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The unprecedented proliferation of recent large-scale and multi-omics databases of
cancers has given us many new insights into genomic and epigenomic deregulation
in cancer discovery in general. However, we wonder whether or not there exists a
systematic connection between copy number aberrations (CNA) and methylation (MET)?
If so, what is the role of this connection in breast cancer (BRCA) tumorigenesis and
progression? At the same time, the PAM50 intrinsic subtypes of BRCA have gained
the most attention from BRCA experts. However, this classification system manifests
its weaknesses including low accuracy as well as a possible lack of association with
biological phenotypes, and even further investigations on their clinical utility were still
needed. In this study, we performed an integrative analysis of three-omics profiles,
CNA, MET, and mRNA expression, in two BRCA patient cohorts (one for discovery and
another for validation) – to elucidate those complicated relationships. To this purpose,
we first established a set of CNAcor and METcor genes, which had CNA and MET levels
significantly correlated (and anti-correlated) with their corresponding expression levels,
respectively. Next, to revisit the current classification of BRCA, we performed single
and integrated clustering analyses using our clustering method PINSPlus. We then
discovered two biologically distinct subgroups that could be an improved and refined
classification system for breast cancer patients, which can be validated by a third-party
data. Further studies were then performed and realized each-subgroup-specific genes
and different interactions between each of the two identified subgroups with the age
factor. These findings can show promise as diagnostic and prognostic values in BRCA,
and a potential alternative to the PAM50 intrinsic subtypes in the future.

Keywords: breast cancer, PAM50 subtypes, multi-omics, molecular subtypes, biomolecular markers

INTRODUCTION

The unprecedented proliferation of recent large-scale and multi-omics databases of cancers has
given us many new insights into genomic and epigenomic deregulation in cancer discovery in
general (Rappoport and Shamir, 2018). Accordingly, DNA copy number aberration (CNA) or
mutations, resulting in genomic alteration, play vital roles in cancer occurrence and progression
(Kim et al., 2018); meanwhile, DNA methylation (MET), resulting in epigenetic regulation of the
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cancer genome, is thought to make considerable contributions
to the heterogeneity of cancer (Yang et al., 2019). Especially,
with a highly heterogeneous disease like breast cancer (BRCA),
it is clearly no exception (Luen et al., 2016; Karsli-Ceppioglu
et al., 2017). Specifically, CNA profiling using CGH and SNP
microarrays in prior studies has revealed hot spots of CNA
in cancer genomes (Russnes et al., 2010; Huang et al., 2013;
Endesfelder et al., 2014), such as, the frequent copy number
gains have involved chromosomes 1q, 6q, 8q, 11q, 16q, 17q,
19, and 20q, whereas common deletion of copy number
at 6q, 16q, 17p, and 22q in BRCA (Richard et al., 2000).
Several oncogenes and tumor suppressor genes such as HER2
(also known as ERBB2), c-Myc, CCND1, and TP53 have been
altered by CNA and exerted their key regulatory functions
in both progression and prognosis of BRCA (Richard et al.,
2000). In addition, previous studies have found several mutated
epigenetic genes, partaking in establishing and maintaining
epigenetic patterns, such as MLL3 or MLL2 mutations in
BRCA (Stephens et al., 2012), or a recurrent epigenetic
inactivation of BRCA1 by epigenetic mechanisms in sporadic
BRCA (Dobrovic and Simpfendorfer, 1997; Rice et al., 2000).

However, we wonder whether or not there exists a systematic
connection between CNA and MET? And if so, what is the role
of this connection in BRCA tumorigenesis and progression? In
addition, the PAM50 intrinsic subtypes of BRCA (Parker et al.,
2009) [Luminal A (LumA), Luminal B (LumB), Basal-like, HER2
over-expressed (HER2), and Normal-like], which are developed
based on a 50-gene mRNA expression profile, have gained the
most attention from BRCA experts. However, this classification
system manifests its weaknesses including low accuracy as well
as a possible lack of association with biological phenotypes,
and even further investigations on their clinical utility were still
needed (Untch et al., 2015). Looking back to the past, there are
many publications attempting to reclassify breast tumors based
on other omics data types such as miRNA arrays (Blenkiron
et al., 2007; Bhattacharyya et al., 2015), copy number variations
(Andre et al., 2009), or integration of different omics datasets
(Shen et al., 2009; Curtis et al., 2012). Each of them has proposed
various classification systems that have various agreements with
the traditional classification, but collectively have implication for
the existence of finer patient subgroups than the classical PAM50
subtypes (Dawson et al., 2013). Also, previous similar works
such as Xia Y. et al. (2019) or Shi et al. (2015), focusing only
on correlation analysis between CNA and mRNA expression, or
de Almeida et al. (2019), focusing only on correlation analysis
between MET and mRNA expression, discovered molecular
mechanisms, potential biomarkers hidden in BRCA. Yet, a
correlation between CNA, MET and corresponding mRNA,
and an integrative computational approach using the three
profiles (CNA, MET, and mRNA) was not ascertained to
stratify BRCA patients.

