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Background and Purpose: Head and neck squamous carcinoma (HNSCC),
characterized by immunosuppression, is a group of highly heterogeneous cancers.
Although immunotherapy exerts a promising influence on HNSCC, the response rate
remains low and varies in assorted primary sites. Immunological mechanisms underlying
HNSCC pathogenesis and treatment response are not fully understood. This study
aimed to develop a differentially expressed genes (DEGs)–based risk model to predict
immunotherapy efficacy and stratify prognosis of HNSCC patients.

Materials and Methods: The expression profiles of HNSCC patients were downloaded
from The Cancer Genome Atlas (TCGA) database. The tumor microenvironment and
immune response were estimated by cell type identification via estimating relative subset
of known RNA transcripts (CIBERSORT) and immunophenoscore (IPS). The differential
expression pattern based on human papillomavirus status was identified. A DEGs-
based prognostic risk model was developed and validated. All statistical analyses were
performed with R software (version 3.6.3).

Results: By using the TCGA database, we identified DKK1, HBEGF, RNASE7,
TNFRSF12A, INHBA, and IPIK3R3 as DEGs that were associated with patients’ overall
survival (OS). Patients were stratified into the high- and low-risk subgroups according to
a DEGs-based prognostic risk model. Significant difference in OS was found between
the high- and low-risk patients (1.64 vs. 2.18 years, P = 0.0017). In multivariate
Cox analysis, the risk model was an independent prognostic factor for OS (hazard
radio = 1.06, 95% confidence interval [1.02–1.10], P = 0.004). More CD8+ T cells and
regulatory T cells were observed in the low-risk group and associated with a favorable
prognosis. The IPS analysis suggested that the low-risk patients possessed a higher
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IPS score and a higher immunoreactivity phenotype, which were correlated with better
immunotherapy response.

Conclusion: Collectively, we established a reliable DEGs-based risk model with
potential prognostic value and capacity to predict the immunophenotype of
HNSCC patients.

Keywords: risk model, head and neck squamous cell carcinoma, human papillomavirus, prognosis,
immunotherapy response

INTRODUCTION

Squamous cell carcinomas, originating from the oral cavity,
oropharynx, larynx, or hypopharynx, are collectively referred to
as head and neck squamous cell carcinoma (HNSCC). HNSCC
has become the sixth leading cancer by incidence worldwide,
whereas only fewer than 50% of patients could survive for 5 years
(Kamangar et al., 2006). About two-thirds of HNSCC patients
are diagnosed at late stages with poor prognosis. Patients with
locally advanced stage HNSCC are treated with surgery and
postoperative radiotherapy. Targeted drugs, such as cetuximab,
an epidermal growth factor receptor (EGFR)–specific antibody,
have been utilized for HNSCC and reached a limited response
rate, possibly due to its clinical heterogeneity (Licitra et al., 2011).
Novel therapeutic strategies are in urgent need.

Recent studies documented that the programmed
death 1 (PD-1) inhibitors such as pembrolizumab and
nivolumab significantly improve the overall survival (OS)
of recurrent/metastatic HNSCC patients. However, PD-1
inhibitors have merely low to moderate response rates (Chow
et al., 2016; Seiwert et al., 2016). The factors that determine
treatment response to PD-1 inhibitors in HNSCC are not
clear. The tumor microenvironment (TME) of HNSCC is
highly heterogeneous and predominantly immunosuppressive,
characterized by macrophages and myeloid-derived suppressor
cell recruitment (Canning et al., 2019), T cell and natural
killer (NK) cell dysfunction, regulatory T cell (Treg) activation
(Reichert et al., 2002), and alteration in cytokine release such
as enhanced interleukin-10 (IL-10) and IL-6 production and
reduced transforming growth factor β (TGF-β) and IL-12
secretion (Lathers and Young, 2004; Varilla et al., 2013). These
changes in TME might lead to a limited PD-1 inhibitor treatment
response. On the other hand, high-level expression of PD-1
and/or cytotoxic T-lymphocyte antigen 4 (CTLA4) on T cells,
as well as programmed death ligand 1 (PD-L1) up-regulation
on malignant cells and immune cells in a portion of HNSCC
patients, has been reported, which might dictate the treatment
efficacy of immune checkpoint inhibitors (ICIs) (Badoual et al.,
2013; Concha-Benavente et al., 2016; Mandal et al., 2016).
There is still a lack of a useful risk model that could predict the
response to immunotherapy and provide prognostic information
on HNSCC patients. Thus, deeper understanding of genomic
alterations and immune-related markers might help develop
such risk models.

