',\' frontiers
in Genetics

METHODS
published: 27 October 2020
doi: 10.3389/fgene.2020.568546

OPEN ACCESS

Edited by:
Nunzio D’Agostino,
University of Naples Federico I, Italy

Reviewed by:

Emilia Puig Lombardi,
CRUK/MRC Oxford Institute

for Radliation Oncology (MRC),
United Kingdom

Jean-Michel Garant,

Canada’s Michael Smith Genome
Sciences Centre, Canada

*Correspondence:
Panagiotis Alexiou
panagiotis.alexiou@ceitec.muni.cz

Specialty section:

This article was submitted to
Computational Genomics,

a section of the journal
Frontiers in Genetics

Received: 071 June 2020
Accepted: 28 September 2020
Published: 27 October 2020

Citation:

Klimentova E, Polacek J,
Simecek P and Alexiou P (2020)
PENGUINN: Precise Exploration
of Nuclear G-Quadruplexes Using
Interpretable Neural Networks.
Front. Genet. 11:568546.

doi: 10.3389/fgene.2020.568546

Check for
updates

PENGUINN: Precise Exploration of
Nuclear G-Quadruplexes Using
Interpretable Neural Networks

Eva Klimentova’, Jakub Polacek’, Petr Simecek? and Panagiotis Alexiou?*

! Faculty of Informatics, Masaryk University, Brno, Czechia, 2 Central European Institute of Technology (CEITEC), Masaryk
University, Brno, Czechia

G-quadruplexes (G4s) are a class of stable structural nucleic acid secondary structures
that are known to play a role in a wide spectrum of genomic functions, such
as DNA replication and transcription. The classical understanding of G4 structure
points to four variable length guanine strands joined by variable length nucleotide
stretches. Experiments using G4 immunoprecipitation and sequencing experiments
have produced a high number of highly probable G4 forming genomic sequences.
The expense and technical difficulty of experimental techniques highlights the need
for computational approaches of G4 identification. Here, we present PENGUINN, a
machine learning method based on Convolutional neural networks, that learns the
characteristics of G4 sequences and accurately predicts G4s outperforming state-of-
the-art methods. We provide both a standalone implementation of the trained model,
and a web application that can be used to evaluate sequences for their G4 potential.

Keywords: bioinformatics and computational biology, machine learning, deep neural network, G quadruplex, web
application, genomic, imbalanced data classification

INTRODUCTION

G-quadruplexes (G4s) are stable secondary structures of nucleic acids that occur when
quartets of guanines are stabilized by a monovalent cation (Gellert et al., 1962) and form a
characteristic layered structure (Sen and Gilbert, 1988; Figure 1A). G4s are known to play
important roles in several biological processes, such as DNA replication, damage response,
RNA transcription and processing, transcriptional and translational regulation and others
(Spiegel et al., 2020). Owing to their importance as modulators of genomic function, G4s have
been studied extensively, and several attempts have been made to model their structure in a
predictive manner and several experimental methods for their identification have been developed
(Lombardi and Londono-Vallejo, 2020).

Early methods of G4 prediction were focused on the identification of a consensus motif, using
a regular expression matching approach, often complemented by involved scoring calculations.
An example of such methods is Quadparser (Huppert, 2005). It was not until a high-throughput
sequencing method for genome wide identification of G4s (G4-Seq) was established (Chambers
et al, 2015) that we started understanding how common G4s were, and how hard it is
to accurately predict their genomic location. Out of over 700 thousand G4s identified in
the human genome by high-throughput sequencing, approximately 450 thousand were not
predictable by computational methods at the time. The incentive for the improvement of
G4 prediction computational methods and a dataset that would allow us to do so, became
evident. A second wave of computational methods attempted to predict G4 locations after the
publication of this dataset. Among the most accurate and still functional methods are G4Hunter

Frontiers in Genetics | www.frontiersin.org

1 October 2020 | Volume 11 | Article 568546

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.568546
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2020.568546
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.568546&domain=pdf&date_stamp=2020-10-27
https://www.frontiersin.org/articles/10.3389/fgene.2020.568546/full
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Klimentova et al.

PENGUINN: Nuclear G-Quadruplexes Neural Network

Sequence 200nt

A4

x100 replace
40 nt with random

A4
F——fandom agnr 224

.x100

L randoﬁl 43?1% 1

.x100

_________________ Dropout 0.3
MEME max(Ascore)
. Multiple Em for Mot Elicitation get location
I‘j ,
’ ok ik ok kR S (—@OOOSequences Dropout 0.2

FIGURE 1 | (A) Schematic of a typical G-quadruplex structure consisting of four G tracts with a minimum length of three, connected by non-specific loops.
(B) PENGUINN convolutional neural network model. (C) Identification of G-quadruplex subsequences via randomized mutation.

