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The phenotype of carcass traits in beef cattle are affected by random genetic and
non-genetic effects, which both can be modulated by an environmental variable such
as Temperature-Humidity Index (THI), a key environmental factor in cattle production.
In this study, a multivariate reaction norm model (MRNM) was used to assess if the
random genetic and non-genetic (i.e., residual) effects of carcass weight (CW), back
fat thickness (BFT), eye muscle area (EMA), and marbling score (MS) were modulated
by THI, using 9,318 Hanwoo steers (N = 8,964) and cows (N = 354) that were
genotyped on the Illumina Bovine SNP50 BeadChip (50K). THI was measured based
on the period of 15–45 days before slaughter. Both the correlation and the interaction
between THI and random genetic and non-genetic effects were accounted for in the
model. In the analyses, it was shown that the genetic effects of EMA and the non-
genetic effects of CW and MS were significantly modulated by THI. No significant THI
modulation of such effects was found for BFT. These results highlight the relevance
of THI changes for the genetic and non-genetic variation of CW, EMA, and MS in
Hanwoo beef cattle. Importantly, heritability estimates for CW, EMA, and MS from
additive models without considering THI interactions were underestimated. Moreover,
the significance of interaction can be biased if not properly accounting for the correlation
between THI and genetic and non-genetic effects. Thus, we argue that the estimation
of genetic parameters should be based on appropriate models to avoid any potential
bias of estimates. Our finding should serve as a basis for future studies aiming at
revealing genotype by environment interaction in estimation and genomic prediction of
breeding values.

Keywords: multivariate reaction norm model, genotype by environment (G×E) interaction, temperature-humidity
index, Hanwoo cattle, carcass traits
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INTRODUCTION

Hanwoo is an indigenous beef cattle breed in Korea, originated
from a Bos taurus breed in north-east Asia (Kim and Lee, 2000;
Yoon et al., 2005; Węglarz, 2010; Lee et al., 2014). The breed
has been raised in an environment where the temperature is
significantly different across seasons and regions. Hanwoo has
been bred over the last four decades using artificial selection to
improve production traits such as carcass weight, eye muscle
area and marbling score (Seideman et al., 1987; Jo et al., 2012).
Recently, the Korea meat trade association (KMTA) reported
that the meat of the breed has been exported to beef markets
in Hong Kong and Vietnam and has the potential to expand
into broader global markets. Hanwoo is characterized by good
intramuscular fat (IMF) that influences consumers perception
of meat quality due to sensory properties including tenderness,
juiciness and flavor (Albrecht et al., 2011; Irie et al., 2011).
Compared to other beef breeds such as Australian Angus,
having high subcutaneous fat depth, Hanwoo beef shows higher
marbling scores and increased IMF contents (Cho et al., 2005).
More importantly, Hanwoo produces highly qualified meat
with a high omega-3 fatty acid counts and high proportion
of mono-unsaturated fatty acids (MUFAs), which are known
to improve lipid profile (e.g., reducing low- and increasing
high-density lipoprotein) (Jo et al., 2012; Gotoh and Joo, 2016;
Joo et al., 2017).

The national breeding system for Hanwoo includes two
genetic evaluation programs, individual performance and
progeny test, in which candidate bulls are selected based on
their own growth performance, and they are further evaluated
with a progeny test (Park et al., 2013; Chung et al., 2018).
From the breeding program, 30 proven bulls are selected
every year and their semen is distributed to farms with
different environments across the nation (Park et al., 2013;
Chung et al., 2018). Environmental factors can significantly
affect the performance of economic traits such as production
efficiency, feed intake and weight gain in Hanwoo. Among
various environmental factors, thermal effects, e.g., heat stress,
have been considered as a significant factor to determine the
performance of beef cattle. The genetic variance of economic
traits in beef cattle can be significantly changed by thermal
effects (Bradford et al., 2016; Santana et al., 2016). Santana et al.
(2016) reported that the estimated heritability for weaning weight
was significantly different across different levels of temperature-
humidity index (THI) in three Brazilian beef cattle breeds,
Nellore, Brangus and a tropical composite breed. It was also
reported that there were heterogeneous genetic variances across
different levels of temperature for weaning weight in Angus
cattle (Espasandin et al., 2013; Bradford et al., 2016). In dairy
cattle, a number of studies reported that the genetic variance
of dairy production traits varied significantly with levels of THI
(Aguilar et al., 2009).

To estimate genotype-by-environment (G×E) interaction,
two kinds of models have mainly been used in previous
studies, i.e., a bivariate linear mixed model for modeling
effects of distinct environments and a reaction norm model
(RNM) for effects of continuous environmental gradients.

Bivariate linear mixed models can detect G×E interaction by
estimating a genetic correlation between different environmental
groups for the trait of interest and test if the estimated
genetic correlation is significantly different from 1, using the
Wald test statistics. For instance, Ibi et al. (2005) used this
approach and estimated a genetic correlation for carcass traits
in Japanese black cattle to be significantly different from 1
between two groups that produced under different temperature
and heat stress-related conditions. Another approach that can
be followed is to apply an RNM that estimates random
regression coefficients of genetic (and non-genetic) effects on
a continuous environmental variable and tests whether the
variance of the regression slope is significantly different from
0. For example, Santana et al. (2016) estimated a significant
variance of the random regression slope for weaning weight
on THI in a tropical composite breed of Brazilian cattle,
implying that there is genetic variation in how animals cope with
THI differences.

While most interaction studies focus on G×E interaction
(genetic heterogeneity), it has also been recognized that the
heterogeneity of residual variance exists. Residual variance
heterogeneity may be due to outliers, scale effects or non-
normality of data, which can be remedied by standard quality
control including normalization (e.g., rank-based inverse normal
or log transformation) (Box and Hill, 1974; Downs and Rocke,
1979; Atkinson et al., 2016). However, residual can include some
effects, which are not captured in the model, but have biological
functions, such as the effects of gene-expression, methylation
or unrecorded environmental factors (Soto-Ramírez et al., 2013;
Romanowska et al., 2019). Such residual effects can be modulated
by THI, which is referred to as residual-by-environment (R×E)
interaction in this study.

