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Aims: In the cancer-related research field, there is currently a major need for a greater
number of valuable biomarkers to predict the prognosis of hepatocellular carcinoma
(HCQ). In this study, we aimed to screen hub genes related to immune cell infiltration
and explore their prognostic value for HCC.

Methods: We analyzed five datasets (GSE46408, GSE57957, GSE74656, GSE76427,
and GSE87630) from the Gene Expression Omnibus database to screen the differentially
expressed genes (DEGs). A protein—protein interaction network of the DEGs was
constructed using the Search Tool for the Retrieval of Interacting Genes; then, the
hub genes were identified. Functional enrichment of the genes was performed on
the Metascape website. Next, the expression of these hub genes was validated in
several databases, including Oncomine, Gene Expression Profiling Interactive Analysis
2 (GEPIA2), and Human Protein Atlas. We explored the correlations between the hub
genes and infiltrated immune cells in the TIMER2.0 database. The survival curves were
generated in GEPIA2, and the univariate and multivariate Cox regression analyses were
performed using TIMER2.0.

Results: The top ten hub genes [DNA topoisomerase |l alpha (TOP2A), cyclin B2
(CCNB?2), protein regulator of cytokinesis 1 (PRC7), Rac GTPase-activating protein 1
(RACGAPT), aurora kinase A (AURKA), cyclin-dependent kinase inhibitor 3 (CDKNG),
nucleolar and spindle-associated protein 1 (NUSAPT), cell division cycle-associated 5
(CDCAS), abnormal spindle microtubule assembly (ASPM), and non-SMC condensin
| complex subunit G (NCAPG)] were identified in subsequent analysis. These genes
are most markedly enriched in cell division, suggesting their close association
with tumorigenesis. Multi-database analyses validated that the hub genes were
upregulated in HCC tissues. All hub genes positively correlated with several types
of immune infiltration, including B cells, CD4™ T cells, macrophages, and dendritic
cells. Furthermore, these hub genes served as independent prognostic factors, and the
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expression of these hub genes combing with the macrophage levels could help predict
an unfavorable prognosis of HCC.

Conclusion: In sum, these hub genes (TOP2A, CCNB2, PRC1, RACGAP1, AURKA,
CDKN3, NUSAP1, CDCA5, ASPM, and NCAPG) may be pivotal markers for prognostic
prediction as well as potentially work as targets for immune-based intervention

strategies in HCC.

Keywords: hepatocellular carcinoma, immune infiltration, prognosis, tumor-associated macrophage, biomarker

INTRODUCTION

Hepatocellular carcinoma (HCC), the second leading cause of
cancer-related death in the world, is a commonly fatal cancer
with an unfavorable prognosis due to its complex genetics and
clinical features (Siegel et al., 2015; Villanueva, 2019). To a certain
extent, high heterogeneity contributes to the low survival rate
of HCC despite excision, transplantation, transcatheter arterial
chemoembolization, and radiofrequency ablation, among others,
having been widely used in HCC treatment (Imamura et al., 2003;
Forner et al., 2018; Caruso and Nault, 2019; Yin et al., 2019).
Timely and effective intervention for HCC patients can improve
not only their quality of life but also their survival rate (Deng
et al., 2020; Kim et al., 2020). Therefore, the identification of
new prognostic biomarkers and therapeutic targets plays a crucial
role in HCC therapy.

Several prognostic biomarkers have been widely applied
in HCC, such as alpha-fetoprotein and des-gamma-
carboxyprothrombin (Fox et al, 2014; Abe et al, 2017).
Nevertheless, these markers depend on the significant burthen of
a tumor, which has resulted in their often limited application and
inconsistent performance assessments (Park and Park, 2013).
Numerous studies have demonstrated that valuable prognostic
molecules can be identified from the bioinformatics analysis
of high-throughput data, such as functional genes (Ma et al,
2020; Wang et al., 2020; Xie et al., 2020). From this, it can be
determined that immune-associated genes may play a crucial
role in HCC outcomes and targeted therapies on immune cells;
thus, related genes have been developed for the reactivation of
adaptive and innate immune systems and the creation of a strong
antitumoral immune response. For instance, some researchers
have found that inhibitors of programed death-1, programed
death-ligand 1, and cytotoxic T lymphocyte-associated antigen 4
produce antitumoral effects on HCC cells (Langhans et al., 2019;

Abbreviations: HCC, hepatocellular carcinoma; DEGs, differentially expressed
genes; GEO, Gene Expression Omnibus; PPI, protein-protein interaction;
GEPIA2, Gene Expression Profiling Interactive Analysis 2; HPA, human protein
atlas; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes;
STRING, Search Tool for the Retrieval of Interacting Genes; BP, biological process;
CC, cellular component; ME molecular function; TOP2A, DNA topoisomerase II
alpha; CCNB2, cyclin B2; PRCI, protein regulator of cytokinesis 1; RACGAPI1,
Rac GTPase-activating protein 1; AURKA, aurora kinase A; CDKN3, cyclin-
dependent kinase inhibitor 3; NUSAP1, nucleolar and spindle-associated protein
1; CDCAS5, cell division cycle-associated 5; ASPM, abnormal spindle microtubule
assembly; NCAPG, non-SMC condensin I complex subunit G; DC, dendritic
cell; COR, correlation coefficient; OS, overall survival; RES, relapse-free survival;
TAM, tumor-associated macrophage; HR, hazard rate; FC, fold change; MCODE,
Molecular Complex Detection; MCC, Maximal Clique Centrality.