[Gtract: min3G
— Loop:T1to 7N

Ascore001

Ascore100

Dropout 0.3

(Bedrat et al., 2016), which expands the regular expression
methods by taking into account G-richness and G-skewness,
Pgsfinder, which focuses on allowing customization for non-
canonical G4s and was trained on the G4-Seq dataset (Hon
et al, 2017), as well as Quadron (Sahakyan et al, 2017),
a Machine Learning (ML) method trained on the G4-Seq
dataset recognizing canonical sequence motifs with 12-nt
maximum loop size, utilizing the tree based Gradient Boosting
Machine approach.

This second generation of G4 identification methods utilizes
ML to classify sequences based on their G4 forming potential.
Generally, ML describes the field of computer science that
implements mathematical models which enable computers to
learn concepts and patterns embedded in data. One of the
largest subfields of ML deals with the development of artificial
Neural Networks (NNs), which were initially proposed as
simplified models of neuronal function (Fitch, 1944) and
have recently revolutionized the fields of speech recognition
and image classification (LeCun et al, 2015). The recent
breakthrough in the field of NNs involves the utilization of
Deep NNs consisting of a large number of neuronal layers.
A specific subset of these Deep NNs uses a process known
as convolution to learn increasingly complex representations
of patterns in raw data. These NNs are called Convolutional
Neural Networks (CNNs). An important characteristic of

CNNs is their ability to operate on raw data such as
images, time-series, DNA/RNA sequences, without the need
for complicated feature extraction. The flipside of this ability
is their need for large amounts of data. Coupled with the
novel availability of high-throughput biological data (Emmert-
Streib et al., 2020), Deep NNs are quickly becoming feasible
in the field of bioinformatics (Tang et al, 2019). Another
important current field of research is the interpretation of
Deep NN models, which are often seen as “black boxes”
due to their complexity. Convolutional Neural Networks for
G4 prediction were implemented in the method G4detector
(Barshai and Orenstein, 2019).

Here, we present PENGUINN, a CNN based approach
for the identification of G4s from raw DNA sequence data,
trained on G4-Seq high throughput human data. We establish
that PENGUINN outperforms the state-of-the-art methods in
a high background testing set that simulate high genomic
variation, and interpret aspects of the learned model, validating
its learning against known characteristics of G4 sequences.
All data, training scheme, trained models, and functional
code can be found at https://github.com/ML-Bioinfo- CEITEC/
penguinn. An easy to use Web Application that can run
the trained model for user submitted sequences in real time
is also made available at https://ml-bioinfo-ceitec.github.io/
penguinn/.

Frontiers in Genetics | www.frontiersin.org

October 2020 | Volume 11 | Article 568546

https://github.com/ML-Bioinfo-CEITEC/penguinn
https://github.com/ML-Bioinfo-CEITEC/penguinn
https://ml-bioinfo-ceitec.github.io/penguinn/
https://ml-bioinfo-ceitec.github.io/penguinn/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Klimentova et al.

PENGUINN: Nuclear G-Quadruplexes Neural Network

MATERIALS AND METHODS

Training and Evaluation Datasets

Our dataset was generated from high-throughput sequencing
of DNA G-quadruplexes from the human genome. We used
genomic coordinates obtained from a G4-seq experiment
(Chambers et al,, 2015) (GEO: GSE63874). The coordinates
were in three separate sets analogous to three different
stabilizers - K*, PDS, and K* together with PDS. We
pooled all three datasets. Using the original bed files and the
hgl9 genome annotation we extracted DNA sequences using
bedtools (Quinlan and Hall, 2010). We reverse complement
all sequences mapping on the minus strand and merge them
with sequences on the plus strand. All sequences which were
longer than 200 nt were centered and cut to the length of
200 nt. Shorter sequences were randomly padded from both
sides with Ns to become 200 nt long. We referred to this
adjusted set as the positive set of the classification problem.
For every sequence in our positive set we created a negative
sequence of the same length from a random coordinate
from hgl9 that did not overlap with any of the coordinates
from the positive set. Sequences shorter than 200 nt were
again randomly padded with Ns. The sequences thus obtained
formed a negative set.

We randomly selected 300 k sequences (150 k positive and
150 k negative) from the samples as a training set with pos:neg
ratio 1 (the 1:1 dataset). We also randomly selected 300 k
sequences to create the pos:neg training datasets of 1:9, 1:99,
and 1:999, containing 30, 3 k, and 300 positives, respectively.
These datasets correspond to 50%, 10%, 1% and 0.1% positive
admixtures, respectively. The training datasets were split into
training and evaluation groups, used for network optimization.

