs. Based on the LASSO Cox
regression results and the expression levels of the lncRNAs and
mRNAs, we generated a risk score for each patient. Patients were
then divided into a high- and low-risk group based on their
respective scores relative to the median risk score. A log-rank
test was used to compare survival between the two groups using
Kaplan-Meier analysis. Finally, receiver operating characteristic
(ROC) analysis was used to estimate the signature’s predictive
power for 3 and 5 years periods.

Identification of Immune-Related
lncRNAs in OC
We used ImmLnc11 (Li et al., 2020), an online tool used to
elucidate relationships between lncRNAs and immune cells, to
identify immune-related lncRNAs in the OC dataset. Statistical
significance was set at p ≤ 0.05.

RNA Extraction and qRT-PCR
Total RNA was, respectively, obtained from ovarian cells
(IOSE80, Anglne, OVCAR-3, A2780) by standard TriZol
method. In simple terms, 1 ml TriZol was added into samples
for dissolution through 5 min incubation. Then, 200 µl
chloroform was involved into samples and mixed vigorously,
followed by separation with 12,000 r/min centrifugation.
The RNA components in supernatant were extracted with
isopropanol and then washed with 75% ethanol. RNA pallets
were dissolved with RNase-free H2O. RT-PCR (revers-
transcription PCR) was performed to generate cDNA from
RNA. qRT-PCR reaction system contained 5 µl SYBR buffer,
4 µM primers (forward and reverse primers), 2 µl RNasefree
water, and 1 µl cDNA. Beta-actin was set as an internal
control for gene quantification. The numbers of technical
and biological replicates were at least three times for each
gene with qRT-PCR analysis. The primer sequences for qPCR
were LINC00525, 5′-GAAACAAGATTCACAAGTGAGG-3′,
5′-AAGTCTTCTGTCTCTGATTCAG-3′. AL360004.1, 5′-GGC

10http://ci.smu.edu.cn/genclip3/analysis.php
11http://bio-bigdata.hrbmu.edu.cn/ImmLnc/

TCAGCTACTGAAGCCGG-3′, 5′-AGGGGCCTGGCTGTCCT
GCT-3′. TLR8-AS1, 5′-TTTGCTCACTGCAACATCC-3′, 5′-CG
CCTACATCTGTAGTCCC-3′. LINC00402, 5′-AAGTGGATATG
GAAGCTTGG-3′, 5′-CGGAATAACAATCTGAAGATGG-3′.

Statistical Analysis
The original data were downloaded from TCGA and GEO
datasets and analyzed by R software 4.2 with WGCNA package.
For the pair of module–trait relationship and gene significance
(GS) for module membership (MM) based on WGCNA analysis,
Pearson correlation coefficient (r) was calculated. Benjamini–
Hochberg for multiple testing and false discovery rate (FDR) were
used to correct the p-value, while p-value for GO enrichment
analysis of mRNAs in mRNA-based brown co-expression module
was obtained by two-sided hypergeometric test and corrected
by Benjamini–Hochberg. Each experiment for qRT-PCR was
repeated in totality three times, and the means and standard
deviations (mean± SD) were calculated. The differences between
groups for in vitro studies were analyzed by t-test in SPSS 25.0
(SPSS Inc., Chicago, United States), with statistical significance
(p < 0.05).

RESULTS

Evaluation of Tumor-Infiltrating Immune
Cells (TIICs)
After pre-processing the TCGA and GTEx data, we obtained 466
RNA expression matrix samples (including 378 OC samples and
88 normal ovarian tissue samples). Analysis of the proportion
of immune cells in each sample using CIBERSORTx revealed
marked differences in the proportion of immune cells in
each sample (Figures 1A,B). The proportion of 22 TIICs in
tumors had a weak–strong correlation. The positive correlation
between M1 macrophages and activated memory CD4 T-cells
was strongest (Pearson correlation = 0.23), while resting NK
cells and activated NK cells had the strongest negative correlation
(Pearson correlation = 0.49) (Figure 1C). Analysis of the
relationship between immune cells and prognosis revealed
that the proportion of M1 macrophages in OC samples was
significantly associated with OC prognosis (Figure 1D). As
shown in Figure 1E, whether in OC tissue or normal ovarian
tissue, M2 macrophages accounted for the main proportion.
And the proportion of M0 and M1 macrophages in OC tissues
were significantly higher than the figure in the normal (p <
0.001). Thus, we speculated that macrophages were significantly
associated with OC prognosis and focused our attention on M0,
M1, and M2 macrophages.

