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Clear cell renal carcinoma (ccRC) is a highly heterogeneous and progressively malignant

disease. Analyzing ccRC progression in terms of modifications at the molecular and

genetic level may help us to develop a broader understanding of its patho-physiology

and may give us a glimpse toward improved therapeutics. In this work, by using

TCGA data, we studied the molecular progression of the four main ccRC stages (i,

ii, iii, iv) in two different yet complementary approaches: (a) gene expression and (b)

gene co-expression. For (a) we analyzed the differential gene expression between each

stage and the control non-cancer group. We compared the progression molecular

signature between stages, and observed those genes that change their expression

patterns through progression stages. For (b) we constructed and analyzed co-expression

networks for the four ccRC progression stages, as well as for the control phenotype,

to observe whether and how the co-expression landscape changes with progression.

We separated genomic interactions into intra-chromosome (cis-) and inter-chromosome

(trans-). Finally, we intersected those networks and performed functional enrichment

analysis. All calculations were made over different network sizes, from the top 100

edges to top 1,000,000. We show that differential expression is quite similar between

ccRC progression stages. However, interestingly, two genes, namely SLC6A19 and PLG

show a significant progressive decrease in their expression according to ccRC stage,

meanwhile two other genes, SAA2-SAA4 and CXCL13 show progressive increase.

Despite the high similarity between gene expression profiles, all networks are substantially

different between them in terms of their topological features. Control network has a

larger proportion of trans- interactions, meanwhile for any stage, the amount of cis-

interactions is higher, independent of the network cut-off. The majority of interactions

in any network are phenotype-specific. Only 189 interactions are shared between the

five networks, and 533 edges are ccRC-specific, independent of the stage. The small

resulting connected components in both cases are formed by genes with the same

differential expression trend, and are associated with important biological processes,

such as cell cycle or immune system, suggesting that activity of these categories follows

the differential expression trend. With this approach we have shown that, even if the
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expression program is similar during ccRC progression, the co-expression programs

strongly differ. More research is needed to understand the delicate interplay between

expression and co-expression, but this is a first approach to enclose both approaches in

an integrative view aimed at a deeper understanding in gene regulation in tumor evolution.

Keywords: clear cell renal carcinoma, gene co-expression networks, SLC6A19 progressive underexpression,

PLG progressive underexpression, cancer progression stages, SAA2-SAA4 progressive overexpression, CXCL13

progressive overexpression, loss of long-range co-expression

1. INTRODUCTION

The term renal cell cancer refers to a heterogeneous group
of cancers derived from renal tubular cells. In the last years,
pathology-based and basic cancer research programmes have
characterized different renal tumor entities (Moch, 2013). Renal
cell carcinoma is a group of malignancies arising from the
epithelium of the renal tubules (Moch, 2013). Renal cancer may
be seen as several histologically defined cancers. Those present
different genetic drivers, epigenetic marks, clinical courses, and
also therapeutic responses (Ricketts et al., 2018).

Histologically, renal cancer has been divided into three
major subtypes, clear cells, papillary renal cell carcinoma, and
chromophobe renal cell carcinoma (Moch et al., 2016). Clear
cell renal cell carcinoma (ccRC) is the most common subtype
(≈75%); papillary renal cell carcinoma (PRCC) accounts for 15–
20% and is subdivided into types 1 and 2; and chromophobe renal
cell carcinoma (ChRCC) represents≈5% of renal cell carcinomas
(Jaffe et al., 2001; Moch et al., 2016).

Molecular and genomics characterization of these tumors
have been conducted elsewhere. For instance, the Cancer
Genome Atlas Consortium (TCGA, The Cancer Genome Atlas
Research Network, 2013, 2016) has provided the most common
deregulated processes in kidney cancer in general (The Cancer
Genome Atlas Research Network, 2013), as well as in ccRC
in particular (The Cancer Genome Atlas Research Network,
2016). Events such as Krebbs cycle downregulation, upregulation
of pentose phosphate pathway genes or important genomics
rearrangements in TERT region have been observed as recurrent
deregulated processes.

Inside the ccRC subtype, particular subgroups have been
identified. Such subgroups have been related to epigenetic
modifications, somatic mutations, or genomic rearrangements
within the TERT promoter region (Ricketts et al., 2018). Proteins
associated withWarburg effect, as well as molecular predictors of
late stage (Neely et al., 2016), have also been associated to ccRC.
Several references regarding mutations of von Hippel-Landau
(VHL) tumor suppressor gene have also been reported (Kaelin,
2004; Cowey and Rathmell, 2009; Arjumand and Sultana, 2012).