In this study, we employed three-omics profiles, including
CNA, MET, and mRNA expression levels in a cohort of BRCA
patients, which were part of the TCGA project (Cancer Genome
Atlas Research Network et al., 2013) and downloaded by
cBioPortal (Cerami et al., 2012; Gao et al., 2013) to elucidate those
complicated relationships. To this purpose, we first established

a set of CNAcor and METcor genes, which were the CNA
and MET ones significantly correlated with their corresponding
expression levels, respectively, indicating the co-dysregulation
of transcriptomics by CNA and MET aberrations. Next, to
revisit the current classification of BRCA, we envisioned our
classification system in the context of multi-omics, in which the
first omics dataset was the mRNA expression, which was the
only phenotype created the PAM50 intrinsic subtypes, combining
with the later omics datasets including the profiles of CNAcor
and METcor (Figure 1). As a result, single and integrated
clustering analyses using our clustering tool PINSPlus (Nguyen
et al., 2017, 2018) discovered two biologically distinct subgroups
that could be as an improved and refined classification system
for BRCA patients.

MATERIALS AND METHODS

Materials
The two breast cancer cohorts [i.e., discovery (Cancer Genome
Atlas Network, 2012) and validation (Cancer Genome Atlas
Research Network et al., 2013)] used in our analysis are described
in Table 1. These datasets were part of the TCGA project (Cancer
Genome Atlas Research Network et al., 2013) and downloaded by
cBioPortal (Cerami et al., 2012; Gao et al., 2013).

Data Acquisition and Preprocessing
The preprocessing strategies for three profiles (i.e., mRNA, CNA,
and MET) from the discovery data (Cancer Genome Atlas
Network, 2012) were implemented as below. First, we removed
patients whose gender was male or unknown because they were
minor cases. Second, we matched the sample labels shared among
the three profiles and clinical data and obtained 292 matched
patients. Third, we filtered out genes with more than 50% missing
values and then imputed the remaining missing values using
the k-nearest neighbor algorithm (Batista and Monard, 2002)
that is implemented in the function data.imputation function
of the CancerSubtypes Bioconductor package (version 1.14.0)
(Xu et al., 2017).

Identification and Examination of the
Relationship of CNAcor and METcor
Genes
First, we calculated the Pearson’s correlation coefficient between
MET and mRNA, as well as between CNA and mRNA
using the matched data. This analysis helped to examine the
global effects of genomics and/or epigenomic aberrations on
transcriptomics changes. All significant correlation coefficients
r (P-value ≤ 0.05) were then transformed to Z values using
Fisher’s Z-transformation: Z = 0.5 ln[(1+r)/(1−r]). Second,
we visualized the overall distribution of the resulting Z
values that represent the relationship between MET-mRNA
and CNA-mRNA. Third, the significance of the skewness
for the Z distribution was further interrogated using the
D’Agostino test (Timothy, 2017). The skewness overall indicates
whether MET/CNA is correlated with mRNA. Considering those
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FIGURE 1 | Analysis protocol. First, CNA, MET, and mRNA datasets were inputted to the function “geneCor” to identify a list of CNAcor and METcor genes. Then,
we detected prognostic subgroups for individual CNAcor and METcor datasets, and a combination of CNAcor + METcor + mRNA through single and integrated
analyses using PINPlus, respectively. Next, several analysis results (i.e., relationships between CNAcor or METcor with their corresponding mRNA, association of
CNAcor or METcor with overall survival (OS) of BRCA patients, integrative clustering analysis, and comparison between the PAM50 subtypes and our integrative
subgroups) were validated by an independent dataset. Finally, we examined the relationships between our classification system and the PAM50 subtypes before
characterizing our subgroups using the R package GeneCluster. hclust, hierarchical clustering method.

TABLE 1 | Description of two breast cancer cohorts.

Omics data Platform Description

Discovery data (Cancer Genome
Atlas Network, 2012)

mRNA Agilent microarray A continuous matrix whose columns (the number of samples) are 526 samples
and rows (the number of genes) are 5,961 genes.

CNA Affymetrix SNP6 A continuous matrix whose columns (the number of samples) are 778 samples
and rows (the number of genes) are 20,871 genes.

MET Illumina Infinium
HumanMethylation 27 platform

A continuous matrix whose columns (the number of samples) are 311 samples
and rows (the number of genes) are 12,328 genes.

Clinical data Samples: 825
Overall survival (OS) status was defined as overall survival status (deceased or
living), whereas OS time was defined as the time of diagnosis to the time of
death or last follow up (unit: month). The follow-up time OS was truncated to
234 months.

Validation data (Cancer Genome
Atlas Research Network et al., 2013)

mRNA Agilent microarray A continuous matrix whose columns (the number of samples) are 529 samples
and rows (the number of genes) are 16,557 genes.