In livestock, genetic and residual correlations play a critical
role in genetic evaluation. However, most G×E interaction
studies have overlooked the fact that correlations between the
main trait and an environmental modulator, i.e., genotype-
environment (G-E) correlation, can cause spurious G×E
interaction signals (Hill, 1984; Ni et al., 2019; Zhou et al.,
2020). Although THI is an environmental factor, there can
be a non-negligible correlation between THI and the genetic
effects on production traits, i.e., G-E correlation (Sellers et al.,
1998; Ni et al., 2019; Zhou et al., 2020). It is also possible
that there is a significant correlation between THI and the
residual variance of production traits, i.e., residual-environment
(R-E) correlation (Könyves et al., 2017; Ni et al., 2019; Zhou
et al., 2020). However, to date, there are few or no studies
to consider correlation and interaction simultaneously in G×E
studies in livestock (Supplementary Table 1), and it is not clear
how to account for G-E or R-E correlations when estimating
the genetic effects of production traits modulated by THI. In
this study, we model G×E and R×E interactions jointly for
four carcass traits in Hanwoo cattle that may be modulated
by THI, using a multivariate reaction norm model (MRNM).
In the model, we explicitly estimate correlations between THI
and the genetic and residual effects of carcass traits, which
prevent spurious interaction signals due to confounding between
correlation and interaction.
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MATERIALS AND METHODS

Animal and Phenotype Data
A total of 10,215 Hanwoo Korean cattle (9,856 steers and
359 cows) born between 2006 and 2016 were included in this
study. The data were provided by the BioGreen 21 Program
(Molecular Breeding Program) of National Institute of Animal
Science (NIAS), Rural Development Administration (RDA),
South Korea, and the experimental procedures were approved
by The Animal Care and Use Committee of the NIAS, RDA,
South Korea. The contemporary group (CG) was based on
the classification of individuals belonging to the same year
of birth, season, resulting in 29 contemporary groups. Farm
information was collected from 15 provinces located in the
northern [Gangwon (# farms is 2,265), Incheon (527), Gyeonggi
(20)], middle [Chungbuk (559), Chungnam (553), Daejeon
(19), Sejong (176), Gyeongbuk (826)] and southern regions
[Gyeongnam (1,732), Deagu (5), Ulsan (261), Jeonbuk (555),
Jeonnam (1,031), Gwangju (17), and Jeju (8)] of the Republic
of Korea. The average temperature in the southern area is about
3–6◦C higher than that of north area.

Phenotypic data in this study included carcass weight (CW),
back fat thickness (BFT), eye muscle area (EMA), and marbling
score (MS) (Supplementary Table 2). BFT, EMA, and MS were
measured at the 12th-13th rib junction after a 24-h chill. MS
was recorded on a scale ranging from 1- to 9-grade, which was
assessed by trained evaluators of the Korea Institute of Animal
Products Quality Evaluation (KAPE). Among 10,215 cattle, only
10,201 animals had more than 5 records in each CG and farm
location (province) and were used in the main analysis.

Meteorological Data
We used the meteorological data from 15 regional weather
stations nearest to the farms. Weather variables used in our study
included daily maximum temperature and daily average humidity
(Lee et al., 2019). THI records were used as an environmental
variable for reaction norm model. Following National Research
Council [NRC] (1971), the THI can be written as

THI = (1.8× T + 32)− [(0.55− 0.0055×H) × (1.8× T − 26.8)]

where T and H are the average maximum daily temperature
(Celsius scale) and average relative humidity (%), which were
measured between 15 and 45 days before the slaughter date
(Dikmen and Hansen, 2009). We considered this period because
the season at slaughter is reported to be critical for carcass
traits, and the last month before the slaughter would be the
most important period for the quality of carcass traits (Kadim
et al., 2004; Pestana et al., 2012; Hagenmaier et al., 2016). We
used the weather information measured between 15 and 45 days
before the slaughter date because animals would be facing to the
fasting time, pre-slaughter rest period, and the transportation
to the slaughterhouse, which might take approximately 15 days
(Hagenmaier et al., 2016). The THI values range from 39.60 to
94.06 with a mean of 73.98 for the Hanwoo cattle.

Genotyping and Quality Control
The DNA data was extracted from Longissimus dorsi muscle
samples using a DNeasy Blood Tissue Kit. NanoDrop 1000
(Thermo Fisher Scientific, Wilmington, DE) was used for DNA
concentration and purity, and SNP marker data (58,990
SNPs) was obtained using the Illumina Bovine SNP50
BeadChip (50K) platform. Quality control procedures were
applied to SNP filtering using PLINK 1.9. software (Purcell
et al., 2007). SNPs were excluded if they were on the sex
chromosomes, their call rate was less than 0.10 and their
minor allele frequency was less than 0.01. Furthermore, those
animals that had a significant departure from Hardy-Weinberg
equilibrium (<0.0001) and individual missingness more
than 0.1 were removed from the analyses (Bolormaa et al.,
2011; Bhuiyan et al., 2018), which remained 9,318 animals
(8,964 steers and 354 cows). For the phenotypes of each
carcass trait, we excluded records outside +/− three standard
deviations from the phenotypic mean. After this stringent
quality control, a total of 40,118 SNPs remained, and the
number of animals with phenotypic records were 9,243, 9,202,
9,241, and 9,317 for CW, BFT, EMA and MS, respectively
(Supplementary Table 2).

Statistical Analyses
In preliminary analyses, to avoid any confounding effects,
the phenotypes of each trait were adjusted for fixed effects
such as sex, CG, farm location and age. We additionally
tested if there were significant linear or quadratic fixed
effects of THI on the phenotypes. We also accounted for
genetic population structure by fitting the first 10 principal
components (PCs) estimated from the genomic relationship
matrix. For this, we used eight different linear models, and
applied model comparisons using Akaike information criteria
(AIC) (Supplementary Table 3). According to the AIC, the
phenotypes of CW and EMA needed to be adjusted for both
linear and quadratic THI and the first 10 PCs. BFT were
adjusted for quadratic THI and the first 10 PCs, whereas
MS was only adjusted for the first 10 PCs only. The pre-
adjusted phenotypes of each trait from these analyses were
standardized and rank-based inverse transformed (RINT), to
avoid any violation against the normality assumption of RNM
(Supplementary Figure 1). The variance components were
estimated using the pre-adjusted RINT phenotypic data in
the main analysis (Ni et al., 2019; Shin and Lee, 2020;
Zhou et al., 2020).