Regarding epigenetic modifications, comprehensive revisions
have reported an increasing number of them (see Jung et al.,
2009; Redova et al., 2011; Li et al., 2015). For instance, for
ccRC, miR-99a, miR-106a, miR-125b, miR-144, miR-203, miR-
378, or mir-28-5p have shown a dual behavior, oncogenic and

Abbreviations: ccRC, Clear Cell Renal Carcinoma; Log2FC, Log2Fold Change;MI,

Mutual Information; TCGA, The Cancer Genome Atlas.

oncosuppressive (Wang et al., 2016; Braga et al., 2019). Genes
such as the aforementioned VHL, or RASSF1A, CDH1, and
APAF1 have been found to be susceptible to hypermethylation
(Dmitriev et al., 2014; Braga et al., 2015).

Despite all those advances in characterizingmolecular features
of renal cancer, histo-pathological aspects still contain crucial
information for accurate clinical interventions. In those terms,
progression stages (according to the Gold standard reference in
cancer staging, Edge et al., 2010) provide us important elements
to have, in combination with molecular characteristics, a broader
and more integrative point of view regarding renal cancer.
Hence, understanding progression in terms of molecular and
genetic factors could help us to understand the disease with
higher accuracy.

In this work, we used information from molecular and histo-
pathological factors to unveil specific characteristics that change
during progression stages. To this end, we focused on the
molecular progression of clear cell Renal carcinoma (ccRC) by
two different yet complementary approaches: (a) gene expression
and (b) gene co-expression. For (a) we analyzed the differential
expression of all genes at the four progression stages vs. the
control non-cancer group, and between stages, to observe the
gene expression pattern for each progression stage.We compared
the progression signature between stages, and observed whether
or not a set of genes change their expression patterns through
progression stages.

For (b), we constructed and analyzed co-expression networks
for the four ccRC progression stages, as well as for the control
phenotype and compared between them, in order to have a
quantitative indicator to distinguish and observe whether or not
the co-expression landscape changes progressively.

In previous works from our group, we observed abrupt
changes in the way that genes co-express: for instance, we
have documented a substantial decrease of inter-chromosome
(trans-) gene-gene interactions in breast cancer (Espinal-
Enriquez et al., 2017; Dorantes-Gilardi et al., 2020; García-Cortés
et al., 2020). We decided to separate gene-gene interactions
into intra-chromosome (cis-) and inter-chromosome (trans-).
We performed functional enrichment analyses for each whole-
network, and also by communities inside networks, by assuming
that network structure may guard functional features of an
oncogenic phenotype (Alcalá-Corona et al., 2016, 2017, 2018;
Hernández-Lemus et al., 2019).

We wanted to quantify similarities and differences between
consecutive progression stages, since with this information one
may isolate those features that are conserved or change between
one stage to the following. To do so, we obtained the network
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FIGURE 1 | Workflow. Graphical representation of the computational pipeline performed here. (Left) Gene-based analysis. (Right) Network-based analyses.

intersections and differences between consecutive progression
phenotypes, starting with Stage I vs. Control network, Stage II
vs. Stage I, etc. In a complementary task, we intersected the
five networks (the four stages and control) to observe which
genes and interactions are conserved throughout all phenotypes.
Additionally, we intersected the four progression stage networks
to observe those interactions that appear in cancer but are not
present in a healthy phenotype. The resulting networks were
then analyzed via over-representation analysis. We observed
those processes involved in the resulting networks and also the
respective differential expression patterns.

2. MATERIALS AND METHODS

A graphical representation of our methodology can be found
in Figure 1. Our workflow can be broadly divided into two
main branches: gene-based and network-based analyses. These
in turn, can be divided into four main steps: (1) Data
acquisition, (2) Pre-processing, (3) High-level processing, and (4)
Functional enrichment.

2.1. Data Acquisition
We obtained the complete dataset from GDC clear cell renal
carcinoma repository (https://portal.gdc.cancer.gov/repository).
For this purpose, we developed a set of scripts that uses as input
the TCGA project transcriptomic data andmetadata (in this case,
ccRC). The scripts collect all transcriptome profiling samples, as
well as clinical data available for the same samples. The RNA-seq

TABLE 1 | RNA-Seq data from ccRC patients per progression stage.

Tissue Control Stage I Stage II Stage III Stage IV

ccRC 72 272 59 123 82

transcriptomic profiles were pruned, keeping those genes with
valid numeric values and its associated ENSEMBL ID.

Tumor samples were separated into stages according to the
tumor_stage variable, provided by TCGA for each clinical file. In
the case that tumor_stage value was not reported, we decided to
discard that sample.

We used RNA-Seq level 3 gene expression files from The
Cancer Genome Atlas from 608 ccRC samples. We divided these
patients by cancer progression stage, as well as control non-
tumor tissue. Number of cases for each stage is shown in Table 1.