Increased human papillomavirus (HPV) infection together
with tobacco and alcohol abuse has been identified as the most
important risk factors. HPV infection is mostly associated with

oropharyngeal cancer (Tanaka and Alawi, 2018). A recent study
in France showed 43.1% HPV-positive rate in HNSCC patients.
Compared with HPV-negative HNSCC patients, HPV-positive
HNSCC patients have a better OS and disease-free survival
(Mirghani et al., 2019). HPV viral genome could integrate into
the host genome and alter gene expression, affecting HNSCC
TME. For example, HPV infection significantly impairs IL-6
and macrophage colony-stimulating factor release, creating an
immunosuppressive microenvironment (Smola, 2017). Besides,
HPV-positive HNSCC has high immune infiltrates such as Tregs
and CD56+ NK cells (Mandal et al., 2016). Unfortunately, the
mechanism underlying HPV–TME interaction is still unclear.
Our study aims to construct a new prognostic risk model in
HNSCC. The respective relations between risk model, clinical
characteristics, and OS were investigated based on HPV-
related genomic expression alteration. Cell type identification
by estimating relative subset of known RNA transcripts
(CIBERSORT) was applied to quantify the immune cell
infiltration status in HNSCC TME. Finally, we explored the
hub immune biomarkers to have an in-depth understanding of
HNSCC immunotherapy.

MATERIALS AND METHODS

Patients Data
The gene expression data and clinical information of 479
HNSCC patients were downloaded from The Cancer Genome
Atlas (TCGA) data portal1. We further obtained 100 patients
with known HPV status determined by p16 IHC staining
and 83 patients with known HPV status determined by
in situ hybridization (ISH). The differences between two
methods were compared, and p16 testing was chosen for
further analysis. The list of immune-related genes (IRGs) was
achieved from the Immunology Database and Analysis Portal
(ImmPort) database that provides more than 2,000 IRGs and
annotations2.

Differential Gene Analysis and Functional
Enrichment of DEGs
The differentially expressed genes (DEGs) in HPV-positive
and HPV-negative HNSCC tissues were calculated using the
limma package of R software3. mRNAs with an adjusted

1https://portal.gdc.cancer.gov/
2https://immport.niaid.nih.gov
3https://www.r-project.org/
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P < 0.05 and | log2 (fold change)| >1 were figured out as
DEGs. Immune-related DEGs were identified by venn package.
Heat maps of immune-related DEGs were drawn using the
pheatmap package of the R software. ClusterProfiler package
was applied to perform Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analyses of
immune-related DEGs.

Identification of Prognosis-Related DEGs
Log-rank Kaplan–Meier survival analysis was performed to
seek out prognosis-related genes from aforementioned immune-
related DEGs.

Construction and Validation of the
Prognostic Risk Model
One hundred HNSCC patients with clear p16 status and complete
clinical information were used for identifying hub prognostic
immune-related signature and constructing prognostic risk
model. Twelve prognostic-related DEGs were analyzed by
a stepwise multivariate Cox proportional hazards regression
analysis. Six genes were extracted, and the risk score was
established with the following formula: risk score = expression
of gene 1× coefficient 1+ expression of gene 2× coefficient
2+ . . . expression of gene n× coefficient n. We calculated
the area under the curve (AUC) by using the survivalROC
package of R software to validate the predictive ability of
the prognostic risk model. Patients were stratified into the
high- and low-risk groups with a threshold of the median
risk score, and Kaplan–Meier survival analysis was performed

to estimate the survival difference. A heat map was also
created. To further validate and develop the prognostic
risk model, we explored it in all 479 HNSCC patients.
Relationship between risk score and clinical characteristics
in HNSCC patients was also investigated and visualized by
ggplot2 package.