We selected four independent sets consisting of 100k
sequences each as our final held-out evaluation sets, never
seen during any training or hyperparameter selection step. The
individual test sets have the same pos:neg ratio as the training
sets — 1:1, 1:9, 1:99, and 1:999.

Training Scheme

We utilized a Convolutional Neural Network consisting of
four convolution layers with kernels of size 8 and 16, 8, 4,
and 3 filters, respectively. The output of each convolutional
layer goes through a batch normalization layer, max-pooling
layer and dropout layer with the dropout rate 0.3. The output
of the last layer is flattened and goes through a densely
connected layer with ReLU activation function. The last layer is
formed of a single neuron with a sigmoid activation function,
which assigns to each input DNA sequence a probability
of having a G4 structure. Our model was implemented in
Python using the Keras library with Tensorflow backend. We
used Adam optimizer with B; = 0.9 and B, = 0.99, the
learning rate was set to 0.001. The loss function was binary
crossentropy. The model was trained over 15 epochs, the chosen
batch size was 32. Input to the neural network is a one-hot
encoded DNA sequence. Figure 1B outlines the architecture of
the network.

Evaluation Scheme

We evaluated our model against five other state-of-the-art
methods. First, we tested against the widely used regular
expression “(G{3,}JATGCN]{1,7}){3,}G{3,}” (four or more G
stretches longer than 3 nucleotides, connected by 1-7 nucleotide
stretches of any nucleotide). We implemented the regular
expression in python, returning a boolean expression dependent
on the presence of a match in the presented sequence. The
remaining three methods that were developed for the scoring
of G4 forming potential are G4Hunter (Bedrat et al, 2016),
Quadron (Sahakyan et al., 2017) and Pqsfinder (Hon et al., 2017).
For practical reasons we re-implemented G4Hunter in python
(code available at our repository). We used a window of size
25 nucleotides as proposed in the original paper, and a score
threshold 0 to see all putative G4s. For every input sequence,
the output of our implementation is the highest score of all
subsequences. If no G4 has been found, the output score is 0.
We ran Quadron with the default parameters. For every input
sequence, we considered only scores assigned to the plus strand
and we took the maximum of all scored G4s present in the
sequence. If no score has been assigned, the output score was zero.
For testing Pgsfinder was used following command: “pqsfinder
(sequence, strand = ‘+ overlapping = TRUE, verbose = FALSE),”
as an output we took the highest scoring G4, if none has been
found, the score was set to 0. Lastly, we compared our model
to another ML model G4detector (Barshai and Orenstein, 2019).
We ran it in the testing mode using three available models
trained on random negatives and positives with K, PDS, and
K" + PDS stabilizers.

Evaluation on Independent Datasets

For additional testing we created two independent datasets. The
first dataset was generated from a recent publication (Marsico
et al.,, 2019) which was published by the same research group
from which the training dataset was obtained. The group has
improved the G-quadruplex sequencing method and provides
new whole genome G4 map for human. We used generated
coordinates (GSM3003539 and GSM3003540) with G4 structures
from two different stabilizers - K* and PDS. From the obtained
data, positive and negative set was generated the same way as
the training and evaluation datasets (see section “Training and
Evaluation Datasets”). From the positive and negative set we
randomly selected sequences to get four datasets consisting of
100 k sequences each. The individual sets have the same pos:neg
ratio as the training and evaluation sets - 1:1, 1:9, 1:99, and 1:999.
We will refer to these datasets as Marsico dataset.

The second dataset was obtained by a G4 ChIP-seq approach
(Héansel-Hertsch et al., 2016) and contained G-quadruplexes
from in vivo data. We used genomic coordinates generated in this
experiment (GSE76688). We merged all the obtained coordinates
from different methods and cell lines into one file and using
bedtools and hgl9 genome extracted corresponding genome
sequences. The rest of the processing steps was identical to the
steps described in “Training and Evaluation Datasets” section.
From the generated positive and negative set we randomly
selected sequences to get four datasets containing the same

Frontiers in Genetics | www.frontiersin.org

October 2020 | Volume 11 | Article 568546

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Klimentova et al.

PENGUINN: Nuclear G-Quadruplexes Neural Network

number and ratio of pos:neg sequences as in the Marsico dataset.
We will refer to these created datasets as Hénsel-Hertsch dataset.

PENGUINN and all other tools described in “Evaluation
Scheme” section were evaluated on the two independent datasets.
The parameters of the other state-of-the-art methods were used
the same way as described above.

