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Members of the alx gene family encode transcription factors that contain a highly conserved 
Paired-class, DNA-binding homeodomain, and a C-terminal OAR/Aristaless domain. 
Phylogenetic and comparative genomic studies have revealed complex patterns of alx 
gene duplications during deuterostome evolution. Remarkably, alx genes have been 
implicated in skeletogenesis in both echinoderms and vertebrates. In this review, we provide 
an overview of current knowledge concerning alx genes in deuterostomes. We highlight 
their evolutionarily conserved role in skeletogenesis and draw parallels and distinctions 
between the skeletogenic gene regulatory circuitries of diverse groups within 
the superphylum.
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INTRODUCTION

Biomineralization, the formation of mineral by living organisms, is an exceptionally widespread 
phenomenon and is thought to have evolved independently and rapidly in many different metazoan  
phyla through the deployment of a wide range of biomineralization mechanisms and chemistries. 
Depending on the type and extent of the mineral components, biomineralized tissues are used 
for structural support, resource acquisition, and protection. There are three predominant classes 
of biogenic mineral in metazoans: calcium carbonates, calcium phosphates, and silica. The carbonate 
and phosphate salts of calcium are widely used as skeletal material by vertebrates and invertebrates, 
while silica biomineralization is prevalent in sponges (Wang et  al., 2010b). The emergence of 
biomineralization during the Cambrian Explosion, followed by evolutionary modifications of these 
biomineralization programs, gave rise to the diverse biomineralized structures found in modern 
metazoans (Knoll, 2003; Zhuravlev and Wood, 2018).

Within the deuterostome superphylum, only vertebrates and echinoderms produce extensive 
biomineralized skeletal structures. The vertebrate endoskeleton consists primarily of the skull, 
vertebrae, ribs, and limb bones all of which are composed of matrix proteins (e.g., collagens) 
and calcium phosphate crystals. Vertebrate biomineralization is predominantly orchestrated by 
chondrogenic cells (chondrocytes) and osteogenic cells (osteoblasts and osteoclasts). The vertebrate 
skeleton is formed during early development by cartilage and/or connective tissue membranes, 
which are subsequently replaced by bony tissues through the process of ossification. There are 
two forms of ossification, endochondral and intramembranous ossification. Endochondral ossification 
is associated with the formation of long bones and requires the presence of a hyaline cartilage 
template formed by chondrocytes (Mackie et al., 2008). During vertebrate embryonic development, 
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chondrocytes are derived from neural crest cells, somitic 
mesodermal cells, and lateral plate mesodermal cells (see review 
by Hirasawa and Kuratani, 2015). Developmental cues signal 
the cartilage matrix to calcify. This prevents the diffusion of 
nutrients into the matrix and results in chondrocyte apoptosis, 
allowing blood vessels to invade the cartilage cavities. Osteoblasts, 
derived from common osteochondroprogenitor or directly from 
chondrocytes (Yang et  al., 2014), and osteoclasts, derived from 
erythron-myeloid progenitors (Jacome-Galarza et  al., 2019), 
then transform the calcified cartilage into biomineralized bone 
(Mackie et  al., 2008). During intramembranous ossification, 
spongy bones are formed when osteoblasts directly deposit 
biomineral on extracellular sheets of mesenchymal connective 
tissues (Percival and Richtsmeier, 2013). This process is 
commonly involved in the formation of flat bones found in 
the skull, mandible, and clavicles. Whether intramembranous 
or endochondral ossification arose first during vertebrate 
evolution remains unclear (Cervantes-Diaz et  al., 2017; 
Wood and Nakamura, 2018; Brazeau et  al., 2020).

All adult echinoderms produce calcite-based endoskeletons 
that consist of the test, teeth, and spines. In most species, the 
adult form arises from a swimming, feeding larva via 
metamorphosis, and these two life history stages bear little 
morphological resemblance to one another. In some echinoderm 
clades, specifically echinoids (sea urchins) and ophiuroids (brittle 
stars), the feeding larva also possesses an intricate and extensive 
calcitic endoskeleton, which is first laid down during embryonic 
development and further elaborated after feeding begins. The 
founder cells of the embryonic skeletogenic lineage, the large 
micromeres, arise early in development and are specified by 
a combination of localized maternal factors and unequal cell 
division. At the mesenchyme blastula stage, the large micromere 
descendants undergo an epithelial-to-mesenchyme transition 
(EMT) and ingress into the blastocoel as primary mesenchyme 
cells, or PMCs (see reviews by Ettensohn, 2020; McClay et  al., 
2020). After ingression, PMCs extend filopodia and migrate 
along the blastocoel wall, gradually adopting a ring-like 
configuration near the equator of the embryo. As the PMCs 
migrate, their filopodia fuse, forming a cable-like cytoplasmic 
strand that connects the cells in a syncytial network. Amorphous 
calcium carbonate and associated proteins are then secreted 
into an intercellular space within the cytoplasmic cable, where 
the biomineral matures and grows, eventually producing the 
elaborate, branched skeletal elements (spicules) of the larva 
(Wilt, 2002; McIntyre et  al., 2014; Shashikant et  al., 2018).

Due to differences in mechanisms underlying axial patterning, 
developmental timing, and embryological structures, it is often 
difficult to deduce morphological homology. Although the 
biomineralized tissues found in different metazoan phyla are 
not considered homologous in the strictest sense, recent comparative 
studies have revealed common elements across different 
biomineralization systems. This has led to the recognition of a 
possible “biomineralization toolkit;” an ancestral gene regulatory 
network (GRN) consisting of signaling and gene regulatory 
pathways that was independently co-opted and fine-tuned for 
biomineralization in diverse animal taxa. One common regulator 
of deuterostome skeletogenesis is the Alx transcription factor 

family, which has been shown to have an ancient, conserved 
role in this process in both vertebrates and echinoderms. In 
this review, we examine the current state of knowledge concerning 
deuterostome alx genes, with a focus on their role in skeletogenesis.