Wang J. et al.,, 2019; Zhang Y. et al., 2020). Unfortunately, only
sectional HCC patients with determinate tumor types react to
the current immunotherapies; therefore, there is an urgent need
to identify more underlying immune targets.

In the present study, differentially expressed genes (DEGs)
were screened from the Gene Expression Omnibus (GEO)
database. Then, we performed enrichment and protein-protein
interaction (PPI) analyses of these genes to comprehend the
functions of DEGs and identify the top ten hub genes in HCC.
Next, we explored the potential correlations between each of the
hub genes and infiltrated immune cells in the TIMER?2.0 database.
Furthermore, we visualized the prognostic landscape of candidate
hub genes using several databases, including Oncomine (Rhodes
et al., 2007), Gene Expression Profiling Interactive Analysis
2 (GEPIA2) (Tang et al, 2019), Human Protein Atlas (HPA)
(Ponten et al., 2008), and TIMER2.0 (Li et al., 2020).

MATERIALS AND METHODS

Data Source

The gene expression datasets (GSE46408, GSE57957, GSE74656,
GSE76427, and GSE87630) of HCC were obtained from GEO'.
All of the data included in the present study was available online.
Information on these five datasets is summarized in Table 1.

DEGs Processing

GEO2R?, an interactive online tool that can compare two
different groups in a GEO dataset, was applied to screen the DEGs
(Davis and Meltzer, 2007). The DEGs were defined as different
expression genes between tumor and tumor-adjacent tissues in
HCC patients with an adjusted p value < 0.05 and an absolute
log fold-change (FC) > 1. Accordingly, to decrease the false
discovery rate, the p values were adjusted using the Benjamini
and Hochberg method. The overlapping up- and downregulated
DEGs from these five datasets were identified using TBtools
software (Chen et al., 2020).

Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes
(KEGG) Pathway Analyses

Functional enrichment analyses played a crucial role in the
identification of biological characteristics in transcriptome

Thttp://www.ncbi.nlm.nih.gov/geo
Zhttps://www.ncbi.nlm.nih.gov/geo/geo2r/
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TABLE 1 | Details of GEO HCC data.

GEO Platform Tumor Normal Total number of samples Number of identified DEGs
GSE46408 GPL4133 6 6 12 1,414
GSE57957 GPL10558 39 39 78 417
GSE74656 GPL16043 5 5 10 454
GSE76427 GPL10558 115 52 167 493
GSE87630 GPL6947 64 30 94 1,163
GEO, Gene Expression Omnibus; HCC, hepatocellular carcinoma; DEGs, differentially expressed genes.
A GSE46408 B GSE46408

GSEB7630

GSE57957

GSE74656

log FC, log fold change.

GSEB7630

FIGURE 1 | Identification of the DEGs between liver tumor and non-cancerous tissues in GSE46408, GSE57957, GSE74656, GSE76427, and GSE87630. Venn
diagram of (A) upregulated and (B) downregulated DEGs based on the five GEO datasets. The overlapping areas represent the commonly altered DEGs. The t-test
was used to analyze DEGs, with the cutoff criteria of |log FC| > 1.0 and adjusted p < 0.05. DEGs, differentially expressed genes; GEO, Gene Expression Omnibus;

GSE57957

GSE74656

data. In this study, the Metascape database was used
to conduct the Gene Ontology (GO) terms and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
analyses in overlapping DEGs and identified hub genes (Zhou
Y. et al, 2019). In order to choose the more remarkable
terms within each cluster, a p value < 0.01 was considered
statistically significant. We used bar charts and bubble
diagrams, respectively, to visualize the results of the GO
and KEGG analyses.

PPI Network Construction and Module
Analysis

The Search Tool for the Retrieval of Interacting Genes
(STRING) is an interacting gene database designed to analyze
PPI information (Szklarczyk et al., 2019). The overlapping
DEGs were mapped in STRING to generate a network with
functional interactions; then, this PPI network was visualized
using Cytoscape software. Next, we employed the Molecular
Complex Detection (MCODE) plugin to determine the most
significant gene modules. Moreover, the cytoHubba plugin
was applied to identify the hub genes using the Maximal
Clique Centrality (MCC) method, and the top ten hub
genes with the highest MCC scores were subjected to the
subsequent analyses.