Training and Evaluation on Non-Human

Datasets

To show PENGUINN:S ability to work with different type of G4
sequences, we trained a model only on mouse G-quadruplexes.
We obtained data from in vitro G4 map of mouse genome
(Marsico et al., 2019) with genomic coordinates (GSM3003547
and GSM3003548) under K+ and PDS stabilizers. We prepared
both training and testing datasets the same way as human
training and testing datasets, but using GRCm38 mouse genome
instead of human genome (see section “Training and Evaluation
Datasets”). The same model training scheme as for human G4s
was used (see section “Training Scheme”).

Interpretation of Model

In order to interpret the model, we have attempted to isolate
the particular features detected by the model which weigh the
most for its decision making. For each positive testing sample
we have produced 100 sequences of the same length containing
a random stretch of 40 nucleotides for every possible position.
For each such sequence we re-evaluate and calculate the average
degree of score change for the subsequence. The subsequence that
produces the largest drop is marked as the “most important” and
extracted (Figure 1C).

Code Availability and Web Application
PENGUINN was developed in Python. All code accompanied
by the trained models, all training data and the installation
instructions can be found at https://github.com/ML-Bioinfo-
CEITEC/penguinn. Moreover, we have converted the trained
PENGUINN Keras model into Tensorflow]S and developed a
simple web application, available at https://ml-bioinfo-ceitec.
github.io/penguinn/. The web application code can be found in
the gh-pages branch of the PENGUINN GitHub repository.

RESULTS

Selection of Training Ratio

Scanning across genomic regions for a specific and relatively rare
structural element is a task that involves a heavy class imbalance,
since the background sequence will heavily outnumber the target
element by orders of magnitude. It is hard to know the exact
prevalence of G4s in the genome or at least the areas of the
genome one would scan, but the more imbalance datasets should
approximate a realistic ratio more closely. A rough estimate could
come from equally dividing the approximately 700 thousand
known G4s over the 6 billion bases of the human genome, giving
us an approximate ratio of a G4 located every 8 thousand base
pairs. For this reason, we have produced four datasets with
increasing positive to negative ratio (pos:neg) by one order of

magnitude each time. Starting from the highly unrealistic 1:1
dataset with equally balanced classes (50%) and then going up
to 1:9 (10%), 1:99 (1%), and 1:999 (0.1%) ratio datasets. We have
also acquired a dataset (Lombardi and Londono-Vallejo, 2020)
with high class imbalance in the opposite direction consisting of
298 positives and 94 negatives (3:1 dataset).

Initially, we explored the possibility of training models in
equally imbalanced datasets and then using them to improve
prediction accuracy. However, we could not see any measurable
improvement for training with a matching pos:neg mixture when
considering the area under the precision sensitivity curve for our
models, or when using an iterative negative selection technique
that previously showed improvement in a different genomic
classification task (Georgakilas et al, 2020; Supplementary
Figure 1). Since there does not appear to exist a major difference
in performance between these models, we have elected to use
the model trained on 1:1 as our main trained model. Plotting
the F1 score against the prediction score of our method for
each testing dataset (Supplementary Figure 2) we have identified
two score values that we proposed as score thresholds for our
method (precise: 0.85, sensitive: 0.5). Users are allowed to set their
own cut-off threshold for their results depending on their needs,
but having proposed score thresholds helps new users guide
their decisions to more meaningful thresholds. For clarity of
presentation, on all evaluations against state-of-the-art methods
we will designate these thresholds as PENGUINN(s) for the
sensitive, and PENGUINN(p) for the precise threshold.

Comparison to Regular Expression

A commonly used method for G4 identification is the use of
a sequence pattern, also called a regular expression, consisting
of up to four stretches of Gs with a minimum length of three,
spaced by random nucleotide sequences with a maximum length
of seven (for exact expression see Materials and Methods). This
method was first proposed over 15 years ago (Huppert, 2005),
and a simplified version “(G{3,}[ATGCNI]{1,7}){3,}G{3,}” (four
or more G stretches longer than 3 nucleotides, connected by 1-
7 nucleotide stretches of any nucleotide) has been commonly
used since then. We have directly compared PENGUINN to
this regular expression in all our testing datasets. Since the
regular expression cannot return a score and will only produce
a binary result, it is not possible to produce a ROC curve or
similar metric across scores. Our models outperformed the G4
regular expression in all datasets with increasing difference as
datasets became more negative heavy (Table 1 and Figure 2).
Despite being a widely used way of identification for G4s, the
regular expression lacks a scoring system to prioritize sequences
compared to more elaborate methods such as PENGUINN.