PHYLOGENETIC DISTRIBUTION OF ALX 
GENES IN DEUTEROSTOMES

The alx gene family encodes Paired-class homeodomain 
transcription factors that contain a highly conserved DNA-binding 
homeodomain and a C-terminal Otp, Aristaless, and Rax (OAR) 
domain, features that are shared by many Paired-class 
homeodomain proteins. Phylogenetic and comparative genomic 
studies have revealed considerable variability in the number of 
alx genes in different deuterostomes, pointing to a complex 
evolutionary pattern of lineage-specific gene duplication and loss 
(Figure 1; adapted from McGonnell et al., 2011; Koga et al., 2016). 
Hemichordates possess a single alx gene (Koga et  al., 2016) 
while echinoderms have two (alx1 and alx4; Ettensohn et al., 2003; 
Koga et  al., 2016). In contrast, humans and mammals possess 
three alx genes (alx1/cart1, alx3, and alx4) that arose through 
two duplication events. Through the course of evolution, one 
of the paralogues, alx3, was lost from amphibian and reptile 
lineages (McGonnell et al., 2011). Additionally, ray-finned fishes 
such as zebrafish acquired two paralogues of alx4, designated 
alx4a and alx4b, as a result of a separate, whole genome 
duplication event (McGonnell et  al., 2011). The lancelets have 
two alx genes. In Branchiostoma floridae, these two genes (Bf-alx1 
and Bf-alx2) are located close to each other in the genome and 
have very similar intron-exon organizations. Molecular phylogenetic 
analysis of Alx proteins indicate that Bf-Alx1 and Bf-Alx2 form 
a monophyletic group, providing further support for the view 
that they arose from a lineage-specific gene duplication event 
(Figure  1; Koga et  al., 2016).

DEVELOPMENTAL EXPRESSION AND 
FUNCTION OF ALX GENES IN JAWED 
VERTEBRATES

Members of the alx gene family are expressed in several 
mesenchymal tissues during the embryogenesis of jawed 
vertebrates (gnathostomes), a group that includes most of the 
vertebrate species used for developmental studies. These genes 
are expressed most prominently in distinct but partially 
overlapping patterns in neural crest-derived craniofacial 
mesenchyme and in mesenchyme of the limb bud, both of 
which are sources of cartilage and bone (Zhao et  al., 1994; 
Qu et al., 1997a; ten Berge et al., 1998; Beverdam and Meijlink, 
2001). Other sites of embryonic expression have also been 
reported, including the head mesoderm, sclerotome of the 
somite (another tissue that produces cartilage and bone), hair 
follicles, dental papillae of teeth, and parts of the developing 
urogenital system (Zhao et  al., 1994; Hudson et  al., 1998; 
ten Berge et  al., 1998; Bothe et  al., 2011; Wang et  al., 2019).
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In the developing head, genes of the alx family are expressed 
by neural crest cells, which give rise to cartilages and bones 
of the skull, jaw, and middle ear, as well as other derivatives 
(see reviews by Santagati and Rijli, 2003; Noden and Trainor, 
2005). Consistent with this pattern of expression, perturbations 
of alx genes commonly result in severe craniofacial malformations, 
including frontonasal dysplasia and the reduction or malformation 
of many neural crest-derived skeletal elements (Table  1). In 
mice, loss-of-function mutations of alx1/cart1 or alx4 also lead 
to other cranial abnormalities such as anencephaly and lacrimal 
gland aplasia (Zhao et  al., 1996; Garg et  al., 2017), although 
these effects are likely to be  secondary consequences of defects 
in neural crest cells, which provide essential signals that regulate 
the development of the brain and eye (Zhao et  al., 1996; 
Bhattacherjee et al., 2009; Le Douarin, 2012; Garg et al., 2017). 
While alx3-null mice appear normal, alx3/alx4 double mutant 
mice exhibit severe frontonasal dysplasia and cranial skeletal 
defects that are more extreme than those observed in alx4 
mutant mice, revealing non-equivalent but overlapping functions 
of these highly similar proteins (Beverdam et  al., 2001).

During early zebrafish development, the expression of alx1 
alone is detected in migrating neural crest cells, while at later 

stages, alx1, alx3, alx4a, and alx4b exhibit overlapping patterns 
of expression in the craniofacial mesenchyme (Dee et al., 2013; 
Wang et  al., 2019). Alx1 is also transiently expressed in the 
cranial paraxial mesoderm at early developmental stages (Wang 
et  al., 2019). Perturbation of Alx1 expression using antisense 
morpholino oligonucleotides (MOs) produces severe craniofacial 
defects in zebrafish, similar to results seen in the mouse, 
inhibition of alx3 alone results in no significant craniofacial 
abnormalities (Dee et  al., 2013). In developing frog and chick 
embryos, both alx1 and alx4 are expressed robustly in the 
craniofacial mesenchyme (Bothe and Dietrich, 2006; 
McGonnell et  al., 2011; Square et  al., 2015).

Genes of the alx family are also expressed in the mesodermal 
compartment of the limb buds. At early embryonic stages, 
these genes are expressed specifically in an anterior, proximal 
zone while later in development they are also expressed at the 
distal margin (Qu et  al., 1997b). The anterior, proximal zone 
of expression may include sites where skeletal elements of the 
shoulder and pelvic girdles (the scapula and pelvis, respectively) 
form, although this has not been shown directly. The skeletal 
elements of the limb girdles have complex embryological origins 
that are only partially understood. The scapula may arise from 

FIGURE 1 | Molecular phylogeny of Alx proteins (adapted from McGonnell et al., 2011; Koga et al., 2016). Branch lengths are arbitrary. Sk, Saccoglossus kowalevskii 
(acorn worm); Lv, Lytechinus variegatus (euechinoid sea urchin); Hp, Hemicentrotus pulcherrimus (euechinoid sea urchin); Sp, Strongylocentrotus purpuratus (euechinoid 
sea urchin); Mr, Metacrinus rotundus (sea lily); Ak, Amphipholis kochii (brittle star); Pm, Patiria miniata (sea star); Ppc, Patiria pectinifera (sea star); Bf, Branchiostoma 
floridae (lancelet); Dr, Danio rerio (zebrafish); Xt, Xenopus tropicalis (frog); Ac, Anolis carolinensis (lizard); Hs, Homo sapiens (human); Mm, Mus musculus (mouse).
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TABLE 1 | Summary of expression patterns, mutations, perturbations, and diseases associated with alx genes across different deuterostome phyla.