Tumor-Infiltrating Immune Cells Fraction
Calculation
We calculated tumor-infiltrating immune-cell fraction of
each HNSCC patient by CIBERSORT algorithm (Newman
et al., 2015). The reference 22 leukocyte expression
data were downloaded from the website. Differences
of immune-cell fraction between the high- and low-
risk groups were visualized by pheatmap package and
vioplot package. Single sample Gene Set Enrichment
Analysis (GSEA) was applied to validate the differences
of immune-cell fraction by GSVA and GSEAbase
packages.

Estimation of the Immunoreactivity
As hub immune response biomarkers, the expressions of
PD-1, PD-L1, PD-L2, CTLA4, CD4, CD8A, and CD8B
between the high- and low-risk groups were analyzed
using Wilcoxon test. Based on machine learning and
tumor genotype, immunophenoscore (IPS), is calculated
and normalized with a range of 0 to 10. Higher scores
are correlated with higher immunoreactivity (Charoentong

FIGURE 1 | The clinical information acquisition and preprocessing of HNSCC patients from TCGA database.
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et al., 2017). IPS was downloaded from The Cancer
Immunome Atlas4.

Statistical Analysis
A χ2 test or Fisher exact test was used for calculating
the differences of clinical characteristics. Wilcoxon rank sum

4https://tcia.at/home

test was used to estimate the statistical significance of
continuous variables. For constructing the prognostic risk
model, univariate Cox regression analysis and multivariate
Cox regression analysis were used. Survival analysis was
performed by survival package (Holleczek and Brenner, 2013).
All the aforementioned statistics were analyzed by R software
(version 3.6.3). A two-sided P < 0.05 was considered to be
statistically significant.

TABLE 1 | Clinical characteristics between p16-positive and p16-negative HNSCC patients.

Variables Total (n = 100) n(%) HPV positive (n = 30) n(%) HPV negative (n = 70) n(%) P-value†

Age (years) 0.0586

≤65 76 (76.0%) 27 (90.0%) 49 (70.0%)

>65 24 (24.0%) 3 (10.0%) 21 (30.0%)

Gender 0.2210
◦Female 3 (10%) 16 (22.9%)

◦Male 27 (90%) 54 (77.1%)

Outcome 0.0581
◦Alive 72 (72.0%) 26 (86.7%) 46 (65.7%)

Dead 28 (28.0%) 4 (13.3%) 24 (34.2%)

T stage 0.0026**

T1 9 (9.0%) 4 (13.3%) 5 (7.1%)

T2 30 (30.0%) 16 (53.3%) 14 (20.0%)

T3 23 (23.0%) 4 (13.3%) 19 (27.2%)

T4 38 (38.0%) 6 (20.0%) 32 (45.7%)

N stage 0.1495

N0 32 (32.0%) 7 (23.3%) 25 (35.7%)

N1 15 (15.0%) 2 (6.7%) 13 (18.6%)

N2 49 (49.0%) 20 (66.7%) 29 (41.4%)

N3 1 (1.0%) 0 1 (1.4%)

NX 3 (3.0%) 1 (3.3%) 2 (2.9%)

M stage 0.0251**

M0 97 (97.0%) 27 (90.0%) 70 (100.0%)

MX 3 (3.0%) 3 (10%) 0

Clinical stage 0.8046

I 6 (6.0%) 2 (6.6%) 4 (5.7%)

II 14 (14.0%) 5 (16.7%) 9 (12.9%)

III 15 (15.0%) 3 (10.0%) 12 (17.1%)

IV 65 (65.0%) 20 (66.7%) 45 (64.3%)

NX, unknown N stage; MX, unknown M stage. †By χ2 test or Fisher exact test where appropriate.