An association between THI and genetic effects can be
revealed by checking whether the genomic relationships between
the samples (which were inferred from their genotypes in
this study) explains any of the variation in THI. Such an
association would then lead to a spurious heritability estimate
of THI, obviously not because of THI truly having a heritable
component, but because of confounding between breeding values
and THI, e.g., somehow more of the low merit sires for a
trait are measured in warm/humid areas or vice versa. This
association can also generate spurious G×E interaction signals
when regressing breeding value on THI unless it is correctly
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controlled, i.e., modeling the G-E correlations as well as the
G×E interaction in MRNM (Ni et al., 2019; Zhou et al., 2020).
In order to estimate the spurious genetic effects of THI, we
tested and estimated the spurious “heritability” of THI after
adjusting it for the first 10 PCs, CG, farm locations, sex and
ages (Supplementary Table 3). These adjusted THI values were
used as the second trait in the MRNM to be able to fit the
G-E and R-E correlations while the raw (standardized) THI
values were used to model the effect of THI on the phenotypes
of the main trait.

Estimation of Heritabilities and Genetic Correlations
Between Four Carcass Traits
The genetic parameters of the four carcass traits consisting
of CW, BFT, EMA and MS were estimated from a four-traits
linear mixed model using genome-based restricted maximum
likelihood (GREML). The four-traits linear mixed model can be
written as

y1 = X1b1 + Z1g1 + e1
y2 = X2b2 + Z2g2 + e2

...

yt = Xtbt + Ztgt + et

where yi is the Nrecords vector of observed phenotypes, bi is the
vector of fixed effects, gi is the Nindividuals vector of additive
genetic, and ei is Nrecords vector of the residual effects for
the ith trait (i = 1, . . ., t). The fixed effects include 29 CG
classified according to birth year and season information, 15 farm
locations, 2 sex classes, ages, the first 10 PCs and a linear or/and
quadratic function of THI. With other fixed effects, the linear and
quadratic function of THI values and the first 10 PCs were used
as fixed effects for CW and EMA, respectively (Supplementary
Table 3). BFT was adjusted for quadratic function of THI and
the first 10 PCs, and MS was adjusted for the first 10 PCs
only (Supplementary Table 3). Xi and Zi indicates, respectively,
incidence matrix for fixed and additive genetic effects, for the ith
trait. The variance-covariance matrix of all observed phenotypes
can be written as

var
(
y
)
=


Z1Aσ2

g1
Z
′

1 + Iσ2
e1
· · · Z1Aσg1,tZ

′

t + Iσe1,t
...

. . .
...

ZtAσg1,tZ
′

1 + Iσe1,t · · · ZtAσ2
gtZ
′

t + Iσ2
et


where A is the Nindividuals × Nindividuals genomic relationship
matrix based on genome-wide SNP information (Yang et al.,
2011), and I is an Nrecords × Nrecords identity matrix. Using
GCTA software (Yang et al., 2011), the genomic relationship
matrix (A) is computed from A = WW′/NSNPs, where W is
a column-standardized Nindividuals × NSNPs matrix including
the genotype information of Nindividuals. The terms, σ2

gi and
σ2
ei , indicate the genetic and residual variance of the trait i,

and σgij and σeij represent the genetic and residual covariances
between the traits i and j (i = 1,. . .,t, and j = 1,. . .,t with i 6=j),
respectively. The random genetic and residual effects are assumed
to be normally distributed with mean zero and variance Aσ2

g
and Iσ 2

e .

Genotype-by-THI (G×ETHI) Interaction Model
A univariate reaction norm model (URNM) can be used
to estimate G×ETHI for each carcass trait of which the
genetic effects are modulated by THI. The model assumes
homogeneous residual variance and does not consider
the correlation between carcass traits and THI values.
Following Ni et al. (2019), the observed phenotype can be
modeled as

y = µ+ α0 + α1 · c+ e

where µ is the mean of the adjuted phenotyeps, α0 and α1 are the
Nindividuals vector of the zero and first order of random regression
coefficients for the random genetic effects, c is Nindividuals vector
of THI values that modulates the main phenotypes, and e is the
residual effects. The genetic variance and covariance matrix of
random regression coefficients (Kg) is

Kg = cov (α0, α1) =

[
σ2

α0
σα0,1

σα0,1 σ2
α1

]
(1)

where σ2
α0

and σ2
α1

are the variance of the zero and first
order genetic random regression coefficients, and σα0,1 is the
covariance between α0 and α1, assuming that each individual
has a unique covariate (i.e., THI) value such that the number
of individuals is the same as the number of unique THI values.
The genetic variance and covariance matrix of all individuals
is a function of the matrix Kg and polynomials, and can be
expressed as

var(g) = 8Kg8
′

=


σ2
g1
· · · σg1.N

...
. . .

...

σg1,N · · · σ2
gN

 (2)

where 8 is Nindividuals × 2 matrix of the zero and first order
polynomials of the THI values of Nindividuals, i.e., 8= [c0, c1].

Residual-by-THI (R×ETHI) Interaction Model
The G×ETHI interaction model assumes that the residual
variance of main trait is homogeneous across THI values,
however, this could be violated. The R×ETHI interaction model
can capture such residual heterogeneity and can be written as

y = µ+ α0 + τ0 + τ1 + e

where τ0 and τ1 are the zero and first order of random
regression coefficients for residual effects. The residual effects can
be modeled with random regression coefficients and the variance
and covariance matrix of random regression coefficients (Ke) can
be represented as

Ke = cov (τ0, τ1) =

[
σ2

τ0
στ0,1

στ0,1 σ2
τ1

]
(3)

where σ2
τ0

and σ2
τ1

are the variances of the zero and first
order residual random regression coefficients, and στ0,1 is the
covariance between τ0 and τ1. The residual variance and
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covariance matrix is a function of the matrix Ke and polynomials,
and can be expressed as

Var(e) = 8Ke8
′

=

 σ2
e1
· · · σe1.N

...
. . .