2.2. Data Pre Processing
We carried out a data pre-processing pipeline in three phases. (1)
pre-normalization quality control, (2) batch and bias corrections
(normalization) and (3) post-normalization quality control.
Data pre-processing was conducted as previously (Drago-García
et al., 2017; Espinal-Enriquez et al., 2017; de Anda-Jáuregui
et al., 2019b,c; García-Cortés et al., 2020; Serrano-Carbajal
et al., 2020). Briefly, we assessed (a) biotype abundances, to
assure that samples contained protein coding genes. (b) gene
counts expression boxplots were also evaluated per biotype to
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confirm that the highest median expression corresponded to
protein coding genes. (c) Finally, we evaluated the number of
detected genes per sample, by using saturation plots. These steps
were performed with standard R package NOISeq (Tarazona
et al., 2011). Normalization method for correct Length bias
(full) and GC content (full) was Within-lane. Additionally we
applied a “TMM” normalization to eliminate RNA composition
biases between libraries and prepare data to find Differentially
Expressed Genes. Risso et al. (2011). PCAs and plots are shown
in Supplementary Material 1. Genes were filtered by mean
expression values (mean > 10). Normalization to correct
batch effect was performed by using ARSyN (Nueda et al.,
2012) implemented in NOISeq package. Scripts to perform pre-
processing analysis can also be found at https://github.com/
josemaz/kidney-stages.

2.3. Differential Expression
Differential gene expression analysis was performed to compare
gene expression between each ccRC stage vs. control. This
analysis was performed via empirical Bayes moderation of the
standard errors using edgeR package (Robinson et al., 2010).
To consider a gene as differentially expressed, we considered a
Log2Fold Change (|LFC| > 2.0) cut-off.

2.3.1. Statistical Significance and Multiple

Hypothesis Testing
To account for multiple comparisons of gene profiles, we
implemented Benjamini & Hochberg False Discovery Rate
correction calculations. The FDR-adjusted p-value cut-off was set
to be 0.05 for each comparison.

We also performed a multi-group comparison based on
Likelihood ratio test (LRT) method to obtain all group contrasts
(Love et al., 2014).With this method, implemented in the DEseq2
R package, we used the deviation of each group in the calculation
of p-values for every contrast. We filtered genes with a corrected
p-value less than 0.05 and log-fold change −0.5 > |LFC| > 0.5
for each contrast. This last, searching for differentially expressed
genes, not only between genes of cancer stages and control
samples, but also between stages.

Since ccRC data is separated into stages, we observed those
genes that change in agreement with the stages, i.e., differential
expression increases or decreases progressively with stages. To
determine the significance of those differences, we performed a
Wilcoxon signed rank test between individual gene expression at
different stages.

2.4. Network Analysis
We used the mutual information (MI) statistical dependence
measure to quantify co-expression between genes. We used
the MI implementation on the ARACNe algorithm (Margolin
et al., 2006), as previously described (Alcalá-Corona et al., 2017,
2018; Espinal-Enriquez et al., 2017; de Anda-Jáuregui et al.,
2019c; García-Cortés et al., 2020), to determine all gene-gene
interactions in the genome for the four ccRC stages and for
control networks. With this procedure we inferred five networks,
one for each stage and one for the control phenotype.

2.4.1. Network Interactions Assessment
In order to have those interactions with a higher relevance (as
given by their mutual information values) for each phenotype,
and in view of the so-called network sparsification problem,
(determination of the number of significant edges that represent
better the network structure consistent with the data), we decided
to perform network cut-offs spanning over several scales well
above and well beyond our working thresholds to account for
possible size-effects. The cut-off thresholds range from the top
100 interactions, to the top 1,000,000 interactions, i.e., five orders
of magnitude in network size. We performed those cut-offs to
assess whether the effects under study, such as in the cis- rates
was indeed due to network size.

Network visualizations were performed using Cytoscape V
3.8.1 (Shannon et al., 2003), as well as the iGraph Python library
(Csardi and Nepusz, 2006).

Since a relevant question underlies on whether in these
networks, the effect of loss of trans- co-expression was also lost as
in breast cancer (Espinal-Enriquez et al., 2017; de Anda-Jáuregui
et al., 2019a,b,c; Dorantes-Gilardi et al., 2020; García-Cortés et al.,
2020), we separated co-expression interactions into cis- (intra-
chromosome), and trans- (inter-chromosome). We observed the
cis-/trans- ratio for each phenotype.

2.5. Stages Intersections
One of the most important issues that might be addressed
with a dataset such as the one we have, by means of the
methodology exposed here, is how the co-expression landscape
is modified throughout cancer progression. Derived from the
latter, we compared the differences and intersections between
the control network, and each progression stage. First, we
observed the differences between network interactions, i.e., those
gene-gene interactions that are not shared between phenotypes.
Concomitantly, we observe those genetic interactions shared
between control network and any ccRC progression stage.

Additionally, a question derived from the latter, is which
interactions are conserved between all phenotypes, and also
important, between cancer stages only. For that purpose, we
performed a multi-group intersection to obtain the sub-network
integrated by those links shared by all phenotypes, and also the
ccRC-only sub-network.