Construction of Co-expression Modules
of OC
After evaluating the tumor-infiltrating immune cells, the
proportion of immune cells with high prognostic correlation
in each sample was used as trait data of WGCNA. Datasets
containing 2,500 lncRNAs and 2,500 mRNAs were selected for
WGCNA analysis, and FlashClust used to cluster the samples.
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FIGURE 1 | Evaluation of tumor-infiltrating immune cells (TIICs). (A) Relative percentage of 22 subpopulations of immune cells in 378 OC samples. (B) Heatmap of
22 subpopulations of immune cells in 378 OC samples. (C) Heatmap of correlations between infiltrated immune cells in OC. (D) Survival plots of the proportion of
M1 macrophages in OC samples. (E) The difference in the proportion of immune cells between ovarian cancer and normal ovarian tissue.
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FIGURE 2 | Sample cluster analysis and construction of co-expression modules based on OC RNA dataset. (A) Sample dendrogram and trait heatmap based on
lncRNA and mRNA expression data and immune cell infiltration data. (B) Clustering dendrograms of lncRNAs and mRNAs, with dissimilarity based on topological
overlap, together with assigned module colors.

FIGURE 3 | Analysis of module-trait relationships of OC based on lncRNA and mRNA data.
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Based on RNA expression and immune cell infiltration data, we
constructed a sample dendrogram and a trait heatmap where
each sample was divided into separate clusters to visualize
classification of the immune cell infiltration data (Figure 2A).
We found soft threshold power as the most influential parameter
interfering with the average connectivity and independence of
each co-expression module. To obtain a relative balance between
scale independence and average connectivity, we analyzed
network topology using soft threshold powers of 1–20. After
multiple fitting tests, an optimal β-value was obtained, with
the minimum number of genes in each module being 30. The
MEDissThres parameter was set at 0.35 to merge closely related
modules into larger modules. Adjacency matrix was used to plot
the cluster-dendrogram of the selected genes, where different
co-expression modules were presented in different colors. Here,
lncRNAs and mRNAs were divided into nine different modules
(Figure 2B) with the brown module containing 864 RNAs.

Gene Co-expression Modules
Correspond to Clinical Traits
Next, we performed a correlation analysis of co-expression
modules with specific immune cell infiltration traits in the
samples. Immune cell infiltration traits included M0, M1, and
M2 macrophage abundance. Heatmaps of correlation between
OC immune cell infiltration features and modular genes were
then depicted. Based on the module-trait association heatmap,
the brown module (Figure 3) was markedly associated with M1
(R = 0.42, p = 4e–18) and M2 macrophages (R = 0.22, p = 2e–
5). Besides, the scatterplots between gene significance (GS) and
module membership (MM) were constructed according to the

brown module. Among the modules associated with the traits
of interest, genes with a high degree of module membership
(MM) had greater gene significance (GS), implying that the
genes in the co-expression brown modules are strongly associated
with immune cells’ abundance. MM in the brown module
significantly correlated with M1 (cor = 0.76, p = 1.7e–163) and
M2 macrophages (cor= 0.68, p= 2.7e–118) (Figure 4).