Validation for mRNA and Protein Levels
of Hub Genes in Multi-Databases

The Oncomine database’ is a publicly available cancer database
that facilitates the analysis of genome-wide expression in
multifarious cancers. In the present study, the Oncomine was
utilized to overview the mRNA expression of candidate genes
with a p value < 0.0001 and |[FC| > 1.5.

The GEPIA2 database*, which includes TCGA and GTEx data,
was applied to analyze the differential expression of the hub genes
in the HCC and normal groups, and the cutoff values were set as
[log2FC| = 1.0 and p value = 0.01.

Furthermore, immunohistochemistry analysis was conducted
online to observe the distribution and protein level of the
candidate hub genes in the HPA database’.

Survival Analysis of Hub Genes

We employed GEPIA2 to perform overall survival (OS) and
relapse-free survival (RES) analyses, with a median group cutoff
in 362 HCC patients. The survival curves with the calculated
hazard rate (HR) and the log-rank p value were presented

Shttps://www.oncomine.org/
*http://gepia2.cancer-pku.cn
“https://www.proteinatlas.org/

Frontiers in Genetics | www.frontiersin.org

January 2021 | Volume 11 | Article 575762


https://www.oncomine.org/
http://gepia2.cancer-pku.cn
https://www.proteinatlas.org/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Chen et al. Hub Genes in Hepatocellular Carcinoma

A 151
s BP
Em CC
mm MF
S
< 101
>
Qo
)]
o
<
5_
0 -
¢l > e AN * o © N %)) » ] A ) v \d 0 Q" © S o
&§ &§ &§ 8§ &§ &§ &§ &§ &§ &§ &§ & & &§/8 &§/8& & &
B Glycolysis / Gluconeogenesis - ©
Lysine degradation- o
Valine, leucine and isoleucine degradation- o count
. . . . e 3
Glycine, serine and threonine metabolism- o 5
4
Tyrosine metabolism - ° ® s
s 6
Drug metabolism - cytochrome P450- © :
7
Carbon metabolism - . 8
Chemical carcinogenesis-
-logl0(pvalue)
Metabolism of xenobiotics by cytochrome P450- & 10
Lysine degradation, lysine => saccharopine => acetoacetyl-CoA- o 8
6
Fatty acid degradation - O
4
Tryptophan metabolism - ®
Retinol metabolism - O
Mineral absorption - .
01 02
Rich factor

FIGURE 2 | GO annotation and KEGG pathway enrichment analysis of DEGs. The significantly enriched (A) GO terms and (B) KEGG pathways. GO, gene ontology;
KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs, differentially expressed genes; BP, biological process; CC, cellular component; MF, molecular function.
G0:0010273, detoxification of copper ion; GO:0016054, organic acid catabolic process; GO:0032787, monocarboxylic acid metabolic; GO:0034754, cellular
hormone metabolic process; GO:1901615, organic hydroxy compound metabolic process; GO:007 1466, cellular response to xenobiotic stimulus; GO:0001867,
complement activation, lectin pathway; GO:0008209, androgen metabolic process; GO:0006544, glycine metabolic process; GO:0007076, mitotic chromosome
condensation; GO:0009617, response to bacterium; GO:0048589, developmental growth; GO:0044262, cellular carbohydrate metabolic process; GO:0031214,
biomineral tissue development; GO:0034358, plasma lipoprotein particle; GO:0031012, extracellular matrix; GO:0017046, peptide hormone binding; GO:0005520,
insulin-like growth factor binding; GO:0031406, carboxylic acid-binding.

Frontiers in Genetics | www.frontiersin.org 4 January 2021 | Volume 11 | Article 575762


https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Chen et al.

Hub Genes in Hepatocellular Carcinoma

Rank | MCC score

362880

CDCAS

362880

ASPM

<la|a]a]a|n] v |w|e

362880

NCAPG

MCODE, molecular complex detection; MCC, maximal clique centrality.