Comparison to State-of-the-Art Methods

We proceeded to evaluate our method against four other state-of-
the-art methods on the same benchmark datasets. We compared
their performance across the whole range of prediction scores
using the precision-recall area under curve for each evaluation
dataset. There is an evident trend of quickly diminishing
performance as datasets become more realistic in ratios with
more negatives. Our method also loses performance under
these circumstances, but at a much slower rate, pointing at

Frontiers in Genetics | www.frontiersin.org

October 2020 | Volume 11 | Article 568546

https://github.com/ML-Bioinfo-CEITEC/penguinn
https://github.com/ML-Bioinfo-CEITEC/penguinn
https://ml-bioinfo-ceitec.github.io/penguinn/
https://ml-bioinfo-ceitec.github.io/penguinn/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Klimentova et al. PENGUINN: Nuclear G-Quadruplexes Neural Network

TABLE 1 | Precision and recall values for static score prediction of regular expression, PENGUINNSs (sensitive), and PENGUINNp (precise) on a scale of
imbalanced datasets.

Dataset 3:1 1:1 1:9 1:99 1: 999

Tool Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall
Regular expression 0.995 0.657 0.993 0.335 0.952 0.323 0. 606 0.349 0.145 0.330
PENGUINNs 0.780 1. 000 0.967 0. 964 0.778 0.963 0.231 0.955 0.030 0.940
PENGUINNp 0.952 0.926 0.996 0.818 0.973 0.823 0.733 0.814 0.214 0.790

Dataset 3:1 contains 298 positives and 94 negatives, datasets 1:1, 1:9, 1:99, and 1:999 have a total of 100,000 left out examples each with the denoted pos:neg ratio.

A B - 1 1
CIPENGUINNp ———ﬁ —~N T -
EIPENGUINNs
ERegular Expression - \
o $ 5
a & E
dataset 3:1 dataset 1:1 ‘dataset 1:9
%% Recall 1% Recall 1 %% Recall
1 1
HPENGUINN
[Ga4detector K_PDS
5 5 x Regular Expression
a a
T ™
dataset 1:99 dataset 1:999
3:1 11 1 :9 1 99 1 999) Recall 1 0 ['Recall-

FIGURE 2 | (A) F1 score for PENGUINNp (precise), PENGUINNS (sensitive) and Regular Expression with datasets of different pos:neg ratio. (B) Precision-Recall
curve comparison of PENGUINN and best performing state-of-the-art method G4detector K_PDS and Regular Expression in datasets of different pos:neg ratio.

a comparative improvement when used for realistic highly On the Marsico dataset, all programs showed similar results
imbalanced datasets (Table 2). We have selected the best as on the original testing dataset (Supplementary Figure 3B).
performing state-of-the-art method for direct comparison using On the Hansel-Hertsch dataset, all programs performed poorly
detailed precision-recall curves for each dataset (Figure 2B). compared to their performance on our original dataset. Despite
It becomes evident that as the class imbalance increases, this fact, PENGUINN outperformed all other state-of-the-art
both methods lose performance, but PENGUINN manages to programs even on this dataset (Supplementary Figure 3C). This
retain a higher level of precision/sensitivity even at highly dataset is not easily comparable with naked DNA G4-seq as it is
imbalanced datasets. Comparison with all other state-of-the-art ~ dependent on a cell line in which many G4s are tightly packed
programs shows similar patterns as ratios become more realistic in nucleosomes. We do not suggest that absolute performance
(Supplementary Figure 3A). metrics in this cell line are representative of the real power of
To ensure that our method was not overfitted on the dataset each prediction method, but his result reinforces our trust that
used for training, we decided to evaluate our method, as well PENGUINN’s performance is not the result of overfitting on the
as other state-of-the-art programs against two independent training dataset.
datasets (Hinsel-Hertsch et al., 2016; Marsico et al., 2019).

Training on Non-Human Datasets and

TABLE 2 | Area under the precision-recall curve for PENGUINN and 4 CrOSS'speCies comparisons

state-ofthe-art programs. Since the Marsico dataset (Marsico et al., 2019) contained
Dataset 31 1:1 1:9 1:99 1:000 information about the genomic locations of G4s on various
PENGUINN 0.978 0.994 0.966 0.796 040p Species, we decided to evaluate our model on a possible cross-
Gadetector K PDS 0.965 0.979 0.906 0637 01 SPecies comparison, and also to train a model on other species
Gadetector PDS 0.937 0.978 0.899 0585 015, data. For this task, we selected the mouse dataset since it had
Gadetector K 0.941 0.978 0.888 0.552 0404 the largest number of peaks, adequate for training a model.
G4Hunter 0.972 0.964 0.851 0.503 0.003 We then proceeded to evaluate and compare the two models
Quadron 0.965 0.828 0.671 0.502 0.150 (Trained on human and Trained on mouse) against left out
PQSfinder 0.977 0.948 0.861 0.551 0.101 datasets from each of the two species. As expected, the model

trained on human performed slightly better on the human
Underlined are the best performances for each evaluation dataset. Dataset 3:1 p i ghtly
contains 298 positives and 94 negatives, datasets 1:1, 1:9, 1:99, and 1:999 have dataset, and the model trained on mouse better on the mouse

a total of 100,000 left out examples each with the denoted pos:neg ratio. evaluation dataset (Table 3 and Supplementary Figure 4). We

Frontiers in Genetics | www.frontiersin.org 5 October 2020 | Volume 11 | Article 568546

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Klimentova et al.