Gene Ontology and Pathway Enrichment
Analysis in the Brown Module
To further illustrate the biological function of mRNA in OC,
we performed functional enrichment analysis of mRNAs in the
brown module. GO term enrichment analysis revealed significant
association between the mRNAs in the brown module and
T-cell activation, regulation of lymphocyte activation, regulation
of leukocyte cell–cell adhesion, leukocyte proliferation, protein
complexes involved in cell adhesion, cytokine activity, and
chemokine activity (Figures 5A–C). Additionally, pathway
enrichment analysis suggested that these genes are involved
in multiple immune signaling pathways, including JAK-STAT,
NF-kappa B, Chemokine, IL-17, T cell receptor, and B cell
receptor signaling pathways (Figure 5D), suggesting that genes
in the brown module significantly correlate with immune
responses in OC.

Construction of Prognostic Signature
Within the Brown Module
Next, we used univariate Cox regression analysis to screen for
prognostic genes in the brown module and uncovered 95 genes
that correlated with OC prognosis (Supplementary Table 1).

FIGURE 4 | (A) Scatterplot of gene significance (GS) for M1 macrophages vs. module membership (MM) in the brown co-expression module. (B) Scatterplot of GS
for M2 macrophages vs. MM in the brown co-expression module.
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FIGURE 5 | GO and pathway enrichment analysis in the brown module. (A) Biological process. (B) Cellular component. (C) Molecular function. (D) KEGG pathways.
Chord plot displays relationship between genes and terms.

LASSO Cox regression analysis of these 95 genes (38 lncRNAs
and 57 mRNAs) identified an optimal prognostic feature
comprised of 8 lncRNAs and 11 mRNAs (Figure 6A). Risk
scores were calculated to determine the prognostic risk of
these 9 lncRNAs and 11 mRNAs using the formula: Risk
score = expLINC00525 × 0.11460969 + expAL360004.1 ×
0.160649906 + expLINC01546 × 0.140022493 + expTLR8-
AS1 × 0.108942731 + expLINC00402 × 0.105005182 +
expLINC01619 × 0.148341118 + expLINC00239 ×

0.108698578 + expAC018563.1 × 0.150951433 + expDHRS9 ×
0.107623718 + expFMO2 × 0.084195962 + expGRIN2D ×
0.100325507 + expPRSS16 × 0.150213535 + expPI3 ×
0.108704599 + expRAMP1 × 0.10122692 + expJCHAIN ×
0.09315171 + expADGRG7 × 0.069155126 + expGBP5 ×
0.179217192 + expVSIG4 × 0.270659479 + expTCHH ×
0.109827863 (note: expLINC00525 = expression level of
LINC00525, and so on). Based on the critical value of the
median risk score, patients were divided into low- and high-risk
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FIGURE 6 | Construction of prognostic signature within the brown module.
(A) Forest map of the optimal prognostic feature in multivariate analysis.
(B) Kaplan–Meier survival analysis of the risk score for overall survival and
(C) ROC analysis for the prediction of 3 and 5 years survival based on risk
score in training set of TCGA. (D) Kaplan–Meier survival analysis of the risk
score for overall survival and (E) ROC analysis for the prediction of 3 and 5
years survival based on risk score in validation set of GSE63885.
(F) Kaplan–Meier survival analysis of the risk score for overall survival and
(G) ROC analysis for the prediction of 3 and 5 years survival based on risk
score in validation set of GSE26193.

groups. Kaplan–Meier analysis showed that the survival rate
of OC patients in the high-risk group was worse relative to
the low-risk group (Figure 6B). To determine the predictive

effect of the 19-gene signature, time-dependent ROC curve
analysis and the area under the curve (AUC) value were used
as indicators. This analysis revealed a 3 years AUC of 0.75
and a 5 years AUC of 0.809, highlighting the great potential
of this feature in predicting OC prognosis (Figure 6C). Based
on the above 19-gene signature, we validated the model on
two data sets, GSE63885 and GSE26193. Similarly, it can be
found that the survival rate of OC patients in the high-risk
group was worse relative to the low-risk group in the GSE63885
dataset (p = 0.04792, Figure 6D) and the GSE26193 dataset
(p = 0.001081, Figure 6F). Besides, a 3 years AUC of 0.7 and a 5
years AUC of 0.694 were revealed in GSE63885 (Figure 6E), and
in the GSE26193 dataset, the 3 years AUC was 0.625 and the 5
years AUC was 0.667 (Figure 6G).