FIGURE 3 | PPl network and clusters identification. (A) The PPI network of DEGs was constructed using Cytoscape. Upregulated genes are marked in red, and
downregulated genes are marked in green. (B) Cluster 1 with 10 nodes and 45 edges. (C) Cluster 2 with 7 nodes and 18 edges. (D) Cluster 3 with 8 nodes and 14
edges. MCODE plugin was employed for the detection of clusters. Upregulated genes are marked in red, and downregulated genes are marked in green. (E) The top
ten hub genes were identified using CytoHubba and ranked by the MCC score. The hub-gene network from CytoHubba analysis completely coincided with the
Cluster 1 from MCODE analysis, both of which included the same 10 nodes and 45 edges. PP, protein—protein interaction; DEGs, differentially expressed genes;
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FIGURE 4 | The expression of the hub genes was validated in HCC tissues. (A) The mRNA expression patterns of hub genes in the Oncomine database. This figure
shows the numbers of datasets with statistically significant mRNA overexpression (red) or under-expression (blue) of the target gene (cancer vs. normal). The p value
threshold is 0.0001. The number in each cell represents the number of analyses that met the threshold within the analyses and cancer types. The mRNA expression
levels of (B) TOP2A, (C) CCNB2, (D) PRC1, (E) RACGAP1, (F) AURKA, (G) CDKNS3, (H) NUSAP1, (I) CDCAS5, (J) ASPM, and (K) NCAPG in LIHC tissues and
normal liver tissues using GEPIA2. *p < 0.01 was considered statistically significant. HCC, hepatocellular carcinoma; LIHC, liver hepatocellular carcinoma. The
“Yellow Box” specified the mRNA expression of these hub genes in liver cancer.
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FIGURE 5 | Representative immunohistochemistry images in HCC and
normal liver tissues derived from the HPA database. (A) TOP2A incubating
with HPAO06458 antibody, (B) PRC1 incubating with HPAO34521 antibody,
(C) RACGAP1 incubating with HPA043912 antibody, (D) AURKA incubating
with HPAO02636 antibody, (E) NUSAP1 incubating with HPA042904 antibody,
(F) CDCAS5 incubating with HPA023691 antibody. HCC, hepatocellular

carcinoma; HPA, Human Protein Atlas.

on the charts. Additionally, TIMER2.0 was utilized to conduct
a univariate Cox analysis to validate the results from the
GEPIA2 analyses.

TIMER2.0 Database Analysis

TIMER2.0° is a comprehensive source that can explore the
relationship between two genes, and the correlations of mRNA
expression and immune infiltration. In this study, we analyzed
the correlations of hub gene expression and several tumor-
associated immune cells, including B cells, CD8™ T cells, CD4™"
T cells, macrophages, neutrophils, and dendritic cells (DCs). A p
value less than 0.01 was considered statistically significant to
identify the more prominent correlation between the hub genes
and immune cells.

Further OS analyses were performed with macrophage and
single hub gene expression. Moreover, we constructed ten
multivariate Cox proportional hazard models, each of which
comprised seven variables, including age, tumor stage, gender,
race, tumor purity, macrophage level, and expression of the single
candidate hub gene. The survival curves, featuring patterns of
single gene expression, and macrophage levels were shown on the
diagram. The association between each macrophage and OS was
displayed as the low or high expression of a single hub gene.

Statistical Analysis

The Student’s ¢ test or non-parametric Mann-Whitney test was
utilized to compare the two independent groups, as appropriate.
The correlations between the candidate hub genes as well as the
relationship of these genes and immune cell infiltration were
assessed using Spearman’s correlation. The log-rank test was used
to calculate the HR and log-rank p value to compare the survival
curves. Univariate and multivariate Cox regression models were
applied to calculate the HR and Cox p value. If not specifically
stated, p values < 0.05 were considered statistically significant.

RESULTS

Identification and Enrichment Analysis of
DEGs

After screening the DEGs according to the criteria,
1,414, 417, 454, 493, and 1,163 genes were identified
from GSE46408, GSE57957, GSE74656, GSE76427, and
GSE87630, respectively (Table 1). These genes shared 107
DEGs among these five datasets, of which, there were 18
upregulated and 89 downregulated genes (Figures 1A,B and
Supplementary Figure 1).

As shown in Figure 2A, the results of the GO analysis
suggested that the overlapping DEGs were principally enriched
in the biological process (BP), especially in the detoxification
of copper ion, the organic acid catabolic process, and the
monocarboxylic acid metabolic process. In terms of cellular
component (CC), the DEGs were enriched in plasma lipoprotein
particles and extracellular matrix. In regard to molecular
function (MF), the identified DEGs were significantly enriched

Chttp://timer.cistrome.org/
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TABLE 2 | Correlation analysis between candidate hub genes and immune cells in the TIMER2.0 database.

Hub genes Purity B cell cD8t T cell CD4+ T cell Macrophage Neutrophil DC

COR P COR P COR P COR P COR P COR P COR P
TOP2A 0.186 - 0.410 o 0.150 * 0.247 e 0.372 o 0.239 e 0.531 e
CCNB2 0.151 * 0.433 e 0.124 0.021 0.239 . 0.321 e 0.164 * 0.547 o
PRC1 0.191 e 0.426 x 0.142 * 0.247 o 0.384 x 0.217 o 0.526 wx
RACGAP1 0.179 - 0.382 o 0.141 * 0.212 e 0.362 o 0.288 e 0.515 e
AURKA 0.148 * 0.451 e 0.058 0.280 0.157 * 0.262 e 0.096 0.076 0.466 o
CDKN3 0.183 * 0.403 e 0.123 0.022 0.188 = 0.311 e 0.128 0.018 0.449 e
NUSAP1 0.170 * 0.459 o 0.147 * 0.260 e 0.382 o 0.183 > 0.545 e
CDCA5 0177 * 0.435 o 0.093 0.085 0.250 e 0.339 e 0.131 0.015 0.548 o
ASPM 0.169 * 0.364 e 0.148 * 0.210 o 0.294 e 0.203 = 0.453 e
NCAPG 0.146 * 0.407 o 0.095 0.078 0.203 > 0.314 o 0177 > 0.509 e

COR, correlation coefficient; DC, dendritic cell; **, p < 0.0001; **, p < 0.001; *, p < 0.01.

in the aspects of peptide hormone binding, insulin-like
growth factor binding, and carboxylic acid binding. Also,
KEGG analysis showed that the overlapping DEGs were
dramatically concentrated in mineral absorption and tryptophan
metabolism (Figure 2B).