CNA Affymetrix SNP6 A continuous matrix whose columns (the number of samples) are 1,080 samples
and rows (the number of genes) are 24,776 genes.

MET Illumina Infinium
HumanMethylation 450 platform

A continuous matrix whose columns (the number of samples) are 778 samples
and rows (the number of genes) are 16,474 genes.

Clinical data Samples: 1,108
The follow-up time OS was truncated to 283 months.

investigations conducted on examining the relationships between
MET or CNA and corresponding mRNA data have been crucial
in cancer researches, we now integratively developed the R
package “geneCor”1 to perform the three above-mentioned tasks

1https://github.com/huynguyen250896/geneCor

at once. Finally, due to a large number of genes in each of
the two profiles, we only selected genes significantly associated
with a prognostic value [i.e., OS of patients; P-value ≤ 0.05,
logrank test (Bland and Altman, 2004)] using the function
“FSbyCOX” in the package CancerSubtypes (version 1.14.0)
(Xu et al., 2017).
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Expression of CNAcor and METcor
Genes With OS in BRCA
We independently related the expression of each CNAcor gene
and each METcor gene to the OS of patients as described
in a previous publication (Jin et al., 2019). To this end, for
CNAcor or METcor genes, the median expression of each one
was computed across the patients, then we received two groups of
the patients: patients having the expression of genes was greater
than the median value assigned to the first group “up-regulation”;
meanwhile, the second group “down-regulation” dedicated to
patients having the expression of genes was less than the median
values. Next, we performed univariate Cox regression analysis
(Andersen and Gill, 1982) to observe the association between
the expression levels of individual CNAcor or METcor genes and
survival rates of the patients. Finally, hazard ratios (HR) with 95%
confidence intervals (95% CI), P-values [logrank test (Bland and
Altman, 2004)] and Q-values [Benjamini-Hochberg procedure
(Benjamini and Hochberg, 1995)] were reported. Genes were
defined as significantly associated with OS if P-value ≤ 0.05 and
Q-value ≤ 0.05.

Single and Integrated Analyses
In previous works (Nguyen et al., 2017, 2018), we introduced a
clustering method called PINSPlus (version 2.0.3), which is a fast,
powerful and state-of-the-art tool, confirmedly outperformed
many other advanced approaches in either single or integrated
analysis of multi-omics profiles. For the setting of both single
and integrated clustering analyses, the number of clusters k
was set to be between 2 and 10. Otherwise, for compatibility
with the selected clustering method in the PAM50 subtypes:
hierarchical clustering method (Lance and Williams, 1967), we
chose this clustering method for the integrative clustering task
[“k-means” (Forgy, 1965) is default clustering method]. The
remaining parameters were left at default for reproducibility
as well as consistency with a selected clustering method (i.e.,
k-means) in a single analysis in Netanely et al. (2016) paper that
is convenient to compare the results.

Identification of Subgroup-Specific
Genes and Enrichment Analysis
A previous study defined subtype-specific genes are the ones
mutated mainly in the samples assigned to one single subtype
than in the other subtypes (Cyll et al., 2017). Subsequently, those
genes are features that reflect the difference between subgroups
of heterogeneous cancers (Alizadeh et al., 2015; Cyll et al., 2017).
To computationally detect subtype-specific genes, we built the
R package GeneCluster2 that consulted the idea of the reference
paper (Shen et al., 2012). In brief, given a gene from a list of
genes of interest, it will be specifically distributed to either of
the identified subgroups based on the mean values (e.g., CNA
changes, MET changes, and expression levels). Then, a gene was
considered as a subtype-specific one if P-value ≤ 0.05 using the
one-way ANOVA test (Cancer Genome Atlas Research Network
et al., 2013).

2https://github.com/huynguyen250896/GeneCluster

Next, we performed the enrichment analysis on the set
of identified subtype-specific gene sets to assess the clinical
relevance of the sample subgroups using the DAVID tool (da
Huang et al., 2009a,b) (version 6.8)3. The significance of the terms
and pathways was computed by the Fisher’s exact P-value (Cancer
Genome Atlas Research Network et al., 2013) (the smaller the
P-value, the more significant).

Validation of the Discovery Results
We validated several analysis results using a third-party dataset
of BRCA from TCGA (Cancer Genome Atlas Research Network
et al., 2013). The preprocessing process is the same as above
described for the discovery data apart from the removal of 30
pairs of genes, in which each pair shared the same name with
each other in mRNA expression data owing to the lack of essential
information to retain them. Besides, we also matched the sample
labels among the three profiles and clinical data, and obtained 202
matched patients at the end of this process.

In addition, we also validated the above results of association
of CNAcor or METcor with OS (i.e., sub-section “Expression of
CNAcor and METcor Genes With OS in BRCA”) by using the
KMplot website4 (Györffy et al., 2010).