Organism Gene Expression Pattern Reference Mutation/Perturbation
Disease/Mutational 
Effect

Reference

Human

alx1 n.d. n.d.

Whole-gene deletion and 
homozygous homeodomain splice-
site mutation (c.531+1G>A)

Frontonasal dysplasia, 
characterized by 
microphthalmia and severe 
facial clefting

Uz et al., 2010

Reciprocal translocation t(1;12)
(p32.1;q21.3) resulting in enhanced 
gene expression

Microcephaly, language 
impairment, and mental 
retardation

Liao et al., 2011

alx3 n.d. n.d.

Nonsense (c.543T>A; p.Y191X), 
frameshift (c.578_581delCTGA;  
p.T193RfsX137), and splice-site  
(c.595-2A>T) mutations within 
homeodomain

Frontonasal dysplasia 
(frontorhiny)

Twigg et al., 
2009

Nonsense mutation within 
homeodomain (c.604C>T; p.Q202X), 
resulting in premature stop

Frontonasal dysplasia 
(frontorhiny)

Ullah et al., 
2018

alx4 n.d. n.d.

Deletion and insertion mutation  
(c.1080_1089delGACCCGGTGC 
insCTAAGATCTCAACAGAGATG 
GCAACT; p.D326fsX21), resulting in 
frameshift and loss of OAR domain

Mild frontonasal  
dysplasia and enlarge 
parietal foramina

Bertola et al., 
2013

Deletions (c.385_394del, 
c.417_418del), point mutation 
(c.620C>A), and duplication 
(c.456_465dup)

Enlarged parietal foramina
Mavrogiannis 
et al., 2006

Deletion (c.504delT; p.D169X), 
resulting in premature stop and loss  
of homeodomain; point mutation in 
homeodomain (c.815G>C; p.R272P)

Enlarged parietal foramina
Wuyts et al., 
2000

Nonsense mutation (c.793C>T; p.
R265X)

Frontonasal dysplasia
Kayserili et al., 
2009

Point mutation (c.653G>A; p.R218Q) 
in homeodomain nuclear localization 
signal

Enlarged parietal foramina
Valente et al., 
2004

Deletion (c.291delG; p.Q98SfsX83) 
resulting in frameshift and premature 
stop

Frontonasal dysplasia
El-Ruby et al., 
2018

Point mutations (c.19G_T; p.V7F, 
c.631A>G; p.K211E, c.917C>T;  
p.P306L)

Nonsyndromic 
craniosynostosis

Yagnik et al., 
2012

Mouse

alx1

Craniofacial region (frontonasal  
head mesenchyme), lateral plate 
mesoderm, and limb bud 
mesenchyme

Beverdam and 
Meijlink, 2001;  
Zhao et al., 1994

Homozygous null mutant
Acrania and  
anencephaly

Zhao et al., 
1996

alx3  
and  
alx4

Overlapping expression in the 
craniofacial region (frontonasal  
head mesenchyme), lateral plate 
mesoderm, and limb bud 
mesenchyme. alx3 is expressed in 
parts of the developing urogenital 
system. alx4 is expressed  
in hair follicles and dental papillae of 
teeth.

Qu et al., 1997a; 
Hudson et al., 
1998; ten Berge 
et al., 1998

Homozygous double alx3/alx4  
mutant

Frontonasal dysplasia and 
preaxial polydactyly

Beverdam et al., 
2001

Zebrafish

alx1, 
alx3, 
alx4a, 
and 
alx4b

Overlapping expression in the 
frontonasal mesenchyme, periocular 
mesenchyme, mandible arch, and 
the prospective palate. alx1 is 
expressed in the head mesoderm.

Dee et al., 2013; 
Wang et al., 2019

Knockdown using alx1 antisense 
morpholino oligonucleotide

Defective neural crest 
migration and craniofacial 
malformations

Dee et al., 2013

Knockdown using alx3 antisense 
morpholino oligonucleotide

No significant effect Dee et al., 2013

(Continued)
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three sources: somatic mesoderm of the lateral plate, somite-
derived dermamyotome, and neural crest, while the pelvis likely 
arises from somatic mesoderm and sclerotome (Young et  al., 
2019). Genetic knockouts in mice have revealed essential and 
partially redundant roles for alx1, alx3, and alx4 in the formation 
of the superior/anterior portion of the scapula blade (and in 
the development of the clavicle) and have shown that alx1 
expression in this region is under the direct control of the 
transcription factors Emx2 and Pbx1 (Kuijper et  al., 2005a,b; 
Capellini et  al., 2010). Similarly, compound alx1:alx4 and 
alx3:alx4 double mutants reveal overlapping roles for these 
genes in the formation of the pelvic skeleton (Kuijper et  al., 
2005b; Young et  al., 2019). Unlike the neural crest-derived 
skeleton of the head, the scapula and pelvis both form by 

endochondral ossification, and defects are observed in both 
the cartilaginous and bony compartments of these skeletal 
elements when the function of alx family genes is compromised.

A striking developmental consequence of alx4 null mutations 
is preaxial polydactyly – the formation of one or more 
supernumerary anterior digits (Forsthoefel, 1963; Qu et al., 1997b). 
This effect is associated with the formation of an ectopic, anterior 
zone of polarizing activity (ZPA) in the limb bud and concomitant, 
anterior expression of sonic hedgehog (shh; Chan et  al., 1995; 
Qu et  al., 1997a,b; Takahashi et  al., 1998). At relatively late 
developmental stages, Shh signaling is required for polydactyly 
to develop in alx4-null mutants, but it has been proposed that 
alx4 also plays an earlier, Shh-independent role in anterior-
posterior patterning (Kuijper et al., 2005b). The expression domains 

Organism Gene Expression Pattern Reference Mutation/Perturbation
Disease/Mutational 
Effect

Reference

Cattle alx4 n.d. n.d.
Duplication (c.714_734dupTCACCG
AGGCCCGCGTGCAG) within the 
homeodomain

Tibial hemimelia syndrome
Brenig et al., 
2015

Cat alx1 n.d. n.d.
In frame deletion of homeodomain 
sequences 
(c.496_507delCTCTCAGGACTG)

Frontonasal dysplasia
Lyons et al., 
2016

Frog
alx1 
and 
alx4

Frontal mesenchyme near the  
eyes

McGonnell et al., 
2011

n.d. n.d. n.d.