PPI Network Construction and Hub Gene

Identification
To seek the interactions of the overlapping DEGs, a PPI
network, which included 84 nodes and 191 edges, was
constructed and visualized in the Cytoscape (Figure 3A). As
Figures 3B-D shows, the three most prominent subnetworks
were identified using the MCODE plugin according to the
connective degrees. Moreover, the CytoHubba plugin was used
to determine the top ten hub genes based on their MCC
scores (Figure 3E). Interestingly, the hub-gene network from
the CytoHubba analysis completely coincided with the highest
score module from the MCODE analysis, both of which
included the same 10 nodes and 45 edges. Notably, DNA
topoisomerase II alpha (TOP2A) was the most significant gene,
with the highest MCC score of 362,912, followed by cyclin
B2 (CCNB2) (MCC score = 362,906), protein regulator of
cytokinesis 1 (PRCI) (MCC score = 362,904), Rac GTPase-
activating protein 1 (RACGAPI) (MCC score = 362,904),
aurora kinase A, (AURKA) (MCC score = 362,888), cyclin-
dependent kinase inhibitor 3 (CDKN3) (MCC score = 362,886),
nucleolar and spindle-associated protein 1 (NUSAP1) (MCC
score = 362,880), cell division cycle-associated 5 (CDCAS5)
(MCC score = 362,880), abnormal spindle microtubule assembly
(ASPM) (MCC score = 362,880), and non-SMC condensin I
complex subunit G (NCAPG) (MCC score = 362,880). All the hub
genes were upregulated in HCC tissues. In addition, the analyses
of the correlations between candidate hub genes on the mRNA
level were conducted on the TIMER2.0. Of these ten genes,
every two genes showed a significant correlation (Spearman’s rho
value > 0.7; p < 0.05) with or without tumor purity adjustment
(Supplementary Table 1).

The high scores of these candidate hub genes indicated
that there would be potential biological effects in the hub

genes network; thus, we further determined the functional
enrichment of these genes. The BP analysis proved that the hub
genes were dramatically enriched in terms of cell division, the
positive regulation of mitotic nuclear division, female gamete
generation, and mitotic cell cycle phase transition. Besides,
these genes were significantly enriched in terms of the mitotic
spindle in the CC analysis and in terms of protein kinase
binding in the MP analysis (Supplementary Figure 2). These
results implied that these hub genes are closely associated
with tumorigenesis.

The Expression of Hub Genes Was

Upregulated in Multi-Databases

To verify the dependability of the results from the bioinformatics
analysis, we next determined the mRNA expression levels
of the hub genes in the Oncomine and GEPIA2 databases.
The results showed that the transcriptional levels of
TOP2A, CCNB2, PRCI, RACGAPI, AURKA, CDKNS3,
NUSAPI, CDCA5, ASPM, and NCAPG were significantly
overexpressed in HCC tissue when compared with the
normal controls (Figures 4A-K), indicating their potential
oncogenic effects.

In the HPA database analysis, we found that the protein levels
of TOP2A, PRC1, RACGAP1, AURKA, NUSAP1, and CDCA5
were significantly higher in the HCC tissues when compared to
normal liver tissues (Figures 5A-F).

The mRNA Levels of Hub Genes Are
Positively Associated With Immune
Infiltration in HCC

Numerous studies have demonstrated that the infiltration
of tumor-associated immune cells and immune-related genes
is correlated with the development and prognosis of HCC
(Duan et al., 2019; Huang et al, 2020; Tang et al., 2020).
Remarkably, targeting on these immune cells and/or genes
has been a prospective workable approach in HCC therapy
(Jayant et al., 2020). In this study, we attempted to explore
the relationship between the mRNA expression of hub genes
and immune cell infiltration using TIMER2.0. As Table 2
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FIGURE 6 | Overall survival analysis of ten hub genes in HCC patients. (A) TOP2A, (B) CCNB2, (C) PRC1, (D) RACGAP1, (E) AURKA, (F) CDKN3, (G) NUSAPT,
(H) CDCAS5, (I) ASPM, and (J) NCAPG. Log-rank p value < 0.05 was considered statistically significant. HCC, hepatocellular carcinoma; OS, overall survival; HR,
hazard ratio.