2.6. Functional Enrichment
Functional enrichment analysis was performed using the
g:profiler (Raudvere et al., 2019) API for Python. g:Profiler
uses the hypergeometric test to measure the significance of a
functional term in the input gene list (Reimand et al., 2007, 2011,
2016). Multiple testing corrections were performed by the g:SCS
algorithm as implemented in g:Profiler with significance level a =
0.05; and a False Discovery Rate of 0.05.

It is worth noticing that in order to consider the network
structure in the functional enrichment, the g:SCS algorithm
was implemented over network communities, and not over
the whole networks. For community detection in networks we
performed the Infomap algorithm (Rosvall and Bergstrom, 2008),
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FIGURE 2 | Differential gene expression for each ccRC stage. In these volcano-plots, the differential expression between each stage vs. control samples is depicted.

Red dots represent overexpressed genes, meanwhile underexpressed ones are in blue. Notice that underexpressed genes are more broadly distributed than

overexpressed ones, and Log2FC values are similar in the four figures; however, B-statistics change depending on the ccRC stage.

as implemented in Alcalá-Corona et al. (2016), Alcalá-Corona
et al. (2017), and Alcalá-Corona et al. (2018).

In order to provide a clear and easy-to-follow manner to
reproduce the results reported here, the five expression matrices,
and all code for developing this work are provided in https://
github.com/josemaz/kidney-stages. In this repository it can be
found the code to reproduce all results, since the data download
until functional enrichment.

3. RESULTS AND DISCUSSION

3.1. Differential Expression Is Similar
Between ccRC Stages
After low-level processing of the four tumor stage data and
control samples, we performed differential expression

analysis for each stage compared with control samples
(Supplementary Material 2).

Figure 2 shows volcano plots for differentially expressed genes
in the four stages. Large similarity in the distribution of genes
and range of values for the four stages is visible. The rank of
differentially expressed genes is also similar. Table 2 shows the
Spearman’s correlation of ranks between the four stages. As it can
be observed, Spearman’s ρcorr > 0.948 in all cases, evidencing the
similitude between differentially expressed gene ranks.

3.1.1. SLC6A19 and PLG Genes Show Progressively

Decreasing Expression
Despite the fact that the four volcano plots are similar, and
Spearman’s correlation between all stages is high, some genes
appear to be expressed according to tumor progression stages,
such as the case of genes observed in Figure 3. Interestingly,
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SLC6A19 and PLG, both show a remarkable decrease in their
expression during progression stages (Figure 3).

3.1.2. SAAC2-SAAC4 and CXCL13 Genes Show

Progressively Increasing Expression
Now regarding the overexpression of genes during ccRC
progression, we found that only two genes, namely SAAC2-
SAAC4 and CXCL13 genes, are overexpressed according to
tumor progression stages, as it can be observed at the
left side of Figure 3. It is worth to note that in the
four cases, those genes are differentially expressed between

TABLE 2 | Spearman correlation between rank of differentially expressed genes

for all stages.

ccRC stage Stage I Stage II Stage III Stage IV

Stage I 1 0.995 0.974 0.948

Stage II 0.995 1 0.995 0.958

Stage III 0.974 0.994 1 0.997

Stage IV 0.948 0.958 0.997 1

control and any stage, but also between consecutive stages.
This result may have clinical relevance since these protein-
coding genes may be used as biomarkers of clear cell renal
carcinoma progression.

Furthermore, we conducted a multi-group differential
expression analysis, to observe whether or not said difference
in gene expression also appeared between stages. In all cases,
these genes are differentially expressed. However, between
stage III and IV, the Log2FC was set to 0.5. This means that
the expression values of the four genes is different but not as
largely different as in the previous stages. This could be due
to the clinical and histo-pathological features that both stages
may share.

To the best of our knowledge, the SLC6A19 gene has
not been previously reported as importantly underexpressed
in renal cancer, however, in the Human Protein Atlas,
SLC6A19 underexpression has been reported as a biomarker for
renal cancer (https://www.proteinatlas.org/ENSG00000174358-
SLC6A19/pathology). SLC6A19 is highly expressed in kidney
tissue (Fagerberg et al., 2014). Hence, its underexpression may
bring relevant functional consequences.

FIGURE 3 | Progressive increase and decrease in expression of four genes at the different ccRC stages. These barplots show the average expression of

SAAC2-SAAC4 and CXCL13 genes (left), and SLC6A19 and PLG genes (right). Different colors represent the progression stages. Notice that the Y axis (gene

expression) is, in all cases, depicted in log scale.
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FIGURE 4 | Degree distribution of the five networks. In this plot, points correspond to the degree distribution for each phenotype. Color code is the same than

Figure 3. Curve fitting (y = axb) to each degree distribution is also depicted. Notice that control network distribution slope (light green) is the lowest one.