CeRNA Network in OC
First, we used miRcode online analysis to match potential
miRNAs to prognosis-related lncRNAs in the brown module.
Next, TargetScan, miRDB, and miRTarBase were used to predict
miRNA target genes. Comparison of the predicted target
genes to mRNAs in the brown module identified 6 lncRNAs
(LINC00525, C9orf106, AL360004.1, TLR8-AS1, LINC00402,
TRBV11-2), 14 miRNAs (FAM129A, TRPS1, RUNX3, TRIM29,
BCL11B, EGLN3, IRF4, DUSP10, FASLG, ADM, IFNG,
TFAP2C, DNAJC15, SLC12A5, GABBR2, CYP24A1, BMP8B,
RASSF8, KLK10), and 19 mRNAs miRNAs (hsa-miR-20b-5p,
hsa-miR-125a-5p, hsa-miR-17-5p, hsa-miR-3619-5p, hsa-miR-
363-3p, hsa-miR-761, hsa-miR-125b-5p, hsa-miR-129-5p,
hsa-miR-1297, hsa-miR-24-3p, hsa-miR-301b-3p, hsa-miR-
507, hsa-miR-429, hsa-miR-140-5p). Next, a ceRNA network
of lncRNAs regulating mRNAs by binding to miRNAs was
constructed (Figure 7).

Functional Enrichment Analysis in the
ceRNA Network
To elucidate the potential role of lncRNA in the OC ceRNA
network, we performed functional enrichment analysis using the
GenCLiP3 online tool. Based on the analysis of 19 mRNAs in
the ceRNA network, 14 statistically significant keywords were
identified (Figure 8). These results established five different
clusters, suggesting that OC might be associated with multiple
biological functions. Notably, the keywords included T-cell
differentiation, T-cell development, DNA methylation, histone
modification, TH2 cell activation, CCL17 production, IL-18
secretion, and pancreatic cancer, all of which participate in either
immune regulation or cancer.

Identification of Immune-Related
lncRNAs in OC
We next used the ImmLnc online tool to assess if lncRNAs
have essential roles in OC cancer-immune cells. Evaluation
of the relationship between lncRNAs and immune cells
found that lncRNAs, including LINC00525, C9orf106, TLR8-
AS1, LINC00402, and TRBV11-2, are associated with B-cells,
CD4+ T-cells, CD8+ T-cells, dendritic cells, macrophages, and
neutrophils in OC (Table 1).
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FIGURE 7 | LncRNA–miRNA–mRNA network based on the brown module. Blue, lncRNA; green, miRNA; red, mRNA.

FIGURE 8 | Function enrichment analysis involved in the ceRNA network.

qRT-PCR Confirmed the Identified
lncRNAs
qRT-PCR was used to validate the expressions of OC survival-
associated lncRNAs including LINC00525, AL360004.1, TLR8-
AS1, and LINC00402. Among them, all four lncRNAs were
quantified with qRT-PCR. The results showed that significant
difference was found for the four survival associated lncRNAs
between OC cells (Anglne, OVCAR-3, and A2780) and control
cell IOSE80 (p < 0.05) (Figure 9).

DISCUSSION

There is an urgent need for effective prognostic markers to
improve OC overall survival (Powell et al., 2005; Shen et al.,
2017; Tong et al., 2019; Zhao et al., 2019). Immune cells can
enhance anticancer immune responses by recognizing cancer

antigens, indicating that they may influence cancer prognosis
(Drakes and Stiff, 2018). Immune infiltration in 378 OC
samples and 88 normal ovarian tissue samples was analyzed
and found a significant correlation between M0, M1, and M2
macrophages and OC prognosis. The proportion of M0 and
M1 macrophages in OC tissues were much higher than that in
the normal tissues (p <0.001).This was in line with previous
findings (Yousefzadeh et al., 2020). OC cases with a higher
proportion of M1 macrophages had a better overall survival
(Macciò et al., 2020). However, M2 macrophages exhibited
adverse effects in OC (Badmann et al., 2020; Nowak and
Klink, 2020). These results provide deeper insights into immune
infiltration in OC.