PENGUINN: Nuclear G-Quadruplexes Neural Network

TABLE 3 | Area under the precision-recall curve for PENGUINN models trained on
human and mouse datasets, and evaluated on varying pos:neg ratios of
human and mouse G4s.

Dataset/model Trained on human Trained on mouse
Dataset 1:1 human 0.994 0.987
Dataset 1:9 human 0.966 0.931
Dataset 1:99 human 0.796 0.718
Dataset 1:999 human 0.402 0.373
Dataset 1:1 mouse 0.986 0.992
Dataset 1:9 mouse 0.912 0.945
Dataset 1:99 mouse 0.658 0.795
Dataset 1:999 mouse 0.236 0.361

Underlined are the higher values for each evaluation dataset.

also evaluated the human trained model against two evolutionary
distant organisms, the nematode Cenorhabditis elegans, and the
plant Arabidopsis thaliana. These datasets contained a much
smaller number of peaks that were not enough for training
their own independent models. The human trained model can
predict G4s in these species, but the performance of the model
is as expected lower than what it is for human or mouse
(Supplementary Figure 5).

Interpretation of PENGUINN Model

Deep Learning models consist of complex networks of neurons
that abstract information in hard-to-interpret ways. Often these
models are considered uninterpretable black boxes. However, this
can lead to pitfalls such as learning data artifacts instead of real
signal. To control against such pitfalls, we identified what our
model considered the most important 40 nucleotide subsequence
for 2000 samples, using a randomized permutation approach.
We sorted by the degree of change when randomized and used
the top 2000 of these sequences to identify enriched motifs
using Multiple Em for Motif Elicitation (MEME) (Bailey et al,,
2006). The top motif extracted (Figure 1C) is indeed a motif
containing several G-tracts which confirms the known theory of
G4 formation and demonstrates that our model did not primarily
learn some artifact such as padding length. The motif produced
by MEME is an aggregate of several similar motifs found in these
sequences, and as such is not expected to appear as an exact
“consensus” G4.

We proceeded to evaluate negative examples in the same
way, attempting to identify possible motifs that could weigh the
classification model toward the negative class. Using 2000 such
sequences, we identified some motifs with high E-value that do
not show similarity among them or with the positive motifs. Even
the most common of these motifs was only found in 40 out of
2000 sequences, while the G-rich motif in the positive samples
was found in 1961 out of 2000 sequences. These results show us
that even though there may be some motif overrepresentation in
our negative data, there does not appear to exist a definitive motif
that could be biasing our model.

We intersected PENGUINN predictions at a 0.5 score
threshold against the predictions of G4detector and the regular
expression method. PENGUINN identified 3818 “unique”
G4s, against 440 of G4detector, and 24 of the regular
expression. PENGUINN and G4detector had 27556 sequences

in common which could not identified by regular expression
alone (Supplementary Figure 6A). We proceeded with a motif
finding analysis using a randomized permutation approach on
the sequences that were correctly identified only by PENGUINN.
To look for sequences beyond the G-rich primary sequence,
we allowed up to three top subsequences per sample to be
considered. In total, we produced 2100 important sub-sequences,
out of which 1281 contained a roughly T/C rich motif sequence
(Supplementary Figure 6B).

Web Application

Paradoxically, although elaborate ML models, such as
PENGUINN, vastly outperform the simple regular expression
search for G4s, its use persists to date. Beyond the familiarity
of the method, we believe that any technical obstacle, however
trivial, will deter non-technical users from using other methods.
As such, we decided to create a straightforward web application
that uses our best trained model to evaluate user submitted
sequences in real time. The web application can be found here:
https://ml-bioinfo-ceitec.github.io/penguinn/. The user can
input a single sequence, a fasta formatted input, or several
sequences in multiple lines. The sequences will be evaluated, and
a score along with threshold evaluation returned.

DISCUSSION

In this study we present PENGUINN, a convolutional neural
network based method that outperforms state-of-the-art
methods in the identification of nuclear G4s in highly imbalanced
datasets. PENGUINN is more robust than other methods when
the pos:neg ratio increases by several orders of magnitude.
However, there is still space for improvement in the prediction.
We believe that a more elaborate modeling of the real variation
of the background genome could benefit predictive methods of
this type. Such undertaking is beyond the scope of this study.