PLG gene also presents a remarkable decrease throughout
stages advance (Figure 3). Previously, PLG has been reported has
decreased and a possible biomarker for renal carcinoma (Luo
et al., 2018; Zhang et al., 2020).

In the case of CXCL13 overexpression, recently (Jiao et al.,
2020), it has been found to be related to tumor-infiltrating
immune cells, as well as bad prognosis in ccRC. In our case, we
not only found the gene overexpresssed, but also progressively
increased through the four stages.

Regarding SAA2-SAA4 gene, its overexpression has been
observed as unfavorable in renal cancer, but at the same
time favorable in breast cancer (https://www.proteinatlas.org/
ENSG00000255071-SAA2-SAA4/pathology). SAA2-SAA4 is a
naturally-occurred fusion between two serum amyloid genes (A2
and A4). SAA2-SAA4 overexpression has also been associated in
metastatic brain tumor derived from papillary thyroid carcinoma
(Schulten et al., 2016). It also has been associated with liver
metastasis from colorectal tumor (Sayagués et al., 2016). The
fact that SAA2-SAA4 overexpression has been associated with
metastasis from neighboring primary tumor is matter of further
research. However, it is worth mentioning that expression of this
gene is progressively increased through ccRC progression stages.

To our knowledge, this is the first time that expression of
SAA2-SAA4, CXCL13, PLG, and SLC6A19 have been reported to
be differentially expressed through progression stages in clear cell
renal carcinoma, showing a possible novel line of research related
with ccRC genomic progressive alterations.

3.2. Control Network Is Topologically
Different to Any Tumor Network
We found that all networks are substantially different among
them, but the control one presents a more striking difference in
terms of its topological features. Control network has a larger

TABLE 3 | Parameters of the non-linear curve fitting in all networks for the top

10,000 interactions.

Parameter Control Stage I Stage II Stage III Stage IV

a 2941.8 4430.5 10047 5215.8 6490.8

b −1.842 −1.982 −2.4266 −2.052 −2.137

Correlation 0.992 0.981 0.973 0.98 0.987

R-square 0.935 0.931 0.953 0.939 0.959

proportion of trans- interactions, whereas for any cancer stage
the amount of intra-chromosome (cis-) interactions are more
abundant than trans- ones.

Among the most important network parameters to examine
is the degree distribution p(k). It is well-known that the k vs.
p(k) plot and its parameters for curve fitting may reflect several
properties related to the system itself. In the case of top 10,000
edges cut-off, we may observe that in all cases the distribution
is well-fitted to a power law distribution (y = axb). The
differences are observed in Figure 4, in the different slopes of
the curve fittings, as well as at the parameter level. The slope
of control network degree distribution (light green) is the lowest
one (−1.842), compared to the ccRC stages. Table 3 contains the
parameters for the non-linear curve fitting of the five networks.
The latter may describe that long-range communication is a
feature in a healthy phenotype.

3.3. Statistical Networks Differences
3.3.1. There Is a Preferential cis- Co-expression in

ccRC Networks
Giant connected components of each network are depicted in
Figure 5. Genes are colored according the chromosome each
gene belongs to. In the control network, genes co-express with
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FIGURE 5 | Network topologies of ccRC per stage. Top to bottom figures correspond to the largest connected component of control, stage I, stage II, stage III, and

Stage IV, respectively. Color of nodes correspond to the chromosome to which each gene belongs to. The bar-chart represents the proportion of cis- (blue) and trans-

(orange) interactions.

genes from any chromosome, with a high prevalence of trans-
interactions. Conversely, for the ccRC stages, in all cases there
is preferential cis- co-expression. This is also reflected in the
bar-charts at the bottom right part of Figure 5. Orange bars
represent the number of trans- interactions, meanwhile cis- links
are represented by blue bars.

3.3.2. cis-/trans- Ratios Do Not Re-trace Progression

Stages
In previous works from our group (García-Cortés et al., 2020),
we have shown that cis-/trans- ratio increased with severity of
breast cancer subtypes, being Luminal A, Luminal B, HER2+ and
Basal the order of cis-/trans- ratios. There, we also shown that
breast control network is the only graph that containsmore trans-
interactions than cis- ones.

Intuitively, one may expect (based on our previous experience
with breast cancer) a progressive decrease in the number of
trans- interactions, starting from the largest number in control
network, decreasing throughout ccRC stages. However, this is
not the case, as it can be also appreciated from the bar-charts,
as well as from networks. The ccRC network with less trans- co-
expression links is stage III, followed by stage I, stage IV, and
finally stage II. However, the difference between control and any
stage is also evident.

3.3.3. Chromosome-Specific cis- Rates Are Different

Between Phenotypes
Once the proportion of global cis-/trans- interactions were
obtained, isolated chromosome cis- rates were calculated. We
defined the cis- rate as the number of cis- edges divided by the
total number of edges in each network. As it can be observed in
the barplot of Figure 6, for the control network, all chromosomes
but ChrY have a cis − rate < 1, but in the case of Chr Y, all
phenotypes have a cis- rate > 1. In general, stage III network has
the highest cis- rates at the chromosome level.