...

σe1,N · · · σ2
eN

 (4)

where 8 is Nindividuals x 2 matrix of the zero and first order of the
THI values of Nindividuals, i.e., 8= [c0 , c1 ].

Multivariate RNM to Estimate G×ETHI and R×ETHI
Corrected for G-ETHI and R-ETHI Correlation
URNM assumes that there is no G-ETHI or R-ETHI correlation,
i.e., no spurious genetic or residual correlation between the
carcass traits and THI. However, it has been reported that
unmodeled correlation can generate spurious G×ETHI or
R×ETHI interaction signals and biased estimates (Ni et al.,
2019). To avoid this bias, multivariate RNM (MRNM) can
be used by jointly modeling THI as the second trait, which
can account for spurious genetic and residual correlations
between carcass traits and THI values (G-ETHI or R-ETHI
correlations). Following Ni et al. (2019), MRNM can be
written as

y = µ+ α0 + α1 · c+ τ0 + τ1 · c

c∗ = µ+ β+ ε

where c∗ indicates the THI values adjusted for the fixed effects
(Supplementary Table 3) as the phenotypes of the second
trait in the model, which can be decomposed into the grand
mean, β and ε that are vectors on length Nindividuals of the
random spurious genetic and residual effects on THI. It is noted
that spurious genetic effects for THI can be generated when
there is a population stratification, which is confounded with
locations that are associated with temperature and humidity.
Because unmodeled spurious genetic effects of the environmental
variable (and their associated correlation with the main trait)
can also cause spurious G × E, we explicitly model those
variance components.

The covariance between the genetic random regression
coefficients of carcass traits (α0 and α1) and the component of
variance in THI explained by genetic effects (β) can be written as

Kg,β =

[
cov(α0, β)

cov(α1, β)

]
(5)

In a similar manner, the covariance between the residual random
regression coefficients of carcass traits (τ0 and τ1) and residual
effects of THI (ε) can be written as

Ke,ε =

[
cov(τ0, ε)

cov(τ1, ε)

]
(6)

The variance and covariance matrix of genetic effects associated
with THI values and with carcass traits can be expressed jointly

in the MRNM as

var
(
g, β

)
=

[
8Kg8

′

8Kg,β

K
′

g,β8
′

var(β)

]
where Kg and Kg,β are already defined in Eqs. 1 and 5. The
variance and covariance matrix of residual effects in MRNM can
be expressed as

var (e, ε) =

[
8Ke8

′

8Ke,ε

K
′

e,ε8
′

var(ε)

]
where Ke and Ke,ε are defined in Eqs. 3 and 6 above.

Therefore, the variance and covariance matrix of y and c can
be written as

cov(y, c)

=


A11σ

2
g1
+ σ2

e1
· · · A1Nσg1,N + σe1,N

...
. . .

...

A1Nσg1,N + σe1,N · · · ANNσ2
gN + σ2

eN

A1∗σg1,β + σe1,ε

...

AN∗σgN,β + σeN,ε

A∗1σg1,β + σe1,ε · · · A∗NσgN,β + σeN,ε Aσ2
gβ + σ2

eε


where σ2

β and σ2
ε are the random genetic and residual variances

of THI. σgi,β and σei,ε denote the random genetic and residual
covariances between carcass trait and THI at the ith covariate
level (i = 1, . . . ,N). A∗i or Ai∗ indicates the ith column or row
vector of the A matrix. All models described above can be fitted
using MTG2.14 (Lee and van der Werf, 2016).

We compare this MRNM with the null model that is a bivariate
linear mixed model fitting CW, EMA, BFT or MS as the first trait
and THI as the second trait.

The Magnitude of Significance for G×ETHI and
R×ETHI Interactions and Their Collinearity
It is often desirable to disentangle between estimated G×ETHI
and R×ETHI interactions particularly when there is collinearity
between these interactions that can be generated because of using
the same environmental variable, i.e., THI.

The magnitude of significance for G×ETHI and R×ETHI
interactions can be calculated by log-likelihood comparison
between the combined G×ETHI and R×ETHI interaction model
and the null model without any interaction, i.e., a function
of likelihood ratio, referred to as M(G×ETHI & R×ETHI).
In a similar manner, the magnitude of significance for the
orthogonal effects of G×ETHI conditional on R×ETHI, and vice
versa, can be obtained by log-likelihood comparison between
the combined (G×ETHI and R×ETHI interaction) model and
a reduced model (with either R×ETHI or G×ETHI interaction
only), referred to as M(G×ETHI | R×ETHI) or M(R×ETHI |

G×ETHI). From these quantities, the amount of collinearity
between G×ETHI and R×ETHI interactions can be approximately
quantified as

The magnitude of collinearity

=M (G×ETHI & R×ETHI)−M(G×ETHI | R×ETHI)

−M(R×ETHI | G×ETHI)
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RESULTS

Estimated Heritabilities and Genetic
Correlations Between Four Carcass
Traits
In a preliminary analysis without considering interaction model,
we estimated genetic variance within and covariance between
four carcass traits using the four-traits linear mixed model.
As shown in Supplementary Table 4, the heritability estimates
for CW, BFT, EMA and MS were 0.35 (±0.02), 0.35 (±0.02),
0.33 (±0.02), and 0.42 (±0.02), respectively. A negative genetic
correlation between BFT and MS was estimated (−0.03 ± 0.04)
while a positive genetic correlation between EMA and MS (0.45
± 0.03) or between CW and EMA (0.43± 0.03) was estimated.