RESULTS

Identification and Examination of the
Distribution of CNAcor and METcor
Genes
A total of 3,772 CNAcor genes and 2,118 METcor genes were
identified by the R package “geneCor” (See Supplementary
Table S1). As shown in Figure 2A, the distribution of CNAcor
genes is significantly skewed to the right (skewness = 0.295,
P-value = 1.879 × 10−13, D’Agostino test), suggesting that
CNA genes are significantly correlated with gene expression.
In contrast, the distribution of METcor genes are significantly
skewed to the left (skewness = −0.211, P-value = 4.312 × 10−5,
D’Agostino test), suggesting that MET genes are significantly
anti-correlated with gene expression. Next, after performing the
association of genes in each of two above sets with OS of patients
to reduce the large quantity of CNAcor and METcor genes, a total
of 521 CNAcor genes and 184 METcor genes (P-value ≤ 0.05
using logrank test) were preserved for downstream analyses.
Besides, we found that there was a weak dependency between
CNAcor and METcor since only 10 genes were intersected
between these two sets (Figure 2B).

CNAcor and METcor Genes With OS in
BRCA
Univariate survival analysis was performed to assess the
association between the expression levels of each gene from each
of the two sets with OS of patients; then, we obtained 47 CNAcor
genes and 13 METcor genes related to prognostic value in BRCA

3https://david.ncifcrf.gov/home.jsp
4http://kmplot.com/analysis/index.php?p=service&cancer=breast
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FIGURE 2 | Characteristics of CNAcor and METcor genes in BRCA. (A) The distributions of the Z-scores that represent the correlation between MET or CNA with
corresponding mRNA. (B) Intersection between the number of CNAcor genes and the number of METcor genes. CNA, DNA copy-number aberration and MET,
epigenetic DNA methylation.

(P-value ≤ 0.05 and Q-value ≤ 0.05). Specifically, 28 CNAcor
genes and four METcor genes with higher expression levels, and
19 CNAcor genes and nine METcor genes with lower expression
levels had a significant association with poor outcomes. More
details can be found in Supplementary Table S2. Next, after
validating these results by the KMplot website, we observed five of
47 CNAcor genes including CCNT1, MGAT5B, GNA13, KPNA2,
and BSDC1, and two of 13 METcor genes including CAT and
SLC25A5 were computationally validated prognostic markers
(Table 2 and Supplementary Figure S1). This analysis indicated
a relationship between some CNAcor and METcor genes with
the pathophysiology of BRCA, and it could be of importance to
predict the survival rates or severity of patients with BRCA.

Single and Integrated – Multi-Omics Data
Analyses
PINSPlus was employed to do the clustering task for CNAcor
and METcor gene sets with cluster number k set to be between
2 and 10. All the settings of single and integrated analyses were
processed as described in the section “Materials and Methods.”
To this end, for single clustering results, determined k for
each profile: CNA, k = 2 (AUC = 0.980; Figure 3A/left); MET,
k = 2 (AUC = 0.957; Figure 3A/right). Interestingly, the optimal

TABLE 2 | Computationally validated associations of CNAcor or METcor with OS
of BRCA patients.

Gene HR (95% CI) P-value Q-value

CNAcor CCNT1 3.266(1.539–6.930) 0.001 0.018

MGAT5B 0.336(0.162–0.700) 0.002 0.021

GNA13 3.195(1.427–7.157) 0.003 0.018

KPNA2 2.428(1.192–4.945) 0.014 0.031

BSDC1 0.441(0.219–0.889) 0.021 0.042

METcor CAT 0.451(0.222–0.913) 0.025 0.036

SLC25A5 2.165(1.073–4.368) 0.031 0.036

HR, Hazard ratio; 95% CI, 95% confidence interval.

number of patient subgroups for each profile was both two,
and they were significantly overlapped with each other (P-
value = 2.707 × 10−12; χ2 test; Figure 3B), more strengthening
our belief on the existence of the related regulation of CNAcor
and METcor in BRCA. We further implemented survival analysis
for each identified subgroup by CNAcor and METcor, and
revealed that there were statistically significant differences in OS
in the two subgroups of CNAcor dataset (P-value = 4 × 10−4;
Figure 3C/left) and METcor dataset (P-value = 1 × 10−4;
Figure 3C/right).

Next, we used PINSPlus to perform the integrated clustering
analysis for the genomic data regarding CNAcor, METcor and
mRNA gene sets with cluster number k from 2 to 10. As a
result, the best value k = 2 (AUC = 0.987; Figure 3D), two
subgroups IntCl1 (n = 230) and IntCl2 (n = 62), was detected,
consistent with the single clustering results for individual CNA
and MET datasets, respectively (P-value = 1.078 × 10−12 and
5.794 × 10−26, respectively; χ2 test; Figure 3E). In addition,
the survival analysis revealed significantly different prognostic
outcomes between the two subgroups, in which the patients
in the IntCl2 had the worse survival rates than those in the
IntCl1 (HR = 4.248; 95% CI = 1.833–9.847; P-value = 0.002;
logrank test; Figure 3F). Obviously, the P-values ≤ 0.05 shown
in Figures 3C,F indicated that both single and integrative
classification strategies using PINSPlus successfully found two
distinct prognostic subgroups significantly correlated with BRCA
patient outcomes. The single and integrated clustering results
were visualized as heatmaps in Figure 3G. Also, cohort
descriptions comprising age, tumor stage, metastasis status, ER
status, PR status, number of positive lymph nodes, intrinsic
PAM50 subtypes, and HER2 status for the BRCA patients
reviewed between the IntCl1 and IntCl2 were provided in
Supplementary Table S3.