Besides influencing cancer immune modulation, studies
show that lncRNAs also influence OS (Qi and Du, 2013;
Wu et al., 2016; Bo et al., 2018). Additionally, lncRNAs have
potential as therapeutic targets and prognostic markers in OC
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TABLE 1 | LncRNAs in the ceRNA network associated with immune cells in OC.

lncRNA Immune cell p-value RS-value

LINC00525 CD8_Tcell <0.001 0.188

CD4_Tcell <0.001 0.203

Dendritic <0.001 0.212

Neutrophil <0.001 0.257

Macrophage 0.029 0.113

C9orf106 CD4_Tcell <0.001 0.19

Dendritic <0.001 0.223

Neutrophil 0.001 0.166

CD8_Tcell 0.001 0.167

Macrophage 0.013 0.128

TLR8-AS1 Neutrophil <0.001 0.185

Dendritic 0.001 0.179

CD4_Tcell 0.005 0.146

B_cell 0.012 0.13

LINC00402 Neutrophil 0.014 0.127

CD8_Tcell 0.02 0.12

CD4_Tcell 0.021 0.12

Dendritic 0.033 0.111

TRBV11-2 Macrophage <0.001 0.194

Neutrophil <0.001 0.333

CD4_Tcell <0.001 0.339

CD8_Tcell <0.001 0.382

RS, rank score.

(Li and Zhan, 2019). The ceRNA network also contributes
significantly to tumor development and progression. In the
network, lncRNAs regulate target mRNA (Rutnam et al., 2014;
Tang et al., 2014; Wang P. et al., 2017). WGCNA analysis of
lncRNA and mRNA datasets found that the brown module
significantly correlated with immune cells in OC, especially
M1 and M2 macrophages. Functional enrichment analysis of
the mRNA from the brown module further revealed that
T-cell activation, leukocyte migration, IL-17 signaling, JAK-
STAT signaling, T-cell receptor signaling, and B cell receptor
signaling pathways are critical in OC. Presence of IL-17
in the tumor microenvironment can improve OC prognosis
(Lan et al., 2013; Bilska et al., 2020). Interestingly, TNF-α
regulates the immune system via IL-17 to promote tumor
proliferation (Charles et al., 2009). JQ1 and cisplatin are
targeted in the JAK-STAT signaling pathway to improve drug
resistance of OC (Bagratuni et al., 2020). Further, functional
analyses found that multiple immune signaling pathways
are concentrated on the OC module. Thus, the immune-
related lncRNAs in the brown module may be therapeutically
targeted against tumors.

Univariate Cox regression survival analysis of the brown
module revealed 95 prognosis-related genes (38 lncRNAs and
57 mRNAs). An optimal prognostic feature comprised of 8
lncRNAs and 11 mRNAs was obtained after multivariate Cox
regression analysis. The 5 years AUC was 0.809 and the 3
years AUC was 0.75, highlighting the feature’s potential to
predict OC survival. Based on this optimal prognostic feature,
a 3 years AUC of 0.7 and a 5 years AUC of 0.694 were

FIGURE 9 | qRT-PCR analysis of four survival-related lncRNAs in OC cell
models compared with control cells. *p < 0.05. n = 3.