G×ETHI and R×ETHI Interactions
Corrected for G-ETHI and R-ETHI
Correlation
In the main analysis, we used URNM and MRNM fitting THI
(see section “Materials and Methods”) to estimate G×ETHI
and R×ETHI interactions for each of four carcass traits (CW,
BFT, EMA and MS). We conducted various model comparisons
(indexed as M1–M6 in Table 1) to obtain p-values for the
interaction effects using likelihood ratio test, e.g., bivariate
GREML as the null model vs. MRNM (M4).

For CW, we found no significant G×ETHI signal from URNM
and MRNM, after adjusting for R×ETHI interaction (p = 6.78E–
01 and 1.17E–01 in M2 and M5). The orthogonal R×ETHI
interaction was not significant for URNM, after adjusting for
G×ETHI interaction (p= 2.22E–01 in M3). Using MRNM, which
could model the G-E correlation and G×E interaction jointly, we

found a significant orthogonal R×ETHI interaction (p= 2.99E–02
in M6 in Table 1). It was noted that the significance came
mainly from the component, cov(τ1, ε) (−0.034 ± 0.012) as
shown in Supplementary Table 6. It is known that both G×ETHI
and R×ETHI interactions are important in a genetic evaluation
(Bohlouli et al., 2019). For these overall interaction effects,
MRNM provided a significance (p = 2.63E–02 in M4) whereas
URNM had no significance (p = 2.56E–01 in M1). Figure 1A
shows that the G×ETHI and R×ETHI interaction effects were
mostly independent (also see Supplementary Table 7).

For BFT, there was no evidence for orthogonal G×ETHI
or R×ETHI interaction. Even for the combined effects of
G×ETHI and R×ETHI interactions, the interaction signal was
not significant in both URNM and MRNM (p = 1.10E–01
and 2.31E–01 in M1 and M4). The estimated G×ETHI or
R×ETHI interactions were dependent to each other and there
was a substantial collinearity between two estimated interactions
(Figure 1B and Supplementary Tables 6, 7).

The analysis for EMA shows that the phenotypes of EMA
can be modulated by THI values. In the analysis using URNM,
a significant signal of G×ETHI interaction was discovered
(p = 1.49E–02 in M2). We applied MRNM and also found
a significance for G×ETHI interaction (p = 2.72E–02 in M5).
However, R×ETHI interaction for EMA was not significant
regardless of using URNM or MRNM (M3 and M6). The
significant signal of the combined G×ETHI and R×ETHI
interactions was found in MRNM (p = 3.32E–03 in M4). This
was expected due to the large magnitude of orthogonal G×ETHI
interaction and there was dependency between G×ETHI and
R×ETHI interactions (Figure 1C and Supplementary Table 7).

Lastly, we analyzed MS and found no significant G×ETHI
signal from URNM analysis (M2), which was consistent with
the result of using MRNM (M5). The parameters of G×ETHI

TABLE 1 | P-values of likelihood ratio tests for model comparisons in carcass traits analyses using THI.

Index Model comparison Type of interactionto
be tested

CWa BFTb EMAc MSd

M1 H0 : Univariate GREML
H1 : URNM Full

Combined
G×ETHI and R×ETHI

T1 = α0 + e
T1 = α0 + α1 · c+ τ0 + τ1 · c

2.56E–01 1.10E–01 2.53E–03 9.55E–04

M2 H0 : URNM G× E
H1 : URNM Full

Orthogonal G×ETHI
e T1 = α0 + τ0 + τ1 · c

T1 = α0 + α1 · c+ τ0 + τ1 · c
6.78E–01 7.37E–01 1.49E–02 2.10E–01

M3 H0 : URNM R× E
H1 : URNM Full

Orthogonal R×ETHI
e T1 = α0 + α1 · c+ e

T1 = α0 + α1 · c+ τ0 + τ1 · c
2.22E–01 2.07E–01 4.01E–01 3.68E–04

M4 H0 : Bivariate GREML
H1 : URNM Full

Combined
G×ETHI and R×ETHI

T1 = α0 + e , T2 = β+ ε

T1 = α0 + α1 · c+ τ0 + τ1 · c , T2 = β+ ε

2.63E–02 2.31E–01 3.32E–03 3.30E–03

M5 H0 : MRNM R× E
H1 : URNM Full

Orthogonal G×ETHI T1 = α0 + τ0 + τ1 · c , T2 = β+ ε

T1 = α0 + α1 · c+ τ0 + τ1 · c , T2 = β+ ε

1.17E–01 7.95E–01 2.72E–02 2.46E–01

M6 H0 : MRNM G× E
H1 : URNM Full

Orthogonal R×ETHI T1 = α0 + α1 · c+ e , T2 = β+ ε

T1 = α0 + α1 · c+ τ0 + τ1 · c , T2 = β+ ε

2.99E–02 3.55E–01 1.70E–01 1.60E–03

T1 is the adjusted phenotype of main trait. T2 is adjusted THI values.
aCW: Carcass weight used in CW-THI interaction analysis.
bBFT: Back fat thickness used in BFT-THI interaction analysis.
cEMA: Eye muscle area used in EMA-THI interaction analysis.
dMS: Marbling score used in MS-THI interaction analysis.
eThe intersection between G×E and R×E interactions indicates a dependency due to the collinearity between the two interaction effects. Orthogonal G×E or R×E
interaction not includes the collinearity and can be detected from model comparison between interaction model and combined interactions model.
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FIGURE 1 | The magnitude of significance for G×ETHI and R×ETHI interactions and their collinearity. MRNM was used. The magnitude of significance for the
combined G×ETHI (red) and R×ETHI (blue) interaction effects was calculated by log-likelihood comparison between the full and null models for four carcass trait;
carcass weight (A), back fat thickness (B), eye muscle area (C) and marbling score (D) (see Supplementary Table 6). The intersection between the G×ETHI (red)
and R×ETHI (blue) interaction effects indicates a dependency due to the collinearity between the two interaction effects. The magnitude of dependency (the
intersection) between G×ETHI and R×ETHI interactions is the difference between the magnitude of combined G×E and R×E interactions and the sum of the
magnitudes of orthogonal G×E and R×E interactions (see Methods and Supplementary Table 6).