Validation of the Analysis Results
To ensure that our findings were robust and consistent, we
applied the same strategy to a third-party BRCA dataset.
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FIGURE 3 | Identification of BRCA molecular subgroups using individual CNAcor and METcor genes for single clustering and CNAcor, METcor, and mRNA for
integrative clustering. (A,D) AUC values obtained for each value of k. The optimal k is the value has the highest AUC value. (A-left, A-right, D) are the results of
CNAcor clustering, METcor clustering, and integrated clustering, respectively. (B) Overlap test between subgroups of CNAcor and METcor clustering. (E) Overlap
test between IntCl subgroups and CNAcor (left), METcor (right). (C,F) Kaplan-Meier survival curves for CNAcor subgroups (C-left), METcor subgroups (C-right), and
(F) integrated subgroups. (G) Heatmaps that show the expression patterns of CNAcor subgroups (mid) and METcor subgroups (bottom) from integrated analysis by
PINSPlus. The colored bars indicate the patient subgroups identified by single clustering based on CNAcor (CNAcorCl; mid), METcor (METcorCl; bottom), and
integrated clustering (IntCl; top).

Consistent with the earlier analysis results, in the validation
data, a total of 10,379 CNAcor genes and 9,471 METcor genes
were identified by the R package “geneCor.” We also realized
that the Z-score’s distribution of correlation coefficients between
CNA and the corresponding mRNA was significantly skewed
to the right (skewness = 0.225, P-value = < 2.2 × 10−16,
D’Agostino test), whereas between MET and the corresponding
mRNA was significantly skewed to the left (skewness = −0.260,
P-value = < 2.2 × 10−16, D’Agostino test) (Figure 4A).
Subsequently, we only retained 509 CNAcor and 590 METcor
gene sets significantly associated with prognostic value using the
same analysis protocol, and only 52 overlaps were recorded in
these two sets (Figure 4B).

For clustering concern, we also determined that the two
number of integrated subgroups was the best (AUC = 0.917;
Figure 4C), in which the subgroup 2 had significantly poorer
outcomes than the subgroup 1 in OS (HR = 3.279; 95%
CI = 1.532–7.019; P-value = 0.004; logrank test; Figure 4D).
Besides, the integrated clustering result were plotted as the
heatmap in Figure 4E. This validation process proved that the
strategy employed in the study is most likely to be efficient
in prognostic subgroup pinpointing with various genomic and
epigenomic regulation on the basis of CNAcor and METcor. In
other words, the profile of CNAcor and METcor gene sets may

help identify prognostic molecular subgroups on independent
patient cohorts and data platforms.

Molecular Characteristics of Integrated
Subgroups
Comparing Resulting Subgroups to PAM50 Labels
Next, we hypothesized that our two subgroups, the IntCl1
and IntCl2, had a closed relationship with the PAM50 label
classes, and attempted to link the resulting partitions to these
five intrinsic subtypes. Overall, the expression phenotype of the
tumors in the IntCl1 was predominantly LumA (41.9%), followed
by LumB (22.3%), basal-like (21.4%), HER2 (13.1%), and all
of the normal class (1.3%), whereas the expression phenotype
of the IntCl2 composed of LumB, LumA, HER2, and Basal-
like, with the occurrence rates of 42.4%, 27.1%, 22.0%, and
8.5%, respectively (Figure 5A). These results suggest that the
traditional classification does not capture well the variability
among the BRCA samples, implying the finer subgroups could
be undiscovered, possibly having clinical meaning.

The Integrative Clustering Predicts OS of BRCA
Patients Better Than PAM50
We next sought to further interrogate the variability
among the patients with BRCA by performing the survival
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FIGURE 4 | Validation results using a third-party BRCA data. (A) Z-score distributions of correlation between MET or CNA with corresponding mRNA.
(B) Intersection between CNAcor genes and METcor genes. (C) The corresponding AUC values for each value k. The highest AUC value is for the value k = 2.
(D) Kaplan-Meier survival curves for integrated subgroups. (E) Heatmaps that shows the expression patterns of CNAcor subgroups (mid) and METcor subgroups
(bottom) from integrated analysis by PINSPlus.