3.4. Topological Differences Do Not Follow
Progression Stages
As a first approach, network cut-off was set to top-10,000 edges,
ranked by MI values. Each network contains a different number
of genes. Since these networks are obtained from gene expression
of kidney tissue, one may naively expect similarities in terms
of genes and even interactions. Additionally, given that the
networks under study were separated into progression stages, it
also would be expected that consecutive stages were more similar
between them than with the rest of networks.

In Figure 8, we show the number of shared interactions
between phenotypes, as well as their differences. As expected,
control network is the most different in terms of number
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FIGURE 6 | cis- rate (cis edges/# of genes) per chromosome for the five networks: green, orange, violet, yellow and blue for control, stage I, stage II, stage III, and

stage IV, respectively. In all cases but for ChrY, the ratio is lower than 1 for the control network.

of shared links with the ccRC networks. The percentage of
divergence is 94% in the more similar case (stage I).

ccRC networks also differ vastly between them,more than 60%
difference in any case. Stage II network is the most different, in
terms of number of shared edges. Conversely, stage I and stage
III networks are the more similar pair, even stage I and stage IV
keep more shared edges between them (74%) than with stage II.

The latter results is surprising, taking into account the high
similitude in terms of differential gene expression in the four
phenotypes (Table 2). Network topologies and the concomitant
co-expression programs do not coincide with the gene expression
signatures of ccRC progression stages.

Additionally, the small number of shared genomic
interactions between control and ccRC networks also reflects, a
radical rearrangement of the transcriptional program between
health and disease.

Biologically, the decrease in network commonalities between
phenotypes is a clear indicative that each one of the ccRC stages
behave differently. This could be important, since each network
maps a specific snapshot of the co-expression landscape at
different moments of the carcinogenic process. Analysis of those
unique co-expression features could help in the understanding of
the cancer progression process.

3.4.1. Most Interactions Are Phenotype-Specific
In Figure 7, the intersection of co-expression interactions for the
five phenotype networks is depicted. As it can be observed, the
largest number of links belongs to the non-shared sets for the five
networks. This indicates that, independently of the phenotype,
networks are structurally different. As in the previous figure, the
largest difference occurs in the control network (9,295 unique

edges). Five thirty-three edges are shared between the four ccRC
phenotypes. This is the set of co-expression interactions that
appear at any stage of clear cell renal carcinoma.

3.5. Network Topologies at Different MI
Cut-Offs
Since cut-off election is still a non-closed problem in network
science (the so-called network sparsification problem), we
decided to cover a wide range of cut-offs to assess the
observed result in the previous sections. We pruned the
original networks (16,000 genes, 130 millions of edges) into
small mutual-information-ranked sets, from Top-100 to Top-
1,000,000 edges, i.e., covering five orders of magnitude. See
Supplementary Material 3.

3.5.1. Proportion of Networks Intersection Decrease

With Network Sizes
In Figure 8 one can appreciate that the proportion of
intersections between all phenotypes (control and ccRC), as well
as in ccRC-only networks, is maintained in a wide range of
network cut-offs. It can be clearly appreciated the consecutive
decrease of the proportion of shared links according to networks
growing in size.

3.5.2. Chromosomal Connectivity Differences

Between Control and Cancer Networks Are

Independent of the MI Cut-Off
Regarding the cis- and trans- difference between control and
cancer networks, in Figure 9 we may observe that trans-
interactions in control are always higher than any tumor ccRC
network, despite the MI cut-off value.
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FIGURE 7 | Edge intersection of all networks. Venn diagram shows, in each set, the number of edges per phenotype. The number reflect the shared genes between

networks, as well as network-specific interactions. Notice that out of 10,000 interactions, only 189 edges are shared between the five networks.

FIGURE 8 | Proportion of networks intersection at different network cut-offs.

In this plot, proportion of network intersection between the four ccRC stages

(orange diamonds), and those with control network (blue squares) is depicted.

X-axis represent different network cut-off values.

It can be also appreciated that trans- interactions tend
to converge according to the size increase. This result is
expected since the more edges appear in the network, the more

cis- edges have been “loaded” to prior cut-offs. This results
also coincide with a recent finding in breast cancer networks,
where consecutive non-overlapping layers of 100,000 edges
(ranked top-to-bottom MI) contain more cis- interactions in
top layers, and decreasing as they get close to the noise layer
(Dorantes-Gilardi et al., 2020).