interaction components estimated from MRNM were not
different from zero (Supplementary Table 6). On the other hand,
we identified that the residual effects of MS can be modulated
by THI, indicating a highly significant R×ETHI interaction
from URNM and MRNM (p = 3.68E–04 and 1.60E–03 in M3
and M6). As shown in Supplementary Table 6, the estimated
variance of R×ETHI interaction was significantly different from
zero (0.046 ± 0.013). We also note that there was negligible
residual correlation between MS and THI (re = 1.59E–03 ±
1.46E–02 in Supplementary Table 5), which agreed with non-
significant estimates of cov(τ0, ε) and cov(τ1, ε) in MRNM
(Supplementary Table 6). We found a significant signal of
combined G×ETHI and R×ETHI interactions from MRNM
(p = 3.30E–03 in M4), mostly due to the large magnitude of
R×ETHI interaction (Figure 1D and Supplementary Table 7).

When THI Are Measured Based on the
Whole Growth Period
We used the last month before the slaughter day because it
is reported to be the most important period to determine the
phenotype of carcass traits (Kadim et al., 2004; Węglarz, 2010;
Pestana et al., 2012). Nonetheless, we have tested interaction
signals, considering the whole period, i.e., using the average of
THI values with average maximum temperature and average
relative humidity per month were obtained during the whole
period (from birth to slaughter day). We found that when
considering the THI values of the whole period, G×ETHI
interactions for CW and BFT became significant, which was
not significant when using the THI values of the last month
only. R×ETHI interaction for BFT also became significant from
the THI values of the whole period. However, the significant
G×ETHI interaction for EMA with the THI values of the last
month became non-significant when using the THI values of
the whole period (Supplementary Table 8). This indicates that
G×ETHI and R×ETHI interaction effects may be dynamically
distributed across the growth trajectory, depending on traits,
e.g., CW and BFT can be affected by the overall period
whereas EMA can be more affected by the period near slaughter
day. However, the evaluation of various THIs is beyond the

scope of this study and a further study is warranted to
describe this dynamic distribution of G×E across the growth
period for each trait.

Estimated Heritability From Bivariate
GREML and Multivariate RNM
We estimated consistent genetic variances from bivariate GREML
(the null model) and MRNM (combined G×ETHI and R×ETHI
model) (Supplementary Figure 2), confirming that estimated
genetic variance is invariant whether using the additive or the
interaction model (Ni et al., 2019). Supplementary Figure 2
shows that for CW, EMA, and MS that had orthogonal
G×ETHI and/or R×ETHI interaction, the residual variance
estimated from bivariate GREML was inflated compared to
MRNM, resulting in underestimated heritability (Figure 2).
For EMA, estimated residual variances from bivariate GREML
were significantly higher than those from MRNM (p = 2.92E–
02 in Supplementary Table 9), which was probably due to
the significant G×ETHI interaction effects. For CW and MS
that had significant effect of R×ETHI interaction, the estimated
residual variance from bivariate GREML also appeared to be
inflated, compared to MRNM (p = 3.20E–02 and 3.37E–05).
The residual variances from bivariate GREML and MRNM
for BFT were not significantly different from one another
(p = 3.73E–01 in Supplementary Table 9). It was also observed
that the ranks of estimated breeding values were changed
between the best and null model for EMA, CW and MS
that showed significant interactions (Supplementary Figure 3).
Based on the simulation data of the previous study (Ni et al.,
2019), the estimated genetic variance is invariant whether the
interactions exist or not, therefore the heritability difference is
mostly due to the difference of residual variances between two
models, which was also observed in this study (Figure 2 and
Supplementary Figure 2).

DISCUSSION

In this study, we used MRNM to estimate genetic and non-
genetic variance components that were changed with respect
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FIGURE 2 | Bivariate GREML versus MRNM heritability estimates. This figure indicates the heritability difference between bivariate GREML (MRNM without GxE
interaction) and MRNM with combined G×ETHI and R×ETHI for four carcass traits; carcass weight (CW), back fat thickness (BFT), eye muscle area (EMA), and
marbling score (MS). X-axis and Y-axis are the heritability estimated from bivariate GREML and combined G×ETHI and R×ETHI interaction model of MRNM,
respectively. MRNM with no interaction (i.e., Null model) is used as bivariate GREML. If bivariate GREML and MRNM estimates are identical, they are placed on the
diagonal line. For CW, EMA, and MS, we identified that the estimated residual variances from bivariate GREML and MRNM are significantly different (p = 3.20E–02,
2.92E–02, and 3.37E–05 for CW, EMA, and MS based on theory (Ni et al., 2019; see Supplementary Note 1). It is noted that the estimated genetic variances are
constant (Supplementary Figure 3), confirming that estimated genetic variance is invariant whether using an additive model or a non-additive interaction model (Ni
et al., 2019). Therefore, the heritability differences for CW, EMA and MS were mostly due to the difference of residual variance between two models.

to THI values, accounting for G-ETHI and R-ETHI correlations
correctly. From the MRNM analyses, we show that there
are significant effects of R×ETHI interactions for CW that
are orthogonal to each other. For BFT, there is not any
interactions and they are not orthogonal to one another.
We also show for EMA and MS that there are significant
combined G×ETHI and R×ETHI interactions, where EMA has
a significant signal for orthogonal G×ETHI whereas MS has a
significance for orthogonal R×ETHI. We found that interactions
are ubiquitous among carcass traits, indicating that it is necessary
to include interaction components in the genetic evaluation
of Hanwoo cattle.