FIGURE 5 | Comparison of the PAM50 subtypes and the integrative subtypes, and description of age-related risks of BRCA patients in each integrative subtype.
(A) Distribution of the PAM50 intrinsic subtypes between the two IntCl. (B) Kaplan-Mayer survival curve for the PAM50 labels in the discovery data. (C) Kaplan-Mayer
survival curve for the PAM50 labels in the validation data. (D) Age distribution of women in the discovery data. (E) Kaplan-Meier survival curves of patients in two age
groups in the identified subgroups.

analysis on the PAM50 classes. Surprisingly, comparison of
Figures 3F, 5B for the discovery data and of Figures 4D, 5C
for the validation data showed that the integrative clustering
outperformed the PAM50 scheme in term of survival rates
of the patients with BRCA, in which the patients in the

IntCl1 had a significantly better survival probability than
their counterparts in the IntCl2, with 85.05% survival
at 5 years. According to this result, the weakness of
Parker et al. (2009) classification system is revealed
clearly from an integrated clustering analysis perspective,
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possibly due to the creation based on one single mRNA
expression data.

Identification of Subgroup-Specific Genes and
Enrichment Analysis Using DAVID Tool
To that end, we determined three lists of subgroup-specific
genes in either of the integrative clustering, which was built
based on mean mRNA expression levels (IntCl1: 1659 genes,
intCl2: 1329 genes; Supplementary Table S4), mean methylation
events (IntCl1: 53 genes, IntCl2: 51 genes; Supplementary
Table S5), mean copy number changes (IntCl1: 149 genes,
intCl2: 99 genes; Supplementary Table S6), and the results
of the enrichment analysis using the DAVID tool were shown
in Supplementary Tables S7, S8. From that, the major
molecular properties for each of the integrative subgroups
were revealed. The most notable feature of the IntCl1 was
the overexpression of gene MTF and a substantial number of
genes assigned to the CD gene family (CD1c, CD22, CD58,
CD82, CD93, CD96, CD160, and CD180); frequent copy-
number deletion of genes MYOCD, RICH2, SAT2, and ZNF18;
hypermethylation of genes SLC39A4, MAGEA10, UCP3,
LGI4, and MYBPC3; and was enriched most in mitochondrial
membrane, structural constituent of ribosome by METcor genes
(Supplementary Table S7), and intracellular part, cytoplasmic
side of plasma membrane, heterocyclic compound binding
by CNAcor genes (Supplementary Table S8). The IntCl2 was
characterized by frequent copy-number amplification of genes
TUBD1, RPS6KB1, TMEM49, and PTRH2; hypermethylation
of genes ALS2CR11, FAM89A, PTF1A, and GIPC2; and was
related most to development processes, single-multicellular
organism process by METcor genes (Supplementary
Table S7), and intracellular, catalytic activity by CNAcor
genes (Supplementary Table S8).

Then, we strived to investigate further molecular events
behind the two identified subgroups. In the IntCl1, BRCA
samples had homogeneity of genes assigned to the CD gene
family related closely to various immune processes (Janeway
et al., 2001). A large number of overexpressed genes were
highly associated with the B-cell receptor (CD22), or the T-cell
receptor (CD40 and CD45/PTPRC) and the upstream part of its
signaling pathway (LAT, LCP2, NCK1, FOS, MAP3K14, PAK4,
and MAP3K8) (Ogata et al., 1999). Interestingly, a simultaneous
association of the elevated expression level of several genes
with T-cell and natural killer-mediated cytotoxic activities was
seen (TNF, LCP2, NFATC1, and PIK3CD) (Ogata et al., 1999).
We also observed that several overexpressed immune-receptor-
related genes went along with several overexpressed chemokine
genes (CXCL1, CXCL2, CXCL3, and CCL21). The highest
expressed gene among IntCl1-specific genes in Supplementary
Table S4 was MTF1 (ranked by mean expression value), whose
mechanism included the regulation of the proper immune
response (Grzywacz et al., 2015). For the IntCl2, many
IntCl2-specific genes were enriched most in the development
processes (Supplementary Table S7). Surprisingly, we continued
to perform the same analyses above in the validation data
and gained consistent results. More specifically, a list of
3993 IntCl1-specific EXP genes was shown in Supplementary

Table S9, including a large number of genes belonging to the CD
gene family. In contrast, IntCl2-specific genes were still closely
related to development processes (Supplementary Table S10).
Also, in a previous study (Xia Y. et al., 2019), the authors
built Elastic Net prediction models to identify gene signatures
as well as predict their subtype specificities, and realized that
CD8 T-cell signature (Iglesia et al., 2016) had a validated
association with Basal-like subtype-specific genes, potentially
implying immunotherapy may be applicable to BRCA Basal-
like samples (Xia Y. et al., 2019). As shown in Figure 5A, the
Basal-like subtype was mainly distributed to the IntCl1 (21.4%)
and also related to the immune system. This consistent finding
could be a potential interpretation for why IntCl1 has associated
with the immune system as well as a useful recommendation
for oncologists to optimally select appropriate therapies for the
IntCl1-assigned patients.