Beyond the development of a highly effective predictive
model, we have explored the interpretation of what the model
has learned. As expected, the model identified regions of high
G content as better potential targets, and has scored very highly
regions showing periodic G stretches, a structural feature known
to define G4s. Convolutional Neural Networks are notorious for
being hard to interpret, as deeper network layers further abstract
information from the first layers. We believe that interpreting
the network to the extent that we can conceptualize the type
of sequences it has learned to identify is an important step for
genomic sequence deep learning studies.

To allow for easier adoption of our method, we have developed
both a standalone version and a web application that can be
used without any knowledge of programming. The repository
https://github.com/ML-Bioinfo- CEITEC/penguinn contains all
models, data, and thorough installation and usage tutorials.
The web application can accept sequences ranging from
20 nt up to hundreds of nts. For sequences smaller than
200 nt, our method will pad the sequence with Ns randomly
on each side. This may create a variation in scores for
really short input sequences. For sequences larger than
200 nt, our method will extract 200 nt around the midpoint

Frontiers in Genetics | www.frontiersin.org

October 2020 | Volume 11 | Article 568546

https://ml-bioinfo-ceitec.github.io/penguinn/
https://github.com/ML-Bioinfo-CEITEC/penguinn
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Klimentova et al.

PENGUINN: Nuclear G-Quadruplexes Neural Network

of the sequence. This means that the whole sequence is not
evaluated but just the middle 200 nt. Users should attempt
to preprocess their data as much as possible, centering their
potential G4 sequence.

In conclusion, PENGUINN is a powerful method, based
on cutting edge Deep Learning architecture, that increasingly
outperforms the state-of-the-art methods in classifying G4s
in more realistic highly imbalanced datasets. Despite the
sophistication of the method, we have developed a simple
web application to assist users coming from non-bioinformatic
backgrounds to use the method. We also provide all training
and testing datasets in an effort to empower researchers to
produce better, more accurate methods for realistic highly
imbalanced datasets.

DATA AVAILABILITY STATEMENT

All datasets presented in this study are available at https://github.
com/ML-Bioinfo- CEITEC/penguinn.

REFERENCES

Bailey, T. L., Williams, N., Misleh, C., and Li, W. W. (2006). MEME: discovering
and analyzing DNA and protein sequence motifs. Nucleic Acids Res. 34, W369-
W373.

Barshai, M., and Orenstein, Y. (2019). “Predicting G-quadruplexes from DNA
sequences using multi-kernel convolutional neural networks,” in Proceedings
of the 10th ACM International Conference on Bioinformatics, Computational
Biology and Health Informatics - BCB 19 New York, NY.

Bedrat, A., Lacroix, L., and Mergny, J. L. (2016). Re-Evaluation of G-Quadruplex
Propensity with G4Hunter. Nucleic Acids Res. 44, 1746-1759. doi: 10.1093/nar/
gkw006

Chambers, V. S., Marsico, G., Boutell, J. M., Di Antonio, M., Smith, G. P.,
and Balasubramanian, S. (2015). High-throughput sequencing of DNA
G-quadruplex structures in the human genome. Nat. Biotechnol. 33, 877-881.
doi: 10.1038/nbt.3295

Emmert-Streib, F., Yang, Z., Feng, H., Tripathi, S., and Dehmer, M. (2020). An
introductory review of deep learning for prediction models with big data. Front.
Artif. Intellig. 3:4. doi: 10.3389/frai.2020.00004

Fitch, F. B. (1944). Journal of Symbolic Logic. Storrs: Association for Symbolic
Logic, 49-50.

Gellert, M., Lipsett, M. N., and Davies, D. R. (1962). Helix formation by guanylic
acid. Proc. Natl. Acad. Sci. U.S.A. 48,2013-2018. doi: 10.1073/pnas.48.12.2013

Georgakilas, G. K., Grioni, A., Liakos, K. G., Chalupova, E., Plessas, F. C,
and Alexiou, P. (2020). Multi-branch convolutional neural network for
identification of small non-coding RNA genomic loci. Sci. Rep. 10:9486.