FIGURE 2 | The DEGs and immune-related DEGs identified. (A) Volcano plot showing the differentially expressed genes in HNSCC positive and negative patients.
(B) Venn plot showing the intersection of DEGs and immune-related genes.
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RESULTS

Clinical Characteristics of HNSCC
Patients
We downloaded the clinical information of 479 HNSCC patients
from TCGA data portal. In this study, we compared the results
of HPV status identified by ISH or p16 testing, and there were
few discrepancies (Supplementary Figure 1 and Supplementary
Table 1). Thus, we chose p16 status, a widely used marker in
clinic, to identify HPV-driven HNSCC tumor. We identified 30
p16-positive and 70 p16-negative HNSCC patients (Figure 1
and Table 1). Compared with p16-negative patients, p16-positive
patients had more early T-stage diseases and fewer death events,
albeit the latter did not meet a statistical difference.

Identification of DEGs and
Immune-Related DEGs
Gene expression profiles of p16-positive and p16-negative
patients were obtained from the TCGA database. With a filter

criterion of adjusted P < 0.05 and |log2 (fold change)| >1,
658 DEGs were identified by limma package (Figure 2A), of
which 305 genes were up-regulated and 353 genes were down-
regulated. Seventy-three immune-related DEGs were extracted
from the intersection of DEGs and IRGs downloaded from
ImmPort database (Figure 2B), containing 28 up-regulated
genes and 45 down-regulated genes (Figure 3). GO and KEGG
enrichment analyses were conducted to uncover the allocated
biological process, cellular component, molecular function, and
pathway of immune-related DEGs. The identified immune-
related DEGs were found to be chiefly enriched in cytokine
and receptor related functions and pathways. As shown in
Figure 4A, the most significantly enriched terms were “cell
chemotaxis,” “clathrin-coated vesicle membrane,” and “receptor
ligand activity” under GO analysis. Top six enriched pathways
were “cytokine–cytokine receptor interaction,” “Viral protein
interaction with cytokine and cytokine receptor,” “EGFR tyrosine
kinase inhibitor resistance,” “ErbB signaling pathway,” “MAPK
signaling pathway,” and “chemokine signaling pathway” under
KEGG analysis (Figure 4B).

FIGURE 3 | Heat map of 73 immune-related DEGs between HNSCC positive and negative patients.
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FIGURE 4 | Function and pathway enrichment analysis of 73 immune-related DEGs. (A) Top significant GO enrichment analysis. (B) Six most significant KEGG
pathways revealing that genes are involved in lots of immune-related pathways.

Identification of Prognosis-Related DEGs
Kaplan–Meier survival analysis was conducted to identify genes
highly associated with OS of HNSCC patients. As shown in
Figure 5, low expressions of DKK1, HBEGF, AREG, TNFRSF12,
TGFA, RNASE7, PLAU, F2RL1, and IHNBA were significantly
related with a favorable prognosis, whereas low expressions
of CD79A, FAM3B, and PIK3R3 were linked to an ominous
clinical outcome.

Construction of Immune-Related Risk
Model
To explore the predictive value of aforementioned prognostic
genes, we conducted a stepwise multivariate Cox regression
analysis. Six of the 12 genes were extracted and considered
significantly linked to the OS of 100 HNSCC patients. Forest
plot showed DKK1, HBEGF, RNASE7, and TNFRSF12A were
associated with poor outcomes, and INHBA and PIK3R3 were
associated with favorable outcomes (Figure 6 and Table 2). Based
on the multivariate Cox regression analysis, we estimated the
values of six genes and constructed the risk scores as the following
formula: risk score = (0.194662 × expression of DKK1) +
(0.435235 × expression of HBEGF) + (0.254406 × expression

of RNASE7) + (0.411604 × expression of TNFRSF12A)
+ (−0.41064 × expression of INHBA) + (−0.67105 ×
expression of PIK3R3).