Chicken
alx1 
and 
alx4

Craniofacial region (frontonasal  
head mesenchyme)

Bothe et al., 2011; 
McGonnell et al., 
2011

n.d. n.d. n.d.

Lamprey alx

Trabecular cartilaginous elements 
near the eye, upper lip  
mesenchyme and parts of the 
branchial basket cartilage

Cattell et al., 2011; 
Kuratani et al., 
2016; Square 
et al., 2017

n.d. n.d. n.d.

Lancelet alx
Paraxial mesoderm, pharyngeal  
arch mesoderm, and gut 
diverticulum

Meulemans and 
Bronner-Fraser, 
2007

n.d. n.d. n.d.

Thin-spined 
sea urchin

alx1
Primary mesenchyme cells in 
embryos and juvenile skeletogenic 
centers in late stage larvae

Ettensohn et al., 
2003;

Knockdown using alx1 antisense 
morpholino oligonucleotide

Loss of skeletogenic cell 
specification

Ettensohn et al., 
2003

Gao and 
Davidson, 2008

Overexpression of Alx1 via mRNA 
microinjection into fertilized eggs

Ectopic activation of the 
skeletogenic program in 
mesodermal lineage cells

Ettensohn et al., 
2003

alx4
Primary mesenchyme cells and 
coelomic mesoderm in embryos

Rafiq et al., 2012; 
Koga et al., 2016

n.d. n.d. n.d.

Pencil 
urchin

alx1
Skeletogenic mesenchyme lineage 
cells

Erkenbrack and 
Davidson, 2015

Knockdown using alx1 antisense 
morpholino oligonucleotide

Loss of skeletogenic cell 
specification

Erkenbrack and 
Davidson, 2015

Sea star alx1
Juvenile skeletogenic centers in late 
stage larvae

Gao and 
Davidson, 2008

Overexpression of Alx1 via mRNA 
microinjection into fertilized eggs

Upregulation of sea star 
orthologues of sea urchin 
skeletogenic genes during 
embryogenesis

Koga et al., 
2016

Sea 
cucumber

alx1
Skeletogenic mesenchyme lineage 
cells

McCauley et al., 
2012

Knockdown using alx1 antisense 
morpholino oligonucleotide

Loss of skeletogenic cell 
specification

McCauley et al., 
2012

Brittle star alx1
Skeletogenic mesenchyme lineage 
cells and adult skeletogenic centers 
in juveniles

Czarkwiani et al., 
2013; Koga et al., 
2016

n.d. n.d. n.d.

Acorn 
worm

alx Coelomic mesoderm Koga et al., 2016 n.d. n.d. n.d.

n.d., not determined.

TABLE 1 | Continued
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of alx4 and shh during limp outgrowth are established, in part, 
by mutual repression (Kuijper et al., 2005b; Matsubara et al., 2017).

Consistent with the results of experimental gene perturbations, 
genetic association studies in several vertebrate species have shown 
that polymorphisms in alx genes are associated with phenotypic 
variations in skeletal development. A genome-wide scan of genetic 
diversity between two closely related species of Darwin’s finches 
has revealed that polymorphism within the alx1 gene is strongly 
associated with beak morphology (Lamichhaney et  al., 2015). 
Linkage analysis and genome-wide association studies have also 
identified a small 12 bp deletion in the alx1 gene that is associated 
with frontonasal dysplasia in Burmese cats (Lyons et  al., 2016). 
Furthermore, variations in the number of repeats in the coding 
region of alx4 are quantitatively associated with polydactyly in 
the Great Pyrenees dog breed (Fondon and Garner, 2004), and 
a 20 bp duplication in the alx4 gene is linked to congenital tibial 
hemimelia (loss or shortening of the tibia) in Gallow cattle (Brenig 
et al., 2015). Taken together, these findings suggest that an ancient 
alx gene may have constituted a conserved, core element of the 
ancestral vertebrate skeletogenic GRN and that gene duplication 
followed by divergence of the paralogs with respect to their 
developmental expression and/or biochemical properties has 
produced multiple alx family members with overlapping functions.

Considered as a whole, these studies show that members of 
the vertebrate alx gene family play a conserved, prominent role 
in the development of the cranial and appendicular skeletons. 
In contrast, they do not appear to mediate the development of 
the sclerotome-derived, axial skeleton of the trunk (the vertebrae 
and ribs). Members of the alx gene family may also have other, 
less well-characterized, developmental functions, although some 
of the effects of mutations in these genes on non-skeletal tissues 
are likely to be indirect. In the cranial region, it is well-established 
that alx-family genes are expressed robustly and selectively by 
neural crest cells (Rice et  al., 2003; Dee et  al., 2013; Garg et  al., 
2017), a cell population that gives rise to both cartilage and 
membranous bone. Expression of alx family genes is not uniform 
in all regions of the developing head, however, and it has been 
hypothesized that this contributes to a regulatory code that controls 
the region-specific identity of the cranial neural crest (Square 
et al., 2017). With respect to appendage development, the expression 
of alx-related genes is associated with skeleton-forming potential 
of mesenchymal cell that will form proximal elements of the 
limb girdles (clavicle, scapula, and pelvis; Young et  al., 2019). 
The embryological origins and the precise developmental fates 
of these cells, as well as that of other cells of the developing 
limb that express alx-related genes, are not well-characterized.

DEVELOPMENTAL EXPRESSION OF ALX 
GENES IN OTHER CHORDATES

In basally-derived (jawless) vertebrates and cephalochordates 
(amphioxus), animals that possess only cartilaginous skeletons, 
alx-family genes are expressed in patterns consistent with a role 
in skeletogenesis. The single lamprey alx gene is expressed at high 
levels in the trabecular cartilaginous elements near the eye, in 
a region that may be derived from mesoderm or from the cranial 

neural crest (Kuratani et  al., 2016; Square et  al., 2017). 
Cephalochordates have stiff, acellular pharyngeal endoskeletons 
that contain fibrillar collagen, and the adult form has a cartilaginous 
oral skeleton that supports the cirri (Jandzik et al., 2015). Amphioxus 
lacks a neural crest, and the embryonic cell lineage that produces the 
oral skeleton has not been identified. One study has examined the 
expression of alx-related genes in cephalochordates and reported 
expression in the somites and right gut diverticulum at neurula/early 
larval stages (Meulemans and Bronner-Fraser, 2007). At present, 
the function of alx-related genes in jawless vertebrates and 
amphioxus has not been explored through gene perturbation studies.