presents, each of the hub genes correlated with tumor purity
in HCC tissues. Notably, we observed that these ten genes
presented significant associations with infiltrating levels of B
cells, CD4" T cells, macrophages, and DCs, out of which

these genes most strongly correlated with B cells [correlation
coeflicient (COR), 0.363 to 0.451; p < 0.01], macrophages (COR
0.262 to 0.384; p < 0.01), and DCs (COR, 0.449 to 0.548;
p < 0.01), indicating that these hub genes were positively related
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FIGURE 7 | Disease-free survival analysis of ten hub genes in HCC patients. (A) TOP2A, (B) CCNB2, (C) PRC1, (D) RACGAP1, (E) AURKA, (F) CDKN3,
(G) NUSAP1, (H) CDCAS5, (I) ASPM, and (J) NCAPG. Log-rank p value < 0.05 was considered statistically significant. HCC, hepatocellular carcinoma; DFS,
disease-free survival; HR, hazard ratio.

to tumor-associated B cells, macrophages, and DCs in the HCC
microenvironment.

The Overexpression of Hub Genes

Predicts Poor Prognosis in HCC

In the GEPIA2 analysis, the KM plotter analyses showed that the
upregulated mRNA levels of TOP2A, PRC1, RACGAPI1, AURKA,
NUSAPI1, CDCAS5, ASPM, and NCAPG were correlated with

worse OS in HCC patients; however, there was no significant
correlation between CCNB2/CDKN3 and HCC prognosis
(Figures 6A-]). For the RFS analyses, the overexpression of
all ten hub genes could predict unfavorable prognosis in HCC
(Figures 7A-J). Additionally, we performed a univariate Cox
regression analysis of the candidate hub genes in TIMER2.0.
Table 3 summarizes the validation of the prognostic values of
these hub genes in the TIMER2.0 database, suggesting that each
of the hub genes may be an independent risk factor in HCC.
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TABLE 3 | Univariate Cox proportional hazards analyses of overall survival
in the TIMER2.0.

Variables HR HR.95L HR.95H p value
TOP2A 1.245 1.112 1.394 0.000
CCNB2 1.274 1.119 1.451 0.000
PRCA 1.27 1.111 1.450 0.000
RACGAP1 1.417 1.206 1.664 0.000
AURKA 1.273 1.100 1.473 0.001
CDKN3 1.24 1.096 1.401 0.001
NUSAP1 1.208 1.056 1.381 0.006
CDCA5 1.397 1.202 1.625 0.000
ASPM 1.316 1.138 1.621 0.000
NCAPG 1.511 1.282 1.781 0.000

HR, hazard rate.

The Overexpression of Hub Genes
Accompanied by a High Level of
Infiltrated Macrophages Predicts Poor
Prognosis in HCC

Tumor-associated macrophages (TAMs) majorly facilitate
tumor angiogenesis, invasion, and metastasis and lead to a
poor prognosis in HCC (Zhang et al., 2019; Zhao et al., 2020).
There have been studies substantiating that targeting TAMs
becomes a potential individualized precision single or combined
therapy (Li et al., 2019). Therefore, the identification of TAM-
related genes will contribute to providing more potential
targets of the individualized precision treatment and improve
the prognosis of HCC. In the present study, we evaluated
the prognostic efficiency of the combination of TAMs and
expression patterns for the single hub gene. As shown in
Figures 8A-]J, there was no significant relationship between
the TAMs and prognosis under the low expression level of
TOP2A/CCNB2/PRC1/RACGAP1/AURKA/CDKN3/NUSAP1/CD
CA5/ASPM/NCAPG. However, under high CCNB2 expression,
higher macrophage levels had a worse outcome in HCC
[HR = 1.6, p = 0.0366]. Similarly, the high macrophage level
predicted unfavorable prognosis under the high expression
of RACGAPI (HR = 1.79, p = 0.0131), AURKA (HR = 1.64,
p =0.0283), CDKN3 (HR = 1.94, p = 0.0066), ASPM (HR = 1.72,
p=0.0177), and NCAPG (HR = 1.66, p = 0.0304).

Moreover, we further established ten multivariate Cox
regression analyses, each of which included seven variables:
macrophage level, age, stage, gender, race, tumor purity, and
expression of a single candidate gene (Figures 9A-J). The
results showed that, after adjustments of age, stage, gender,
race, and tumor purity, there was still no statistical correlation
between TAM and prognosis with the low expression of
TOP2A/CCNB2/PRC1/RACGAP1/AURKA/CDKN3/NUSAPI1/CD
CA5/ASPM/NCAPG; nevertheless, the lower level of TAM
could predict favorable prognosis under the high expression
of TOP2A (HR = 21, p = 0.0078)/CCNB2 (HR = 22,
p = 0.0046)/PRCI (HR = 192, p = 0.0221)/RACGAPI
(HR = 2.09, p = 0.0091)/AURKA (HR = 2.08, p = 0.0061)/
CDKN3 (HR = 27, p = 0.0009)/NUSAPI (HR = 225,
p = 0.0043)/CDCA5 (HR = 2.05, p = 0.0086)/ASPM (HR = 2.18,

p = 0.0053)/NCAPG (HR = 2.25, p = 0.0043) (Figures 10A-
J). These results suggested that each of the hub genes was
an independent unfavorable prognostic biomarker and that
combining their respective expression levels with the TAMs
would help them play a more effective role in the prognosis
prediction of HCC.