Our results indicate that inappropriate models would detect
inflated interaction signals and produce biased estimates, which
agrees with previous studies (Schnyder et al., 2001; Ni et al.,
2019). For example, there was a notable difference between
URNM and MRNM in the detection of interactions for CW,

that is, the combined G×ETHI and R×ETHI interaction and the
orthogonal R×ETHI interaction were detected from MRNM only.
It is also noted that the significance of URNM tends to be different
from MRNM, given the results of p = 2.22E–01 (URNM) and
2.99E–02 (MRNM) for orthogonal R×ETHI interaction on CW,
and p = 1.49E–02 (URNM) and 2.72E–02 (MRNM) for G×ETHI
interaction on EMA. This difference was probably due to the
fact that MRNM is better to disentangle interaction effects from
(G-E and R-E) correlations between the traits (CW and EMA)
and THI (Ni et al., 2019). Furthermore, without considering
R×ETHI interaction appropriately, G×ETHI can be inflated as
two kinds of interactions can be confounded in a G×E analysis
without modeling R×ETHI (Supplementary Table 1; Ni et al.,
2019). The R×ETHI interaction may be generated by changing
farm environment factors, such as a decrease in feed intake and
feed efficiency, related to THI values (Young, 1983; Piao and
Baik, 2015; Sejian et al., 2018). In our analyses using MRNM,
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we have modeled G×ETHI and R×ETHI jointly and showed that
G×ETHI and R×ETHI interactions were successfully estimated on
CW, EMA, and MS.

THI values can be used as discrete variable by dividing
the samples arbitrarily into multiple groups, e.g., the quartile
of THI levels (Brügemann et al., 2011; Bohlouli et al., 2019).
Although Jaffrezic et al. (2000) reported that estimates from
models fitting continuous and discrete THI values were not
statistically different, it is obvious that individual differences in
THI values within each discrete group are ignored, which can
result in decreasing the power to detect the G×E interaction.
In our analysis, we used continuous THI values, which is likely
to produce more reliable estimates, compared to when using
arbitrary discrete THI values.

The estimated genetic correlation between the traits and
THI may be due to confounding between the genetic effects
and environmental factors such as farm location (or some
unknown factors), probably not due to the genuine genetic
effects of THI. Although this genetic correlation is not
biological correlation, this also can cause spurious G×E
signals as like G-E correlation would cause. Unless this
correlation is correctly accounted for, it is possible to get biased
interaction signals. This problem is likely to be reduced when
applying MRNM that can disentangle interactions from any
confounding correlation.

In the presence of interactions, the estimated heritability
in bivariate GREML was biased due to unmodeled G×E and
R×E interactions. This result agrees with previous studies, e.g.,
Bohlouli et al. (2019) reported that neglecting G×E interaction
results in an underestimated heritability in a simulation study.
Moreover, Ni et al. (2019) and Zhou et al. (2020) showed that
biased heritability can be estimated when R×E interaction is
ignored as well.

There are a number of limitations in this study. First,
we used a single environmental variable only, THI, although
there can be multiple (unknown) environmental variables that
can increase the proportion of phenotypic variance explained
by interaction effects. Second, the covariance structure used
to estimate R×E interaction in this study was based on an
identity matrix because there were no repeated measures for
the animals. It is desirable to collect repeated measures or
construct the covariance structure for R×E interaction based
on the product of multiple environmental variables, e.g., an
environmental relationship matrix, in a further study, which
can increase the power to estimate R×E interaction. Third,
only the first order of G×E or R×E interaction was considered
in this study, and a further study is required to validate our
findings with higher order interactions. Fourth, because the
period around the slaughter date is most important for the
quality of carcass traits (Kadim et al., 2004; Węglarz, 2010;
Pestana et al., 2012; Hagenmaier et al., 2016), we did not
explicitly evaluate the significance of interactions with THI
values measured on each month from the slaughter although
we show the results with the averaged THI of the whole period.
Fifth, we did not access specific information about the distance
from the slaughterhouse, types of transport, transport time and
road condition. Lastly, the model used in this study does not

estimate causality and a prior information about the causality is
essentially required.

CONCLUSION

In conclusion, the phenotypic variance of the carcass traits of
Hanwoo can be modulated by THI, revealing a novel genetic
and environmental architecture of the traits. For estimating G×E
interaction, MRNM is a flexible model that can accommodate a
continuous environmental variable such as THI, and correctly
account for confounding effects from R×E interaction as
well as G-E and R-E correlations. We report that there are
significant G×ETHI interaction for EMA and significant R×ETHI
interactions for CW and MS, which has an important implication
in the genetic evaluation of the traits (Jaffrezic et al., 2000;
Schnyder et al., 2001). Because of these significant interactions,
the estimated heritability of additive models can be biased,
suggesting that THI information should be used. Our results are
based on THI measured in the last month of the growth period,
which can be extend to each month in the whole period. We argue
that the estimation of genetic parameters should be based on
appropriate models to avoid any potential bias of estimates. These
results highlight finding of the novel genetic and environmental
architecture in beef cattle and should serve as a basis for future
studies aiming at estimation and genomic prediction.
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(2017). Relationship of temperature-humidity index with milk production and
feed intake of holstein-frisian cows in different year seasons. Thai J. f Vet. Med.
47, 15–23.

Lee, S., Do, C., Choy, Y., Dang, C., Mahboob, A., and Cho, K. (2019). Estimation
of the genetic milk yield parameters of Holstein cattle under heat stress
in South Korea. Asian Austr. J. Anim. Sci. 32, 334–340. doi: 10.5713/ajas.
18.0258

Lee, S.-H., Park, B.-H., Sharma, A., Dang, C.-G., Lee, S.-S., Choi, T.-J.,
et al. (2014). Hanwoo cattle: origin, domestication, breeding strategies
and genomic selection. J. Anim. Sci. Technol. 56:2. doi: 10.1186/2055-03
91-56-2

Lee, S. H., and van der Werf, J. H. (2016). MTG2: an efficient algorithm for
multivariate linear mixed model analysis based on genomic information.
Bioinformatics 32, 1420–1422. doi: 10.1093/bioinformatics/btw012

National Research Council [NRC] (1971). A Guide to Environmental Research on
Animals. Washington, DC: National Academies.

Ni, G., van der Werf, J., Zhou, X., Hyppönen, E., Wray, N. R., and Lee,
S. H. (2019). Genotype–covariate correlation and interaction disentangled
by a whole-genome multivariate reaction norm model. Nat. Commun.
10:2239.