According to the formula, we calculated the risk score of
every HNSCC patient. We then divided the patients into low-
risk group (n = 50) and high-risk group (n = 50) by the median
risk score. A receiver operating characteristic curve of 3-year OS
(AUC = 0.815) was drawn to estimate the predictive ability of the
risk model (Figure 7A). High-risk score group revealed a worse
clinical outcome compared with low-risk group by Kaplan–
Meier analysis (Figure 7B). The distributions of risk score and
patients’ survival status are displayed in Figures 7C,D. Heat
map revealed gene expression differences between the high- and
low-risk groups (Figure 7E).

Validation of the Risk Model in Total
HNSCC Patients
To further validate the reliability of the constructed risk
model, the risk score of whole 479 HNSCC patients were
calculated and divided into either low-risk group (n = 187)
or high-risk group (n = 292). The AUC of 3-year OS was
0.624 (Figure 8A). Kaplan–Meier survival curves revealed
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FIGURE 5 | Kaplan–Meier analysis to identify prognosis-related DEGs. (A–I) The survival plot showed that expression of DKK1, HBEGF, AREG, TNFRSF12A, TGFA,
RNASE7, PLAU, F2RL1 and INHBA are correlated with a favorable prognosis. (J–L) Low expression of CD79A, FAM3B and PIK3R3 are correlated with a worse
prognosis.

FIGURE 6 | Risk model based on multivariate Cox analysis.

statistically significant difference between the high- and low-
risk groups (P < 0.001), and the high-risk group was

associated with a worse clinical outcome (Figure 8B). Based
on the risk score, the distribution, survival status, and gene
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TABLE 2 | Characteristic and coeff icients of risk model genes.

Gene Log FC Regulation Coefficient HR (95% CI) P-value

DKK1 −1.089 Down 0.194662 1.21 (0.93–1.59) 0.154

HBEGF −1.159 Down 0.435235 1.54 (1.01–2.36) 0.045*

RNASE7 −1.378 Down 0.254406 1.28 (0.96–1.73) 0.089

TNFRSF12A −1.343 Down 0.411604 1.51 (0.89–2.57) 0.130

INHBA −2.347 Down −0.41064 0.66 (0.45–0.99) 0.044*

PIK3R3 1.255 Up −0.67105 0.51 (0.27–0.98) 0.043*

CI, confidence interval; HR, hazard radio; FC, fold change. *p < 0.05, **p < 0.01, ***p < 0.001.

FIGURE 7 | Construction of six-gene risk model in 100 HNSCC patients. (A) Receiver operating characteristic (ROC) curve of 3 years overall survival (OS). The area
under the red ROC curve is 0.815. (B) Kaplan–Meier survival curve of the OS in the high- and low-risk groups. (C) The distribution plot of risk score. (D) The survival
status plot associated with risk score. (E) Six hub DEGs’ expression heat map of the high- and low-risk groups.

expression differences were also evaluated and visualized
(Figures 8C–E). Similar results were observed in whole 479
TCGA HNSCC patients, illustrating the reliable predictive
ability of risk model.

Association Between the Risk Score and
Clinical Characteristics and Their
Prognostic Roles
The relationship between the risk model and clinical
characteristics were analyzed by univariate and multivariate
Cox regression analyses. Age older than 65 years, advanced N
stage, and metastatic disease were significantly associated with

unfavorable prognosis (Table 3). Risk score could serve as an
independent predictive factor for HNSCC patients. Relationship
between risk score and clinical characteristics were also analyzed
(Figure 9), in which risk score and T stage seemed closely
linked to each other.