DISCUSSION

Hepatocellular carcinoma, one of the malignant cancers with
high heterogeneity, is frequently diagnosed in its middle and
advanced stages (Friemel et al., 2015; Buczak et al., 2018). Surgical
resection remains the most crucial technique for HCC treatment;
however, its therapeutic effects are always unsatisfactory (Abe
et al,, 2017; Deng et al., 2020). Thus, there is a need to screen
novel carcinoma biomarkers and therapeutic targets. In the
present study, comprehensive and bioinformatics analyses of
multi-databases were applied to determine ten hub genes that
appeared to be correlated with infiltrated immune cells in HCC.
These genes were identified as independent prognostic factors
in HCC patients.

In our study, five GEO datasets (GSE46408, GSE57957,
GSE74656, GSE76427, and GSE87630) shared 107 common
DEGs in HCC tissues; following this, the PPI network was
constructed based on these genes. The results revealed a
most significant module using the MCODE analysis that
completely coincided with the subnetwork identification from
the CytoHubba analysis. Particularly, ten hub genes in the
module were upregulated in HCC tissues: TOP2A, CCNB2,
PRCI1, RACGAPI, AURKA, CDKN3, NUSAPI, CDCA5, ASPM,
and NCAPG, respectively. The enrichment analyses presented
that these hub genes were dramatically enriched in several
terms of the BP analysis, including cell division, the positive
regulation of mitotic nuclear division, female gamete generation,
and the mitotic cell cycle phase transition. These genes were
also significantly enriched in terms of the mitotic spindle in
the CC analysis and in terms of the protein kinase binding in
the MP analysis, suggesting that there is a close association
between the hub genes and tumorigenesis. The validation in
Oncomine and GEPIA2 confirms that the mRNA levels of
TOP2A, CCNB2, PRCI, RACGAPI, AURKA, CDKN3, NUSAPI,
CDCAS5, ASPM, and NCAPG were significantly overexpressed
in the HCC tissues, and at this validation, the p < 0.0001 and
p < 0.01 were set in Oncomine and GEPIA2, respectively to
more accurately identify the expression pattern of hub genes
between HCC and normal tissues. Further HPA analysis also
demonstrated that, compared to normal liver tissues, HCC
tissues had significantly higher protein levels of TOP2A, PRCI,
RACGAPI1, AURKA, NUSAPI1, and CDCAS5, while we could
not obtain the protein expression of CCNB2, CDKN3, ASPM,
and NCAPG of HCC from the HPA website. These hub genes
were validated to be closely correlated with infiltrated immune
cells using the TIMER2.0 database. Both survival curves and
univariate Cox regression analyses suggested that these candidate
hub genes have a strong predictive ability for HCC. Previous
studies demonstrated that TAMs extremely facilitate tumor
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angiogenesis and lead to a detrimental prognosis in HCC of CCNB2/RACGAP1/AURKA/CDKN3/ASPM/NCAPG, high

(Zhang et al.,

2019; Zhao et al, 2020). The identification of TAM levels predicted unfavorable prognosis. Furthermore, the

TAM-related genes will facilitate providing more potential multivariate Cox regression models indicated that all candidate
targets of the individualized precision treatment and improve the  hub genes were independent predictors and that combining their
prognosis of HCC. Thus, we explored the prognostic value for respective expression levels with TAM will help them play a more
the combination of candidate gene and TAM expression patterns effective role in the prognosis prediction of HCC.

in HCC and found that there was no significant relationship In the enrichment analysis of candidate hub genes, we
between TAMs and prognosis under a low expression level of observed that nine out of ten genes were significantly associated
the single hub gene. Meanwhile, under the high expression with cell division: TOP2A, CCNB2, PRCI, RACGAPI, AURKA,
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NUSAPI, CDCA5, ASPM, and NCAPG. The remaining gene,
CDKN3, has a dual function in the regulation of the cell cycle.
On one hand, CDKN3 serves as a cyclin-dependent kinase
inhibitor while interacting with and dephosphorylating CDK2
kinase, thereby restraining its activation (Hannon et al., 1994;
Johnson et al., 2002); on the other hand, CDKN3 can act as
a MDM2-binding protein that forms a complex with MDM2
and P53, thus suppressing the production of P21, leading to