Georgakilas, G. K., Grioni, A., Liakos, K. G., Malanikova, E., Plessas, F. C.,
and Alexiou, P. (n.d.). MuStARD: deep learning for intra- and inter-species
scanning of functional genomic patterns. bioRxiv [Preprint]. doi: 10.1101/
547679v1

Hansel-Hertsch, R., Beraldi, D., Lensing, S. V., Marsico, G., Zyner, K., Parry, A.,
et al. (2016). G-quadruplex structures mark human regulatory chromatin. Nat.
Genet. 48, 1267-1272. doi: 10.1038/ng.3662

Hon, J., Martinek, T., Zendulka, J., and Lexa, M. (2017). Pqsfinder: an exhaustive
and imperfection-tolerant search tool for potential quadruplex-forming
sequences in R. Bioinformatics 33, 3373-3379. doi: 10.1093/bioinformatics/
btx413

AUTHOR CONTRIBUTIONS

PA and EK designed the study. PA had the oversight of the
study. EK and JP developed the machine learning method. PS
developed the web application. PA, EK, JP, and PS wrote the
manuscript. All authors contributed to the article and approved
the submitted version.

FUNDING

This research was funded by grant H2020-WF-01-2018: 867414
to PA, and grant H2020-MSCA-IF-2019: 896172 to PS.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2020.568546/full#supplementary- material

Huppert, J. L. (2005). Prevalence of quadruplexes in the human genome. Nucleic
Acids Res. 33, 2908-2916. doi: 10.1093/nar/gki609

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521, 436-444.

Lombardi, E. P., and Londono-Vallejo, A. (2020). A guide to computational
methods for G-quadruplex prediction. Nucleic Acids Res. 48, 1-15. doi: 10.
1093/nar/gkz1097

Marsico, G., Chambers, V. S., Sahakyan, A. B., McCauley, P., Boutell, J. M.,
Di Antonio, M., et al. (2019). Whole genome experimental maps of DNA
G-quadruplexes in multiple species. Nucleic Acids Res. 47, 3862-3874. doi:
10.1093/nar/gkz179

Quinlan, A. R, and Hall, I. M. (2010). BEDTools: a flexible suite of utilities
for comparing genomic features. Bioinformatics 26, 841-842. doi: 10.1093/
bioinformatics/btq033

Sahakyan, A. B., Chambers, V. S., Marsico, G., Santner, T., Di Antonio, M., and
Balasubramanian, S. (2017). Machine learning model for sequence-driven DNA
G-quadruplex formation. Sci. Rep. 7, 1-11.

Sen, D., and Gilbert, W. (1988). Formation of parallel four-stranded complexes
by guanine-rich motifs in DNA and its implications for meiosis. Nature 334,
364-366. doi: 10.1038/334364a0

Spiegel, J., Adhikari, S., and Balasubramanian, S. (2020). The structure and
function of DNA G-quadruplexes. Trends Chem. 24:3074. doi: 10.1016/j.
trechm.2019.07.002

Tang, B., Pan, Z., Yin, K., and Khateeb, A. (2019). Recent advances of deep
learning in bioinformatics and computational biology. Front. Genet. 10:214.
doi: 10.3389/fgene.2019.00214

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Klimentova, Polacek, Simecek and Alexiou. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Genetics | www.frontiersin.org

October 2020 | Volume 11 | Article 568546

https://github.com/ML-Bioinfo-CEITEC/penguinn
https://github.com/ML-Bioinfo-CEITEC/penguinn
https://www.frontiersin.org/articles/10.3389/fgene.2020.568546/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2020.568546/full#supplementary-material
https://doi.org/10.1093/nar/gkw006
https://doi.org/10.1093/nar/gkw006
https://doi.org/10.1038/nbt.3295
https://doi.org/10.3389/frai.2020.00004
https://doi.org/10.1073/pnas.48.12.2013
https://doi.org/10.1101/547679v1
https://doi.org/10.1101/547679v1
https://doi.org/10.1038/ng.3662
https://doi.org/10.1093/bioinformatics/btx413
https://doi.org/10.1093/bioinformatics/btx413
https://doi.org/10.1093/nar/gki609
https://doi.org/10.1093/nar/gkz1097
https://doi.org/10.1093/nar/gkz1097
https://doi.org/10.1093/nar/gkz179
https://doi.org/10.1093/nar/gkz179
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1038/334364a0
https://doi.org/10.1016/j.trechm.2019.07.002
https://doi.org/10.1016/j.trechm.2019.07.002
https://doi.org/10.3389/fgene.2019.00214
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

	PENGUINN: Precise Exploration of Nuclear G-Quadruplexes Using Interpretable Neural Networks
	Introduction
	Materials and Methods
	Training and Evaluation Datasets
	Training Scheme
	Evaluation Scheme
	Evaluation on Independent Datasets
	Training and Evaluation on Non-Human Datasets
	Interpretation of Model
	Code Availability and Web Application

	Results
	Selection of Training Ratio
	Comparison to Regular Expression
	Comparison to State-of-the-Art Methods
	Training on Non-Human Datasets and Cross-Species Comparisons
	Interpretation of PENGUINN Model
	Web Application

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