3.5.3. Cancer Networks Present a Shift in the Order of

cis-Rate in a Small Range of Interactions
In Figure 9 can also be observed that from the beginning
range (100) to approximately 3,000 edges, the rank of trans-
interactions is stage I → III → IV → II. However, in the range
3,000-to-10,000 edges this rank in ccRC networks changes from
I → III → IV → II to II → IV → III → I. That acquired
order is preserved until the already commented convergence at
1,000,000 edges.

As previously mentioned, the rank of cis-/trans- proportion
does not follow progression of ccRC at any cut-off value. Hence
we may conclude that differences in intra/inter-chromosomal
network interactions are not a very informative parameter to
evaluate progression in ccRC. Further investigation on the
aforementioned shift is needed to have a more complete idea of
the phenomenon.
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FIGURE 9 | Network trans- interactions at different cut-offs. In this plot, X-axis represents the cut-off network value for the five different networks (control and the four

ccRC stages). Y-axis shows the number of inter-chromosomal interactions per each network cut-off. To note that the control network trans- edges are larger than any

ccRC progression stage at any cut-off network value.

3.6. 189 Biologically Relevant Edges Are
Shared in the Five Phenotypes
189 co-expression interactions are shared between the five
networks. Those interactions are depicted in Figure 10. The
resulting network is composed of 230 genes and 189 edges. Genes
are colored according to their differential gene expression.

Interestingly, network components of this common sub-
network are mostly clustered according to the differential
expression trend: there are clusters composed by over-expressed
genes only, as well as under-expressed-only ones. It is worth
mentioning that the Spearman’s correlation between the rank of
differentially expressed genes is higher than 0.95 for any stage
(Table 2).

Additionally, the small connected components are enriched
for particular and specific biological processes. For example, the
first component, which contain genes such as KIF20A, KIF18B,
or UBE2C, is enriched for apical and tight junction assembly.
This is a highly overexpressed component, which indicates
that for any stage, tight junction and apical junction assembly
are exacerbated processes. Conversely, the third component,
with genes such as EGR2, EGR3, ATF, or FOSB is completely
underexpressed, and it is enriched for immune response-related
processes, which could mean that the immune response is
depleted at any stage of ccRC.

3.7. Enriched Categories Are Independent
of the Cut-Off-Value
Figure 11 shows the enriched categories obtained by intersecting
the four progression stages (and excluding control interactions).
Analog to Figure 10, in this case (533 edges) we have genes

colored by their differential expression values, meanwhile
enriched categories are painted by different colors depending
on the component to which those processes belong. It is worth
to mention that this figure only includes processes with a p −

value < 10−10. The complete list of enriched processes for both
cases, all phenotypes and ccRC-only, in the five cut-off network
values, is included in Supplementary Material 4. Additionally,
network visualizations of enriched processes in the ccRC-only
network intersection for 100,000 and 1,000,000 interactions are
also included in Supplementary Material 4.

Another shared feature of this figure with Figure 10 is that
gene clusters with the same trend of differential expression have
enriched categories. Among the top-enriched categories we may
find cell-cycle-related (yellow), IFN-γ -related (dark blue), and
T-cell-related (green) processes.

Since in this work one of the most relevant questions
we made was related to the network structure at different
progression stages in clear cell renal carcinoma, we calculated
the over-expression analysis over network communities by
means of the infomap algorithm (Rosvall and Bergstrom,
2008). We performed the enrichment analysis over separated
sets of genes according to the community to which
genes belong.

Given the fact that large networks often contains more
communities than small networks, we performed the enrichment
analysis for different cut-off values of network intersections.
Independent of the network cut-off, intersections of ccRC-
only networks always present this set of enriched categories,
associated with cell-cycle, immune system, tridimensional
structure of DNA and chromatin, or Transcription regulation
(Supplementary Material 4).
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FIGURE 10 | Network from shared interactions between the five phenotypes. The resulting network is composed of 189 edges and 230 genes. Those are colored

according to the differential expression compared with the control group. Notice that network smaller components have a similar expression pattern. Some

components are enriched to specific GO categories, meaning that those processes are increased or decreased during the whole process of ccRC progression.

4. CONCLUDING REMARKS

Clear cell renal carcinoma is a complex disease. It involves

several layers of complexity. It must be dissected to have a

comprehensive landscape allowing for a better understanding of
its progression.

In previous work we observed an important increment in
cis- ratio in breast cancer molecular subtypes, according to the
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FIGURE 11 | Network from shared interactions between Top-10,000 ccRC networks. The resulting network is composed of 533 edges and 148 genes. Those are

colored according to their differential expression compared with the control group. As in case of Figure 10, differentially expressed clusters are enriched for

specific categories.

malignancy of those phenotypes. Since the loss of long-range co-
expression was observed in breast cancer and more remarkably
in the Basal subtype (the one with worst prognosis), our working
hypothesis was the more advanced the cancer stage, the higher
the cis- ratio.

After breast cancer network analysis reported previously, clear
cell renal carcinoma is the second cancer in which we observe
a remarkable difference between cis- and trans- interactions,
showing an important decrease in inter-chromosome gene-gene
co-expression interactions in cancer networks.