Differential Immune Landscape in the
High- and Low-Risk Groups
CIBERSORT algorithm was applied to demonstrate the
relationship between risk score and tumor-infiltrating immune-
cell fractions. Samples with P < 0.05 were considered statistically
different. Immune-cell fraction of 448 of 479 HNSCC patients
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FIGURE 8 | Construction of 6 genes risk model in whole 479 HNSCC patients. (A) ROC curve of 3 years overall survival (OS). The area under the red ROC curve is
0.624. (B) Kaplan–Meier survival curve of the OS in the high- and low-risk groups. (C) The distribution plot of risk score. (D) The survival status plot associated with
risk score. (E) 6 hub DEGs expression heat map of the high- and low-risk groups.

TABLE 3 | Univariate analysis and multivariate analysis of risk model.

Variables Univariate analysis Multivariate analysis

HR (95% CI) P-value HR (95% CI) P-value

Age 1.40 0.018* 1.39 0.025*

(1.05–1.85) (1.04–1.86)

Sex 0.74 0.051 0.82 0.212

(0.55–1.00) (0.66–1.11)

T stage 1.08 0.256 1.15 0.278

(0.94–1.25) (0.88–1.50)

N stage 1.13 0.104 1.26 0.034*

(0.97–1.32) (1.01–1.58)

M stage 4.70 0.002** 4.82 0.004**

(1.73–12.78) (1.64–14.14)

Clinical stage 1.09 (0.94–1.28) 0.237 0.84 0.315

(0.60–1.17)

Risk score 1.06 0.001** 1.06 0.003**

(1.02–1.10) (1.01–1.10)

CI, confidence interval; HR, hazard radio. *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 9 | The relationship between the risk score and clinical characteristics. (A–F) Beeswaram plot showed the distributions and differences between male and
female (A), age >65 years old and <= 65 years old (B), early stage and advanced stage (C), T stage (D), N stage (E) and M stage (F).

was calculated for further analyses (Figure 10A). The abundance
of immune cells between 268 high-risk and 180 low-risk patients
were normalized and compared by Wilcoxon rank sum test
(Figure 10B). CD8+ T cells, Tregs, naive B cells, naive CD4+ T
cells, and resting mast cells were evidently abundant in low-risk
TME, whereas fewer resting NK cells, activated dendritic cells,
activated mast cells, eosinophils, and neutrophils were present.
A univariate Cox regression analysis–based forest plot displayed
the association between immune cells and OS of HNSCC patients
(Figure 10C). Using ssGSEA analysis, we validated the differences
of immune cells between the low- and high-risk groups, and
similar results were observed (Supplementary Figure 2). We
further investigated the expression of hub biomarkers of ICI
response (Figure 11A). The expressions of PD-1, CTLA4, PD-L2,
CD4, CD8A, and CD8B were significantly higher in low-risk
samples. Differences between two groups demonstrated that
the specific changes of tumor-infiltrating immune cells might
be associated with the OS of HNSCC patients. The scores of
IPS and IPS with CTLA4 blockers, IPS with PD1/PDL1/PDL2
blockers, IPS with CTLA4, and PD1/PDL1/PDL2 blockers were
calculated (Figures 11B–E), and IPS score in low-risk group was
significantly higher compared with that in the high-risk group.

DISCUSSION

The incidence of HNSCC is continuously increasing around
the world and may surpass that of cervical cancer (Marur
and Forastiere, 2016). However, only a small proportion of
HNSCC patients respond to and gain benefits from targeted
drugs and ICI therapies (Concha-Benavente et al., 2016; Ferris
et al., 2018). It is urgent and critical to find inventive ways to
predict response to ICI treatment. Accumulating evidences have
documented the potential effects of HPV on HNSCC patients
in several aspects including genomic integration, carcinogenesis,
tumor angiogenesis, and TME (Troy et al., 2013; Parfenov et al.,

2014; Cao et al., 2019; Wookey et al., 2019). Therefore, HPV
status of HNSCC patients provides a promising entry point for
predicting response to ICI therapy and unearthing the elusive
molecular mechanism. Within this study, we aim to further
inspect how HPV infection impacts malignant gene expression
profile and response of HNSCC to ICI therapy. In addition, it
is of vital importance to develop a prognostic immune signature
based on immune-related biomarkers, which might enhance the
therapeutic efficacy of various HNSCC patients.