Finally, we sought to compare our two lists of subgroup-
specific genes, related to genomic alterations (Supplementary
Tables S4, S6), with the most widely used DNA-based gene
panel Foundation One, which has been having 313 genes
(accessed on Aug 13, 2020) being selected as cancer-related and
reported to play central roles in tumorigenesis. As a result, we
observed 34 subgroup-specific expression genes (bold red text,
Supplementary Table S4) and four subgroup-specific CNAcor
genes (bold red text, Supplementary Table S6) appeared in the
gene panel. These results could clinically strengthen our findings
on the association between lists of subgroup-specific genes with
tumorigenesis in BRCA.

Prognostic Factor Identification
We also investigated the distribution of the initial diagnosis ages
and the survival time of the patients in each cancer subgroup.
As shown in Table 3, women of 58 or older had been at higher
risk of having BRCA. Besides, we can see that the average
survival time was 17.8 and 31.8 months in the IntCl2 and
IntCl1, respectively. This result indeed demonstrated that we
could totally anticipate the OS of patients between these two
integrative subgroups. On top of that, the patients in the IntCl1
group an average initial diagnosis age and survival time of
58.6 years and 31.8 months, respectively, whereas in the IntCl2
group, the average initial diagnosis age was 64.8 years (relatively
6 years older than that of the IntCl1 group) and the average
survival time was only 17.8 months. This may show that different
integrative subgroups possess immensely different age-related
risks and survival rates. To more clearly observe these risks in
each integrative subgroup, the patients assigned to each subgroup
were divided into two groups at 65-years threshold (peak in age
distribution in Figure 5D), which meant having two age groups:
non-old (age ≤65) and old (age >65).

TABLE 3 | Average diagnosis ages and survival time of the BRCA patients in the
integrative subgroups.

Subgroups IntCl1 IntCl2

Average diagnosis age (year) 58.604 64.774

Average survival time (month) 31.772 17.826
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We performed survival analyses on these age groups in each
subgroup. As pictured in Figure 5E, the two age groups had
a significant survival difference in the IntCl1 (P-value = 0.049;
logrank test; Figure 5E/left); whereas, in the IntCl2, there
was not a statistically significant difference in the survival
rates between two age groups (P-value = 0.372; logrank test;
Figure 5E/right). This indicated that the age factor might
differently affect the ability to predict the survival probability in
different molecular subgroups.

Regarding the results from Figure 5E, we realized that there
existed different interactions between patients’ age and each
of the two subgroups. Firstly, we observed the statistically
significant difference between two age groups with regard to
patient outcomes in the IntCl1, possibly owing to immune-
related genes. Indeed, many previous studies were of interest
to the interaction between the immune system and age factor
in BRCA (Fuentes et al., 2017; Li et al., 2020; Xu et al., 2020).
Especially, Li et al. (2020) indicated that there was a positive
correlation of aging with i) the lower median immune/stromal
scores and ii) the lower OS of BRCA patients. In contrast, an
insignificant correlation of the IntCl2’s patient survival with age
factor was monitored. Further performing correlation analysis of
the IntCl2 with other clinical features in terms of survival rates,
all of them were statistically insignificant again (Supplementary
Figure S2). One potential explanation might be due to the small
number of patients in this subgroup (i.e., 62 BRCA patients).

CONCLUSION AND DISCUSSION

The unprecedented proliferation of recent large-scale and multi-
omics databases of cancers provides numerous new insights
into genomic and epigenomic dysregulation in cancer discovery
(Rappoport and Shamir, 2018). Publicly available databases
like TCGA, METABRIC, or GEO, which are common in the
cancer research community, help better understand tumor
heterogeneity, detect biomarker genes, and define hidden
molecular mechanisms in multi-omics research (Xia Q. et al.,
2019). Moreover, lines of previous evidence indicate notable
relationships between CNA and mRNA, such as there is a
high association of CNA with the development and progression
of cancers by regulating gene expression level (Huang et al.,
2017; Samulin Erdem et al., 2017; Zhou et al., 2017; Gut et al.,
2018), as well as the similar regulatory associations between
MET and mRNA (Herman and Baylin, 2003; Shen and Laird,
2013). Even a poor grasp of the additional biological complexity
of breast tumors neglected at the expression level can be
revealed at the DNA methylation level, possibly resulting in
finer subgroups with clinical meaning (Rønneberg et al., 2011).
With these concerns in mind, they motivate us to discover
the relationships among the three pillars (mRNA, CNA, and
MET) in BRCA, as well as compare our classification system to
the PAM50 group.

In this study, we first used 292 BRCA patients in the
TCGA database to establish CNAcor and METcor gene
sets by computing the correlation of CNA and MET with
their corresponding mRNA using the function “geneCor.”