Park, B., Choi, T., Kim, S., and Oh, S.-H. (2013). National genetic evaluation
(system) of Hanwoo (Korean native cattle). Asian Austr. J. Anim. Sci. 26,
151–156. doi: 10.5713/ajas.2012.12439

Pestana, J. M., Costa, A. S., Martins, S. V., Alfaia, C. M., Alves, S. P., Lopes,
P. A., et al. (2012). Effect of slaughter season and muscle type on the fatty
acid composition, including conjugated linoleic acid isomers, and nutritional
value of intramuscular fat in organic beef. J. Sci. Food Agric. 92, 2428–2435.
doi: 10.1002/jsfa.5648

Piao, M., and Baik, M. (2015). Seasonal variation in carcass characteristics of
Korean cattle steers. Asian Austr. J. Anim. Sci. 28, 442–450. doi: 10.5713/ajas.
14.0650

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D.,
et al. (2007). PLINK: a tool set for whole-genome association and population-
based linkage analyses. Am. J. Hum. Genet. 81, 559–575. doi: 10.1086/
519795

Frontiers in Genetics | www.frontiersin.org 10 December 2020 | Volume 11 | Article 576377

https://www.frontiersin.org/articles/10.3389/fgene.2020.576377/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2020.576377/full#supplementary-material
https://doi.org/10.3168/jds.2008-1928
https://doi.org/10.3168/jds.2008-1928
https://doi.org/10.1016/j.meatsci.2011.03.012
https://doi.org/10.1016/j.meatsci.2011.03.012
https://doi.org/10.1016/j.csda.2016.07.002
https://doi.org/10.1016/j.csda.2016.07.002
https://doi.org/10.1093/jas/sky280
https://doi.org/10.1093/jas/sky280
https://doi.org/10.3168/jds.2018-15329
https://doi.org/10.3168/jds.2018-15329
https://doi.org/10.1080/00401706.1974.10489207
https://doi.org/10.1080/00401706.1974.10489207
https://doi.org/10.2527/jas.2016-0707
https://doi.org/10.3168/jds.2010-4063
https://doi.org/10.5713/ajas.2005.1786
https://doi.org/10.5713/ajas.18.0187
https://doi.org/10.3168/jds.2008-1370
https://doi.org/10.2307/2110809
https://doi.org/10.1016/j.livsci.2012.11.015
https://doi.org/10.1016/j.livsci.2012.11.015
https://doi.org/10.5851/kosfa.2016.36.6.709
https://doi.org/10.2527/jas.2016-0935
https://doi.org/10.1017/s0003356100032220
https://doi.org/10.2527/2005.8371503x
https://doi.org/10.2527/jas.2011-4211
https://doi.org/10.2527/jas.2011-4211
https://doi.org/10.3168/jds.s0022-0302(00)74973-3
https://doi.org/10.3168/jds.s0022-0302(00)74973-3
https://doi.org/10.2527/af.2012-0060
https://doi.org/10.1016/j.meatsci.2017.04.262
https://doi.org/10.1016/j.meatsci.2003.08.001
https://doi.org/10.1016/j.meatsci.2003.08.001
https://doi.org/10.5713/ajas.2000.1467
https://doi.org/10.5713/ajas.2000.1467
https://doi.org/10.5713/ajas.18.0258
https://doi.org/10.5713/ajas.18.0258
https://doi.org/10.1186/2055-0391-56-2
https://doi.org/10.1186/2055-0391-56-2
https://doi.org/10.1093/bioinformatics/btw012
https://doi.org/10.5713/ajas.2012.12439
https://doi.org/10.1002/jsfa.5648
https://doi.org/10.5713/ajas.14.0650
https://doi.org/10.5713/ajas.14.0650
https://doi.org/10.1086/519795
https://doi.org/10.1086/519795
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-576377 December 18, 2020 Time: 21:32 # 11

Chung et al. Whole-Genome G×E Interaction in Hanwoo

Romanowska, J., Haaland, ØA., Jugessur, A., Gjerdevik, M., Xu, Z., Taylor, J.,
et al. (2019). Gene-methylation interactions: discovering region-wise DNA
methylation levels that modify SNP-associated disease risk. bioRxiv [Preprint].
doi: 10.1101/593053

Santana, M. Jr., Bignardi, A., Eler, J., and Ferraz, J. (2016). Genetic variation of the
weaning weight of beef cattle as a function of accumulated heat stress. J. Anim.
Breed. Genet. 133, 92–104. doi: 10.1111/jbg.12169

Schnyder, U., Hofer, A., Labroue, F., and Künzi, N. (2001). Genetic parameters of
a random regression model for daily feed intake of performance tested French
Landrace and Large White growing pigs. Genet. Select. Evol. 33, 635–658.

Seideman, S., Koohmaraie, M., and Crouse, J. (1987). Factors associated with
tenderness in young beef. Meat Sci. 20, 281–291. doi: 10.1016/0309-1740(87)
90083-0

Sejian, V., Bhatta, R., Gaughan, J., Dunshea, F., and Lacetera, N. (2018). Adaptation
of animals to heat stress. Animal 12(Suppl. 2), s431–s444.

Sellers, T. A., Weaver, T. W., Phillips, B., Altmann, M., and Rich, S. S. (1998).
Environmental factors can confound identification of a major gene effect:
results from a segregation analysis of a simulated population of lung cancer
families. Genet. Epidemiol. 15, 251–262. doi: 10.1002/(sici)1098-2272(1998)15:
3<251::aid-gepi4>3.0.co;2-7

Shin, J., and Lee, S. H. (2020). GxEsum: genotype-by-environment interaction
model based on summary statistics. bioRxiv [Preprint]. doi: 10.1101/2020.05.
31.122549

Soto-Ramírez, N., Arshad, S. H., Holloway, J. W., Zhang, H., Schauberger, E.,
Ewart, S., et al. (2013). The interaction of genetic variants and DNA methylation
of the interleukin-4 receptor gene increase the risk of asthma at age 18 years.
Clin. Epigenet. 5:1. doi: 10.1186/1868-7083-5-1
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