DEVELOPMENTAL EXPRESSION AND 
FUNCTION OF ALX GENES IN 
ECHINODERMS

In echinoderm clades that form larval skeletons, alx1 is one of 
the earliest regulatory genes expressed during development, and 
it plays a pivotal role in specifying the fate of PMCs, the 
embryonic skeletogenic cells (Ettensohn et  al., 2003; Erkenbrack 
and Davidson, 2015; Dylus et  al., 2016; Shashikant et  al., 2018). 
Transcription of alx1 can be  detected as early as the 56-cell 
stage specifically in the large micromeres (the progenitors of PMCs), 
and expression remains restricted to this cell lineage throughout 
embryogenesis (Ettensohn et  al., 2003). Perturbation of Alx1 
expression using MOs inhibits PMC specification while 
overexpression of Alx1 results in ectopic activation of the 
skeletogenic program in other mesodermal lineages. Furthermore, 
experimental ablation of PMCs leads to the activation of alx1 
and downstream components of the skeletogenic GRN by 
non-skeletogenic mesoderm (NSM) cells, which ultimately reform 
a larval skeleton (Ettensohn et  al., 2007). The ectopic activation 
of alx1 is essential for NSM cells to acquire skeletogenic properties, 
although this activation occurs by a mechanism distinct from 
that which normally operates in the large micromeres (Oliveri 
et al., 2008; Sharma and Ettensohn, 2011; Ettensohn and Adomako-
Ankomah, 2019). Remarkably, the removal of NSM cells via 
microsurgical removal of the archenteron as well as PMCs results 
in the activation of alx1 and formation of a skeleton by presumptive 
endoderm cells (Sharma and Ettensohn, 2011).

The role of alx1 in the skeletogenic GRN in euechinoid 
sea urchins has been especially well-characterized (Figure  2). 
Alx1 provides positive inputs into almost half of the ~420 
genes that are differentially expressed by PMCs, highlighting 
the pivotal role of Alx1 in establishing skeletogenic cell identity 
(Rafiq et  al., 2014). A recent chromatin immunoprecipitation 
sequencing (ChIP-seq) study determined that many of these 
genes, including both regulatory (i.e., transcription factor-
encoding) and effector (i.e., differentiation) genes, are direct 
targets of alx1 (Khor et  al., 2019). A second transcription 
factor, Ets1, collaborates with Alx1  in the co-regulation of a 
large fraction of genes differentially expressed by PMCs (Rafiq 
et al., 2014), in many cases through a feed-forward mechanism 
(i.e., Ets1  >  Alx1, Ets  +  Alx1  >  effector gene; Yamasu and 
Wilt, 1999; Amore and Davidson, 2006; Oliveri et  al., 2008; 
Yajima et  al., 2010; Shashikant et  al., 2018; Khor et  al., 2019). 
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Downstream effector genes that are regulated by Alx1 include 
those that directly mediate biomineralization (e.g., those that 
encode secreted spicule matrix proteins that are incorporated 
into the biomineral) and those that mediate skeletogenesis through 
signaling pathways and morphogenetic cell behaviors (Figure 2).

The alx1 gene is also expressed specifically in skeletogenic 
cells of cidaroids (pencil urchins) and holothuroids (sea 
cucumbers), and is required and for skeletogenesis in these 
species (McCauley et al., 2012; Erkenbrack and Davidson, 2015). 
The alx1 gene is robustly expressed in adult skeletogenic centers, 
even in sea stars, which lack a larval skeleton (Gao and 
Davidson, 2008; Czarkwiani et  al., 2013; Gao et  al., 2015). 
Comparative studies have revealed many similarities in the 
gene regulatory programs of skeletogenic cells in the larva 
and adult (Richardson et  al., 1989; Gao and Davidson, 2008; 
Killian et  al., 2010; Czarkwiani et  al., 2013; Gao et  al., 2015). 
Hence, it is widely thought that the larval skeleton arose within 
the echinoderms by co-option of an adult skeletogenic program. 
Moreover, ectopic expression of sea urchin or sea star alx1 

in sea star embryos is sufficient to activate several sea star 
orthologs of sea urchin skeletogenic genes (Koga et  al., 2016). 
These findings confirm the critical role that Alx1 plays in 
establishing skeletogenic identity across all echinoderms at all 
life history stages, supporting the view that this function was 
present in the last common ancestor of echinoderms.

Echinoderms also possess a paralog of alx1, known as alx4. 
The two genes are directly adjacent to one another in the sea 
urchin genome, suggesting that they arose through gene 
duplication. The sister group to echinoderms, the hemichordates, 
possess a single alx gene, suggesting that the gene duplication 
occurred after the divergence of echinoderms from hemichordates 
(Koga et  al., 2016). The alx4 gene, like alx1, is expressed by 
skeletogenic PMCs, but alx4 is also expressed by presumptive 
coelomic pouch cells at the tip of the archenteron (Rafiq et al., 
2012; Koga et  al., 2016). The function of alx4 has not been 
experimentally determined but it has been proposed to 
be  involved in coelom development as the single alx gene in 
hemichordates is expressed in the coelomic mesoderm. As 