It has been demonstrated that the p16 protein is overexpressed
in the majority (82.2%) of HPV-associated (defined as HPV
DNA positive) oropharyngeal carcinoma, and the detection of
p16 by immunohistochemical staining is routinely used as a
reliable surrogate marker in clinical practice and research (Li
et al., 2004; El-Naggar and Westra, 2012; Ndiaye et al., 2014).
Compared with other detection methods such as HPV DNA and
E6/E7 mRNA detection by ISH that are usually expensive and
time-consuming, p16 immunohistochemical staining is relatively
inexpensive, timesaving, and convenient, so it is widely used
for clinical detection and recommended by the modified eighth
AJCC/UICC cancer staging system regarding HPV positivity
(Lydiatt et al., 2017).

Previous studies pointed out that HPV infection and
TME seem impossibly remote. HPV-positive status is a
proficient effector in lymphocyte recruitment in the TME
of cervical cancer (Wood et al., 2016). Along similar
lines, in head and neck cancer, HPV-positive cell lines are
competent in lymphocyte recruitment and cytokine secretion
compared to HPV-negative cell lines (Stone et al., 2014).
Moreover, HPV-positive tumor could polarize macrophages
toward classically activated phenotype (M1) and augment
antitumoral IL-6 secretion (Chen et al., 2019). In our study,
it is highly likely that immune-related DEGs were allocated
to cytokines and receptors–related functions and pathways,
indicating that HPV infection might serve a dominant role
in shaping the TME by altering the expression and cell
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FIGURE 10 | Tumor-infiltrating immune-cell fraction estimated by CIBERSORT. (A) The proportion of immune cells in every sample. (B) The comparison of
immune-cell fractions between the high- and low-risk groups. (C) Forest plot based on univariate Cox analysis. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

recognition of cytokines, with the molecular mechanisms
remaining uncertain.

Because of the complexity and heterogeneity of tumor
biological behavior and immune response, it is unreliable to apply
one single biomarker to fully illustrate and predict the prognosis
and therapeutic response. Therefore, prediction model based
on multibiomarkers may be a more effective and accurate tool,
stratifying HNSCC patients into high- and low-risk subgroups
and identifying those that might achieve clinical benefits from
ICIs or other immunotherapies.

We developed and validated an immune-related prognostic
risk model that gave an accurate prediction of survival outcome
for HNSCC patients based on immune-related DEGs. Most

of these genes hold a decisive place in expression of cytokine
and its receptors. Overexpression of DKK1, an identified
proinflammatory cytokine in quite a number of cancers (Chae
and Bothwell, 2019), could boost malignant cell proliferation,
migration, and invasiveness and give rise to unfavorable clinical
outcomes in HNSCC (Shi et al., 2014; Gao et al., 2018).
HBEGF serves as a crucial component of EGFR, mediating
tumor cell proliferation and bringing about cetuximab resistance
(Hatakeyama et al., 2010; Huang et al., 2014). Therefore, HBEGF
expression contributes to locating the potential beneficiaries
of cetuximab treatment. INHBA encodes proteins of TGF-
β superfamily members, which is considered as hub gene in
lymphatic metastasis and predictor of unsatisfying OS in HNSCC
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FIGURE 11 | (A) The differential expression of immune checkpoint inhibitor (ICI)–associated biomarkers. (B) IPS score distribution plot. (C) IPS–CTLA4 blocker score
distribution plot. (D) IPS–PD1/PDL1/PDL2 blocker score distribution plot. (E) IPS–CTLA4 and PD1/PDL1/PDL2 blocker score distribution plot.