revealed in GSE63885, and in the GSE26193 dataset, the 3
years AUC was 0.625 and the 5 years AUC was 0.667. In
the training set (TCGA) and validation set (GSE63885 and
GSE26193), the survival time of high-risk and low-risk features
are significantly different. In general, in the validation set
GSE63885 and GSE26193, we received similar prediction effects
as the training set, which showed that our prognostic feature
had good predictive power. Previously, risk regression models
of lncRNA related to the prognosis of OC were established
based on the TCGA datasets, for example, the AUC at 5
years was 0.75 for the 10-lncRNAs signature established by Xu
et al. (2019), 0.694 for the 8-lncRNAs signature established by
Zhou et al. (2016b), and 0.705 for the 10-lncRNAs signature
established by Zhou et al. (2016a). In comparison, the 5 years
AUC of 0.809 established by us has shown a more excellent
effect. We also used the prognosis-related genes (lncRNA and
mRNA) revealed by the univariate analysis to create a ceRNA
network. In the ceRNA network, 6 lncRNAs affect immune
cells and OC prognosis by modulating 19 mRNAs. Of the 6
lncRNAs in the ceRNA network, multivariate Cox regression
analysis identified four (LINC00525, AL360004.1, TLR8-AS1,
LINC00402) as independent prognostic factors. LINC00525
regulates immune response via plasma cells in periodontitis
(Wu et al., 2020), while in non-small cell lung cancer, LINC00525
regulates cancer proliferation via the ceRNA network (Yang
Z. et al., 2020). Up-regulation of TLR8 and activation of
NF-κB signaling has been shown to promote OC metastasis and
chemoresistance via TLR8-AS1 (Xu et al., 2020). LINC00402
might also affect metastatic melanoma prognosis via the ceRNA
network (Wang L. X. et al., 2019). A significant difference
has also been reported between colorectal cancer patients and
healthy controls with regard to the immunological indicator
TRBV11-2 (Liu X. et al., 2019). Furthermore, TRBV11-2 is
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associated with CD8+ T-cell immune responses in dengue virus
infection (Culshaw et al., 2017). These 4 lncRNAs as prognostic
markers for OC seem to be rarely mentioned. Li and Zhan (2019)
identified clinical trait—related lncRNA and mRNA biomarkers
with weighted gene co-expression network analysis as a useful
tool for personalized medicine in OC, while Xu et al. (2019)
established a model with 10-lncRNA signature that was also
compatible with patients with or without BRCA1/2 mutations
and had the potential to predict the response to platinum-based
adjuvant chemotherapy. Our study differed from the previous
ones, and we identified the prognostic-related lncRNA based on
the immune cell infiltration related to the prognosis of OC. In
this way, the lncRNA we obtained many affect the prognosis of
OC by regulating immune cells M1 macrophages. This would
be the basis for us to apply these lncRNAs as targets for OC
immunotherapy. We speculate that the lncRNAs in the ceRNA
network may serve as immune prognostic markers for OC. The
results provide new insights into immune diagnostic markers and
prognostic detection factors for OC.

LncRNAs adversely affect OC OS by modulating immune
cells involved in immune escape (Vafaee et al., 2017; Shang
et al., 2019; Colvin et al., 2020). Thus, we speculated that they
influence OC by regulating B-cells, CD4+ T-cells, CD8+ T-cells,
dendritic cells, macrophages, and neutrophils. Besides, highly
expressed CD57+ NK cells and CD8+ T-cells are beneficial
for OC prognosis (Henriksen et al., 2020). OC patients with
high M1-polarized macrophage levels have better survival times
(Macciò et al., 2020). These immune cells are involved in the
occurrence and prognosis of OC (Oberg et al., 2019; Casanova-
Acebes et al., 2020). Here, lncRNAs in the ceRNA network
were significantly associated with multiple immune cells in OC,
implying that lncRNAs in the ceRNA network participate in
immune modulation of OC, thereby affecting its prognosis via
multiple immune cells.

The main limitation of this study is the lack of more
experimental validation of the functions of these lncRNAs in
OC. Thus, our findings warrant validation using molecular
approaches and large-scale clinical studies.

CONCLUSION

We constructed a ceRNA network related to OC immunity
and identified 4 lncRNAs (LINC00525, AL360004.1, TLR8-
AS1, and LINC00402) as potential independent OC prognostic
biomarkers. Furthermore, we show that these lncRNAs modulate
multiple immune cells in OC.
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