FIGURE 2 | Activation of Alx1 in euechinoids (S. purpuratus) and regulatory inputs into primary mesenchyme cell (PMC) effector genes. Only a small number of 
more than 420 effector genes differentially expressed in PMCs (Rafiq et al., 2014) is shown here. A large subset of effector genes receives regulatory inputs from 
both Ets1 and Alx1 (Rafiq et al., 2014). Positive regulatory inputs by Ets1 and Alx1 into msp130, sm50, and vegf-Ig-10 are described in (Oliveri et al., 2008).  
Direct targets of the sea urchin Alx1 (Khor et al., 2019) define a genetic subcircuit that impinges on almost all aspect of PMC morphogenesis, including directional 
cell migration, extracellular matrix (ECM) remodeling, cell-cell fusion, and biomineralization. Dashed arrows indicate interactions that may be indirect. For additional 
information regarding the developmental functions of the specific effector genes shown here, see Shashikant et al. (2018) and references therein.
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adult hemichordates possess only small biomineralized elements 
(Cameron and Bishop, 2012), these observations suggest that 
alx1 gained enhanced skeletogenic function in echinoderms 
secondarily. Structure-function analysis of Alx1 and Alx4  in 
euechinoid sea urchins has revealed that the gene duplication 
event permitted the functional specialization of Alx1 through 
changes in intron-exon organization and the acquisition of a 
novel protein motif known as the D2 domain (Khor and 
Ettensohn, 2017). As noted above, a recent genome-wide 
ChIP-seq study showed that a large part of the embryonic 
skeletogenic GRN of sea urchins is directly regulated by Alx1, 
including many morphoeffector genes that are also expressed 
in adult skeletogenic centers. Hence, a heterochronic shift in 
alx1 expression from adult skeletogenic centers to the embryonic 
skeletogenic cells may have been sufficient to co-opt a substantial 
subcircuit of biomineralization genes and ultimately transfer 
skeletogenesis into the embryo (Khor et  al., 2019).

A SUITE OF DEUTEROSTOME 
BIOMINERALIZATION EFFECTOR 
GENES REGULATED BY ALX1 IN 
ECHINODERMS

Studies on vertebrates and echinoderms have identified many 
examples of closely related genes that mediate biomineralization 
in both taxa, such as collagens and carbonic anhydrases (see 
reviews by Veis, 2011; Le Roy et  al., 2014). Here, we  focus on 
effector genes that have been identified as direct targets of 
Alx1  in echinoderms (sea urchins) and that have vertebrate 
counterparts implicated in chondrogenesis or osteogenesis. Though 
much is known about the interactions between regulatory genes 
and signaling pathways in vertebrate neural crest and chondrogenic 
GRNs (Cole, 2011; Simoes-Costa and Bronner, 2015), direct 
transcriptional inputs into biomineralization genes that are the 
downstream effectors of these networks have not been elucidated. 
Such information will be crucial to definitively assess homology 
between echinoderm and vertebrate skeletogenic GRNs.

VEGF AND VEGFR

One of the direct targets of sea urchin alx1 in biomineralizing 
cells is the vascular endothelial growth factor (VEGF) receptor, 
vegfr-Ig-10, one of the two vegfr genes in sea urchins (Duloquin 
et  al., 2007; Rafiq et  al., 2014; Khor et  al., 2019). During 
embryonic development, vegfr-Ig-10 expression is restricted to 
PMCs, while its ligand, vegf3 is expressed in the ectoderm 
specifically in the regions that lie adjacent to two ventro-lateral 
clusters of PMCs that initiate biomineral formation. MO-based 
knockdown of Vegf3 or Vegfr-Ig-10 results in the downregulation 
of skeletogenic genes and lack of embryonic skeleton formation, 
while ectopic expression of Vegf3 results in supernumerary 
skeletal elements and irregular branching (Duloquin et  al., 
2007; Adomako-Ankomah and Ettensohn, 2013). The vegfr-Ig-
10 gene is also expressed in adult skeletogenic centers, even 

in clades that lack a larval skeleton (Gao and Davidson, 2008; 
Morino et al., 2012). Other comparative studies in echinoderms 
have found a strict correlation between the expression of 
vegf3/vegfr-Ig-10 and the formation of an embryonic skeleton 
(Duloquin et al., 2007; Morino et al., 2012; Adomako-Ankomah 
and Ettensohn, 2013; Erkenbrack and Petsios, 2017; Erkenbrack 
and Thompson, 2019). Remarkably, human VEGFA is able to 
rescue skeleton formation in sea urchin embryos that lack 
endogenous Vegf3 expression (Morgulis et  al., 2019).

During vertebrate endochondral ossification, the cartilage 
intermediate is replaced by bone in a process that is partly 
regulated by the formation of a vascular network (see review 
by Green et  al., 2015). Chondrocytes stimulate vasculogenesis 
through the secretion of VEGF ligands (Carlevaro et al., 2000). 
In vitro studies show that VEGF ligands (VEGFA, VEGFB, 
and VEGFC) and VEGF receptors (VEGFR2 and VEGFR3) 
are expressed by chondrocytes and chondrogenic cells, and 
autocrine signaling through this pathway regulates morphogenesis 
and differentiation (Carlevaro et al., 2000; Bluteau et al., 2007). 
Inhibition of Vegf signaling perturbs ossification and bone 
elongation by promoting chondrocyte proliferation rather than 
osteoblast differentiation (Gerber et  al., 1999; Jacobsen et  al., 
2008). Mice with conditional deletion of vegfa in skeletal lineage 
cells exhibit thinner bones and decreased skeletal mineralization 
(Duan et  al., 2015). Moreover, conditional deletion of vegfr2 
results in reduced osteogenic differentiation (Duan et al., 2015).

MMPS AND TIMPS

Another class of effector protein common to echinoderm and 
vertebrate biomineralization consists of matrix remodeling proteins 
such as matrix metalloproteases (MMPs) and tissue inhibitors 
of metalloproteinases (TIMPs). MMPs constitute a class of 
enzymes that function in the degradation of extracellular matrix 
(ECM) proteins (see review by Rose and Kooyman, 2016). In 
sea urchins, chemical inhibition of MMPs reversibly blocks 
spiculogenesis by PMCs in vivo and in vitro (Roe et  al., 1989; 
Ingersoll and Wilt, 1998). In vertebrates, mmp-13 (collagenase-3) 
is expressed specifically in chondrocytes (Tuckermann et  al., 
2000). Additionally, in vitro studies have shown that silencing 
of mmp-2 by siRNA disrupts chondrogenic differentiation of 
mesenchymal stem cells while treatment with a MMP-2 activator 
stimulates chondrogenesis (Jin et  al., 2007). TIMPs have been 
reported to be  the primary endogenous inhibitors of MMPs 
and are involved in regulating the function of MMPs in many 
systems (Brew and Nagase, 2010). Overexpression of timp-3 in 
mice induces defects in skeletal development and growth (Poulet 
et  al., 2016). In contrast, knockdown of timp-1 results in 
upregulated proliferation of mesenchymal stem cells while delaying 
osteogenic differentiation (Liang et  al., 2019).