patients (Kelner et al., 2015; Chang et al., 2016). Moreover, in
terms of PIK3R3, RNASE7, and TNFRSF12A, similar results
have been obtained in other researches, indicating that these
genes might be engaged in immune-related pathways and
promote tumor progression (Scola et al., 2012; Wang et al.,
2015; Eichler et al., 2016; Yang et al., 2018; Sun and Feng,
2020). In this study, expression patterns of these genes in
HNSCC patients were suggestive to be capable of modifying
the TME, adjusting immune response, initiating tumorigenesis,
and predicting prognosis. Given the high AUC and statistically
significant differences of OS between two groups, immune-
related risk model functioned as a strong indicator of OS in
HNSCC patients. Furthermore, the risk score, correlated with T
stage, might act as an independent prognostic factor.

Composition of tumor-infiltrating immune cells was
estimated by CIBERSORT and ssGSEA for each sample.
Abundance of CD8+ T cells and Tregs, was richer in the
low-risk group and was correlated with favorable prognosis. In
this study, patients with higher CD8+ T cell infiltration had
a better clinical outcome, which was consistent with previous
investigations (Balermpas et al., 2014; de Ruiter et al., 2017).
It is a well-acknowledged fact that Tregs work as an adverse
factor in antitumor immunity. Quite the reverse, recent studies

demonstrated that compared with HPV-negative HNSCC
patients, HPV-positive patients have a higher level of Treg
infiltration (Mandal et al., 2016) and usually a longer survival
time (Mirghani et al., 2019). Likewise, higher infiltration of Tregs
and expression of immune checkpoints are revealed in HNSCC
microenvironment, indicating a complicated relationship
between Tregs and the antitumor immune response (Mandal
et al., 2016; Saloura et al., 2019). High-degree infiltration of Tregs
and its correlation with better prognosis observed in this study
were possibly due to the interaction between Tregs and other
immune components in the TME.

The hub biomarkers of ICI were explored. Low-risk patients
displayed up-regulation of PD-1 and CTLA4. Meanwhile, in the
risk model, patients in the low-risk group had a remarkably
increased IPS score. Aleix and colleagues described that PD-
1 gene expression is associated with longer progression-free
survival (Prat et al., 2017). Furthermore, anti-CTLA4 therapy
could enhance antitumor effect via Treg exhaustion (Selby et al.,
2013; Simpson et al., 2013). Hence, high infiltration of Tregs
in the low-risk group may be conducive to combination of
ICIs and depletion strategies targeting Tregs. Collectively, these
results demonstrated that the TME of low-risk group had a
higher immunoreactivity. The risk model might hold the capacity
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to determine tumor response to immunotherapy in HNSCC
patients. IPS with CTLA4 and/or PD1/PDL1/PDL2 blocker
scores were of no statistical significance, revealing that
the prediction value of the risk model in response to
immunotherapy was not fully understood and required
further research.

In conclusion, we constructed a gene model based on HPV
status, providing a possible method to estimate the TME
and predict OS and response to immunotherapy in HNSCC
patients. Despite the aforementioned promising results, there
still exist some limitations. First, the datasets are based on a
public database. Second, the number of HPV-positive HNSCC
patients is relatively small. Whether a larger amount of cases
enrolled would affect the study results remains unknown.
In addition, we focused on the DEGs within p16-positive
and -negative groups, which is only one of the potentially
useful stratifying strategies in head and neck cancers. Further,
we focused only on the biological function and pathway
enrichment of immune-related DEGs due to limited research
scope, and many potential DEGs failed to be investigated.
However, the promising results carry more weight over
these limitations.

CONCLUSION

This study has examined the differential expression pattern
between the HPV-positive group and HPV-negative group
defined by p16 status, and 12 DEGs were perceived as prognosis-
related genes. A six-immune-related DEGs–based risk model was
constructed, and the predictive ability, TME, and ICI response
were consequently estimated. The risk model is reliable and
provides a possible method for clinical outcome prediction and
immunotherapy improvement.
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