Subsequently, biomarker genes were detected, in which five
CNAcor genes and two METcor genes were computationally
validated prognostic markers following the recommendation
of the KMplot dataset. By integrating three datasets mRNA,
CNAcor, and METcor using the clustering tool PINPlus, we
were able to efficiently and successfully stratify BRCA patients
into two subgroups (IntCl1 and IntCl2) that reflected distinct
molecular characteristics and their significant survival differences
as well. Our findings were then tested on an independent
dataset for validation.

For the molecular features of either of the integrative
subgroups, a comparison of our integrative subgroups and
the PAM50 scheme was implemented. Our analysis showed
that discrimination among five PAM50 labels was unoptimistic.
Fittingly, in agreement with (Netanely et al., 2016), we also found
that two LumA and LumB label classes are distributed greatly
into the two integrative subgroups. Moreover, also consistent
with our result, the expression phenotype of LumA is the best
prognosis subtype than the remaining PAM50 classes; however,
when the author group of Dir Netanely (Netanely et al., 2016)
reclusters these two subtypes, they reveal that LumA samples
are divided into two separate subgroups whose outcomes of
the BRCA patients are different significantly. Remarkably, one
of the properties of the IntCl1 was a homogenous normal-
like subgroup. The fact that the normal-like label is suspected
as an artifact in the PAM50 subtypes, and this finding raises
the possibility that we could exclude this artifact, although
further studies are required. Furthermore, we proposed the tool
“GeneCluster” in order to computationally explore subgroup-
specific genes for each of the integrative subgroups. As a
result, the IntCl1 exhibits distinct overexpression of immune-
related genes, whereas the display of the IntCl2 is distinct
hypermethylation of developmental genes.

Next, we further investigate molecular events behind the two
subgroups as well as the distribution of the PAM50 subtypes
within the two with regard to the CNA recurrent. As shown
in Supplementary Figure S3, there is a positive relationship
between the percentage of CNA burden category and the
number of patients assigned to the IntCl2 (conversely, a negative
relationship with the IntCl1). Interestingly, when linking these
with the result in Figure 5A, a consistent finding is even reported
between our work with previous work (Bland and Altman, 2004).
Specifically, when an increase in the CNA burden category
within the subgroups happens, it will lead to a rise in the
incidence of the Luminal B label and a decrease in the rate of
the Normal-like label. These results are a potential explanation
of why a characteristic of the IntCl1 is the homogeneity of
Normal-like subtype as well as a different distribution of the
Luminal A and Luminal B label classes. Then, we try to fit the
relationship between the identified subgroups with CNA and
MET data across BRCA patients using a linear regression model.
Consequently, we observed an insignificantly negative coefficient
(i.e., coeff = −0.43, P-value = 0.07) for CNA and a significantly
positive coefficient (i.e., coeff = 1.69, P-value = 7.65 × 10−07)
for MET. In other words, this result indicates the relationship
between the identified subgroups with CNA and MET data
cannot be simply fitted by the linear regression model. That is
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the reason why our previous method PINSPlus (Nguyen et al.,
2017, 2018) non-linearly integrates multiple -omics data for
cancer subtyping. Furthermore, we compare the CNA burden
between the two identified subgroups using t-Test (Two-Sample
Assuming Unequal Variances). As a result, mean of CNA burden
of the IntCl1 group (i.e., 0.11) is significantly lesser than that of
the IntCl2 group (i.e., 0.16) (P-value < 0.01).

Last, our classification system differentiates amongst other
papers from the selection of the clustering method in order
to reclassify the BRCA patients. More specifically, we all know
that the PAM50 scheme is initially advanced from Perou et al.
(2000) classification with the hierarchical clustering method for
mRNA expression data. Meanwhile, Mathews et al. (2019) used
the topological data analysis or Netanely et al. (2016) used the
k-means method, and so on, which help unveil new insights
into BRCA patient re-classification; however, the papers use
different clustering methods rather than using the hierarchical
clustering method to subtype patients. When comparing the
subtypes resulted from evaluated methods with subtypes from
PAM50, it is rather difficult to determine if the markers or the
method used help to improve the subtyping results. In this study,
we used the same clustering method, i.e., hierarchical clustering,
but in the background of a more advanced tool and under
integrated analysis perspective. Clearly, our classification system
is finer than the PAM50 groups with regard to survival probability
estimation relying on integrated multi-omics implementation.
In contrast, a more advanced tool like PINSPlus with the same
clustering method can make sure that the identified subgroups
have clinically meaningful features but are still consistent with
clustering method used in the work of Parker et al.

In conclusion, multi-omics data integration of genomics,
epigenomics, and transcriptomics helped us discover possible

pathogenic mechanisms, as well as underscored a crucial role
of DNA, CNA and MET in BRCA. In addition, using datasets
consisting of these data types, we also detected two clinically
relevant molecular subgroups with subgroup-specific features.
These can pave the way for the development of accurate
diagnostic tests and personalized treatments, and a potential
alternative to the PAM50 intrinsic subtypes in the future.
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