SLC26

Many members of the solute carrier (SLC) family of membrane 
transport proteins are differentially expressed in the PMCs 

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Khor and Ettensohn Alx Transcription Factors and Skeletogenesis

Frontiers in Genetics | www.frontiersin.org 9 November 2020 | Volume 11 | Article 569314

(Rafiq et al., 2014; Barsi et al., 2015). In addition, Alx1 directly 
regulates the expression of several members of the SLC5 and 
SLC26 sub-families, including Slc26a5/1 and Slc5a11/2 (Rafiq 
et  al., 2014; Khor et  al., 2019). While there are data pointing 
to SLCs that are essential for echinoderm skeletogenesis, mainly 
Slc4a10 (Hu et  al., 2018) and Slc26a2/7 (Piacentino et  al., 
2016), the functions of the proteins that are directly regulated 
by Alx1 have not been tested. In vertebrates, Slc26a2, a sulfate 
transporter, has been shown to be highly expressed in developing 
and mature cartilage (Haila et  al., 2001). Mice homozygous 
for mutations in Slc26a2 exhibit chondrodysplasia, a condition 
characterized by growth defects and skeletal dysplasia due to 
reduced chondrocyte proliferation (Forlino et al., 2005). Similarly, 
mutations in human Slc26a2 also results in chondrodysplasia 
(Superti-Furga et  al., 1996; Jackson et  al., 2012).

FAM20C

One of the direct targets of sea urchin Alx1 is fam20C, which 
encodes a kinase of the FAM20 (family with sequence 
similarity 20) family (Rafiq et  al., 2014; Khor et  al., 2019). In 
vertebrates, members of this family are highly expressed in 
mineralized tissues, such as teeth and bone (Hao et  al., 2007; 
Wang et  al., 2010a). Fam20C is a secreted kinase responsible 
for the phosphorylation of secreted proteins, many of which 
are known to be  involved in biomineralization (Tagliabracci 
et  al., 2012). Mutations in the human fam20C gene cause 
Raine syndrome, an autosomal recessive disorder characterized 
by defects in bone development, including microcephaly, cleft 
palate, and osteosclerosis (Simpson et al., 2007; Rafaelsen et al., 
2013; Takeyari et  al., 2014; Seidahmed et  al., 2015). In vitro 
mutational analyses suggest that Fam20C is involved in the 
differentiation and mineralization of mouse mesenchymal cells 
(Hao et  al., 2007; Liu et  al., 2017), and fam20C-null mice 
exhibit severe biomineralization defects, such as lesions in 
bones and teeth (Vogel et  al., 2012; Wang et  al., 2012;  
Du et  al., 2015).

OTOPETRIN

Sea urchin Alx1 also provides positive inputs directly into 
otop2L, the single sea urchin ortholog of the vertebrate 
otopetrin genes (Rafiq et al., 2014; Khor et al., 2019). Otopetrins 
are multi-pass transmembrane proteins that function as proton 
channels (Saotome et al., 2019). In vertebrates, these proteins 
play an essential role in regulating the timing, size, and 
shape of the developing otoconia, extracellular calcium 
carbonate biominerals that are required for vestibular functions 
(Hughes et  al., 2004; Sollner et  al., 2004; Kim et  al., 2010). 
During mouse and zebrafish embryogenesis, otop1 is highly 
expressed in the developing sensory epithelium of the ear 
(Hurle et al., 2003; Hughes et al., 2004). In zebrafish, MO-based 
knockdown of Otop1 results in otolith malformations  
(Hughes et  al., 2004; Sollner et  al., 2004). Moreover, otop1 
knockout mice also lack otoconia, a phenotype that has 

been attributed to mis-regulation of intracellular calcium 
levels (Hughes et  al., 2007; Kim et  al., 2010). The function 
of the echinoderm Otop2L protein has not been examined.

ALX GENES AND THE EVOLUTION OF 
DEUTEROSTOME BIOMINERALIZATION

Among present-day deuterostomes, extensive biomineralized 
skeletons are found only in echinoderms and vertebrates. It 
is inherently difficult to reconstruct the underlying evolutionary 
relationships between the skeletogenic programs of these two 
groups, which diverged >600 million years ago (Peterson and 
Eernisse, 2016). It is widely accepted that the ancestral chordate 
possessed only a cartilaginous skeleton (Rychel et  al., 2006; 
Murdock and Donoghue, 2011; Jandzik et  al., 2015; Keating 
et  al., 2018), strongly supporting the view that biomineralized 
skeletons appeared independently in vertebrates and echinoderms, 
and therefore, are not homologous in the strictest sense. This 
does not, of course, resolve the question of whether common 
embryological and/or genetic mechanisms were deployed to 
create a biomineralized skeleton in these two groups; i.e., 
whether skeletogenesis in the two clades is an example of 
“deep homology” (Shubin et  al., 2009). The presence of 
collagenous pharyngeal cartilage in both cephalochordates and 
hemichordates supports the view that this was an ancestral 
feature of deuterostomes that was later lost in echinoderms 
(Rychel and Swalla, 2007; Jandzik et  al., 2015). Moreover, a 
recent analysis of chondrogenesis in protostomes (horseshoe 
crabs and cuttlefish) suggests that a more ancient, SoxE and 
collagen-based chondrogenic gene network was present in the 
last common ancestor of all Bilateria (Tarazona et  al., 2016), 
providing further support for the view that echinoderm ancestors 
at one time also possessed cartilage-forming cells. It should 
be  noted that although there is no evidence for definitive 
cartilage in modern echinoderms, there are mesoderm-derived 
populations of mesenchymal cells that produce connective tissue 
containing fibrillar collagen (Suzuki et  al., 1997; Whittaker 
et  al., 2006; Goh and Holmes, 2017).