the acceleration of cell cycle progression (Okamoto et al., 2006).
These candidate hub genes have been demonstrated to work as
oncogenes and are associated with clinical prognosis in numerous
solid neoplasms, particularly in HCC (Roy et al., 2018; Gong
et al., 2019; Lin J. et al, 2019). The TOP2A gene encoded a
DNA topoisomerase, which controls and changes the topological
status of DNA in the process of transcription and functions
as a target for some antitumor agents (Delgado et al., 2018;
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FIGURE 10 | Overall survival analysis for combining the expression of single hub gene and macrophage in HCC patients after adjusting five confounding factors,
including age, stage, gender, race, and tumor purity. (A) TOP2A, (B) CCNB2, (C) PRC1, (D) RACGAP1, (E) AURKA, (F) CDKN3, (G) NUSAP1, (H) CDCAS5,
(I) ASPM, and (J) NCAPG. Log-rank p value < 0.05 was considered statistically significant. HCC, hepatocellular carcinoma; HR, hazard ratio.

Kitdumrongthum et al., 2020). Other bioinformatic analyses
showed that TOP2A was related to development in cancers of the
liver, esophagus, stomach, cervix, and lung, among others (Zeng
et al,, 2019; Kou et al.,, 2020; Zhang T. et al., 2020; Zhou et al,,
2020). CCNB2 is an important element for the process of cell
cycle regulation. U2AF homology motif kinase 1 facilitates the
nuclear enrichment of MYB proto-oncogene like 2 by affecting
the expression of CCNB2 to regulate cell cycle and proliferation
(Wei et al,, 2019), and reduced transmembrane protein 9 can
contribute to decreased CCNB2 levels and then promote cell cycle
arrest in HCC cells (Zhang et al., 2016). PRC1, RACGAPI, and
CDCA5 were identified as the crucial genes in the pathological

progression from cirrhosis to HCC, and their hypomethylation
may drive the high expression of these genes (Lin Y. et al,
2019). AURKA can induce the metastasis of irradiated residuary
HCC while promoting an epithelial-mesenchymal transition and
cancer stem cell properties (Chen et al, 2017). MYC proto-
oncogene and AURKA regulate the expression of each other at
a mRNA level identified as a MYC-AURKA feedback loop (Lu
et al.,, 2015). CDKN3 overexpression can shorten the survival
of HCC cells and shift sensitivity to chemotherapeutic drugs
across the AKT/P53/P21 signaling pathway; besides, CDKN3
has been shown to be downregulated in advanced tumor stages
(Daietal., 2016). On the contrary, Chunyang et al. presented
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that the upregulation of CDKN3 might facilitate cell proliferation
via the stimulation of the G1-S transition (Xing et al., 2012).
NUSAPI is a target for mir193A-5p, and evidence has shown
that mir193A-5p might block the tumorigenesis of HCC through
reducing NUSAPI (Roy et al., 2018). ASPM is associated with
the development of HCV-related cirrhosis via the regulation of
tumor-associated phosphorylation (Wang et al., 2017). ASPM
is also considered a prognostic biomarker that predicts the
increased possibility of invasive or metastatic HCC (Lin et al.,
2008). NCAPG down-regulation indicates the suppression of
HCC progression, possibly via the PI3K-AKT signaling pathway
(Gong et al., 2019; Wang Y. et al., 2019). However, among these
candidate hub genes, only PRCI has been reported to be an
immune-related gene in a weighted gene co-expression network
analysis (Wang et al., 2020).

Previous bioinformatics analyses have revealed that some
TOP2A, CCNB2, PRCI, RACGAPI, AURKA, NUSAPI, CDCAS,
ASPM, and NCAPG can be identified as key genes basing on
different screening rules (Cai et al, 2019; Wang M. et al,
2019; Zhou Z. et al, 2019; Song et al., 2020). Comparing
these previous studies, ours has the following advantages:
First, this study included five GEO datasets, while others
included two or three gene expression microarrays. In general,
a greater number of included samples indicate more credible
results in integrated research. Second, we constructed ten gene-
macrophage Cox regression models. Inevitably, there were
still several limitations of the present study. The included
datasets came from different platforms, which might lead to an
uncertain systematic bias. Furthermore, TIMER2.0 is a visual
website based on tumor tissue information from the Cancer
Genome Atlas database (Li et al., 2020). Thus, although tumor
purity adjustment was performed in the correlation analyses
between the immune cell and candidate genes, there was still
systematic bias. To overcome this issue, the application of
single-cell RNA sequencing at a higher resolution should be
conducted (Papalexi and Satija, 2018). Finally, future experiments
in vivo/in vitro should be performed to verify the results of this
bioinformatics analysis.

Numerous studies have revealed that immune cell infiltration,
TAMs, for instance, can serve as a biomarker for the diagnosis
and prognosis of various cancers (Ali et al., 2016; Zhou R. et al,,
2019). Thus, we assessed the prognostic value of the combination
of TAMs and expression patterns for each of the hub genes. The
results showed that the high TAM level predicted unfavorable
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