The evolutionary relationships among the skeletogenic cell 
lineages of vertebrates that express alx-related genes and the 
alx1-expressing cells of echinoderms are uncertain. With  
respect to echinoderms, considerable evidence supports the 
view that alx1 arose very early in echinoderm evolution through 
gene duplication, relatively quickly acquired a robust, 
biomineralization-related function, and was subsequently 
co-opted into the early embryo in echinoderm taxa that possess 
larval skeletons (echinoids and ophiuroids; Khor and Ettensohn, 
2017; Shashikant et  al., 2018). The biomineralizing cells of the 
ancestral echinoderm, which were likely of mesodermal origins, 
expressed alx1, ets1, erg, vegfr, and other components of a 
core skeletogenic program, as well as an assortment of more 
rapidly evolving biomineralization effector proteins (Gao and 
Davidson, 2008; Dylus et al., 2018; Erkenbrack and Thompson, 
2019; Li et  al., 2020). To draw inferences concerning the 
evolution of alx gene expression and function more deeply 
within Ambulacraria (echinoderms and hemichordates), it will 
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be  important to learn more about the single alx gene of 
hemichordates, including its pattern of expression, gene targets, 
and role in the formation of the small, calcareous skeletal 
elements of adult hemichordates (Cameron and Bishop, 2012) 
and to more precisely determine the embryological origins of 
the alx1-expressing cells of adult echinoderms, which are more 
relevant to the ancestral echinoderm condition than the more 
commonly studied larval forms.

In vertebrates, as noted above, the embryonic lineages of 
cells in the limbs and limb girdles that express alx1-related 
genes have not been mapped precisely, although many of 
these cells are presumably derived from the somatic layer of 
the lateral plate mesoderm, a major source of limb skeletal 
tissue. There is evidence that chondrocytes and osteoblasts 
of the limb are derived from a common, mesenchymal precursor 
cell and that the specialization of these two cell types depends 
upon regulatory functions of sox9 (a member of a small 
number of paralogous, soxE-family genes in vertebrates) and 
other sox genes in the chondrogenic lineage, and runx2 and 
osterix in the osteoblast lineage (Akiyama et al., 2005; Cervantes-
Diaz et  al., 2017; Lefebvre, 2019; Marín-Llera et  al., 2019). 
Because alx-related genes have not been linked directly to 
the regulatory network that underlies limb skeletogenesis, and 
because Sox and Runx proteins are not currently known to 
be  associated with skeleton formation in echinoderms, there 
is presently no obvious similarity between the GRN circuitry 
that controls skeletal development in the vertebrate limb and 
the echinoderm skeleton. As noted above, during limb girdle 
(scapula) development, alx1 is co-regulated by Emx2 and 
Pbx1, but the orthologous echinoderm genes have not been 
studied in detail.

Perhaps the best-characterized cell population in vertebrates 
that employs alx-related genes in biomineralization is the cranial 
neural crest. There is agreement that a definitive neural crest 
is found only in vertebrates, but the evolutionary history of 
this cell population, particularly the origins of the skeletogenic 
(cranial) compartment, remains a subject of much debate 
(Jandzik et  al., 2015; Rothstein et  al., 2018; Cheung et  al., 
2019; York and McCauley, 2020). Like the program of 
skeletogenesis in the limb, the formation of cranial neural 
crest-derived cartilage and bone is believed to progress through 
the specification of a common osteochondral progenitor, with 
important contributions by Sox9 and Runx2  in chondrocyte 
and osteoblast differentiation, respectively (Martik and Bronner, 
2017; Dash and Trainor, 2020). The regulatory inputs into 
alx-family genes in the cranial neural crest are unknown, 
however, and only one direct target (fgf10) has been identified 
(Garg et  al., 2017). Thus, the precise role of alx-related genes 
in the dynamic differentiation program of skeletogenic cranial 
neural crest cells and their connections to the underlying gene 
regulatory circuitry remain to be  elucidated.

As noted above, in jawless vertebrates and cephalochordates, 
the expression patterns of alx-family genes are consistent with 
a possible function in the formation of the cartilaginous, 
pharyngeal skeletons of these animals. A detailed comparison 
of the expression patterns of alx-family genes in lampreys and 
jawed vertebrates has led to the hypothesis that an expansion 

of the domain of alx-expressing cells may have supported the 
expansion of the cranial skeleton during vertebrate evolution 
(Square et al., 2017). With the important caveat that expression 
data are sparse in these taxa and function studies are lacking, 
these observations are consistent with the hypothesis that 
alx-related genes were expressed (at least) in the anterior, 
pharyngeal mesoderm of ancient chordates, in cells that produced 
pharyngeal cartilage (Kaucka and Adameyko, 2019).

A hypothesis that emerges from these comparative studies 
is that a rudimentary, ancestral program of chondrogenesis, 
perhaps deployed in mesenchyme cells derived from embryonic 
mesoderm, was present in the ancestral deuterostome and 
provided a suitable gene regulatory system onto which 
biomineralization-promoting circuitry could be  layered. 
We propose that in echinoderms, gene duplication was followed 
by the neo-functionalization of alx1; i.e., the acquisition of a 
new role in robustly mediating biomineralization, as reflected 
by the direct transcriptional inputs this transcription factor 
provides into a large fraction of biomineralization effector genes 
(Rafiq et al., 2014; Khor et al., 2019). A similar (and presumably 
independent) neo-functionalization may have occurred in 
vertebrates, but the transcriptional targets of vertebrate alx-family 
genes have not been characterized, and therefore, it is not 
known whether they include effectors of biomineralization. 
It should be  noted that possible signals of evolutionary 
conservation between echinoderms and vertebrates in this 
context would likely be  obscured by the well-documented, 
rapid evolution of many biomineralization-related proteins 
(Kawasaki et  al., 2004; Livingston et  al., 2006; Marin et  al., 
2016; McDougall and Degnan, 2018). Presumably, the 
independent duplication of alx-family genes in echinoderms 
and vertebrates initially involved the sharing and/or duplication 
of cis-regulatory elements among paralogs, as indicated by the 
overlapping patterns of expression of paralogous alx-family 
genes in both taxa. The recruitment of duplicated, alx-related 
genes to a biomineralization-related function would likely have 
been facilitated if the ancestral gene was already expressed in 
an embryonic tissue that produced an extensive extracellular 
matrix, a prerequisite for the assembly and growth of biomineral 
(Bolean et  al., 2017; Murshed, 2018). In this regard, it will 
be  valuable to characterize more completely in representative 
deuterostomes the cell lineages that express alx-family genes 
and to better reconstruct the evolutionary relationships among 
those cell lineages.
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