Unexpectedly, the progression stage does not correlate with
cis- ratio. This was observed not only in the top-10,000 edges
networks, but also in a rank of five orders of magnitude. This
could imply that cis- ratio is not a parameter to distinguish
progression stages, at least for ccRC.

By observing the discrepancy between the cis- rate of
ccRC progression stages with those observed in breast cancer
molecular subtypes (García-Cortés et al., 2020), regarding that

high proportion of intra-chromosome interactions are observed
in those phenotypes with a worst prognosis we may argue
the following:
• The fact that cis- rate does not coincide with progression

stages, may reflect that high proportion of intra-chromosomal
interactions are not a parameter to take into account
to differentiate cancer progression, at least in clear cell
renal carcinoma.

• A high cis- rate does not imply malignancy or worst prognosis
in a cancerous network, but a different co-expression
program in which gene-interactions are favored to physically
close genes.

• The mechanisms behind the preferential co-expression to
neighbor genes must imply epigenetic factors, such as
micro-RNAs, lncRNAs, methylation profiles, tridimensional
structure of DNA, chromatin modifications, CTCF binding
sites, etc. (For a profound revision of spatial regulation of DNA
in the oncogenic process, see Hernández-Lemus et al., 2019).
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We want to stress that kidney cancers are fundamentally
different from breast cancers in many forms (Hoadley et al.,
2018). For the latter, topological similarities between breast
cancer and ccRC co-expression networks must be taken
carefully. However, it is remarkable that in both tissues
(clear cell and breast carcinomas), as well as in separated
instances (progression stages and molecular subtypes), the
effect of loss of long-range co-expression is a common feature
of cancer.

Here, we have focused on two main molecular signatures,
namely the expression and the co-expression landscapes.
In the first layer, we have observed that the differential
expression profile is very similar between progression stages,
even between stage I and stage IV, which may indicate
that the expression profile is somehow acquired once cancer
has started. However, certain genes appear to replicate the
progression of oncogenic process, such as the case of SLC6A19
and PLG (underexpression), and SAAC2-SAAC4 and CXCL13
(overexpression). It is worth mentioning that none of these genes
have been previously reported as progressively differentiated in
renal carcinoma.

On the other hand, the similitude observed at the
expression level, was not observed at the co-expression
network level. Actually, the number of shared links is really
low. We argue that the differential expression profiles are
indeed insufficient to properly describe gene expression
regulation, but the way that those genes interact in time
and space is what ultimately determine the establishment of
tumor phenotype.

In the case of Figure 6, the fact that chromosome Y is the
only one with a higher cis- rate in control network than in ccRC
stages may imply that, for this chromosome and its genes, local
co-expression is crucial to maintain a proper functionality. It
is widely known that two thirds of all ccRC cases correspond
to men (Aron et al., 2008; Woldrich et al., 2008; Qu et al.,
2015; Zaitsu et al., 2020). Since Chr Y is directly linked to
gender, one may argue that an imbalance in the cis-/trans-
proportion may be implicated in gender-bias on clear cell
renal carcinoma.

Despite the high differences between control and stage
networks, and even between stages, there are some conserved
gene co-expression relationships independent of the phenotype.
An instance of this is shown Figure 10. Those interactions shared
among the five phenotypes show very few common links, but
clustered in biologically relevant genesets. Those genesets are
important for cell maintenance (that is perhaps, the reason for
which they appear in the control network). At the same time,
these genesets are overexpressed, thus indicating an exacerbated
process in the cancer stages, as in the case of apical and tight
junction assembly, or extracellular matrix remodeling.

Conversely, the immune response cluster is depleted, thus
indicating that the immune system response may be decreased
at any moment in the course of the carcinogenic process.

Analogously, in Figure 11 we may observe the shared
interactions between cancer-only networks. This subset of
interactions may result of the utmost relevance, since it
represents those gene-gene co-expression relationships that are

exclusive of clear cell renal carcinoma. These interactions are
highly enriched for very specific biological processes, which
means that these interactions may have repercussion in cell
functionality. Another point to remark regarding ccRC-only
intersection is that the enriched functions are preserved at five
orders of magnitude network sizes.

The fact that topological and functional analyses show
similar results at five orders of magnitude in network sizes,
have implications in at least two main issues: (a) cis- rate
is invariant to the cut-off, and (b) enriched categories do
not depend of the cut-off value. Here, we have provided a
methodology to discover functional characteristics of gene-co-
expression networks that are intrinsic to the phenotype and not
depend on the network cut-off.

We are aware that gene co-expression may be strongly
influenced by several factors: micro-RNAs, long non-coding
RNAs, methylation patterns, copy number alterations, 3D-
structure of DNA, CTCFs binding sites, to mention but a few.
More research is thus needed for a better understanding of the
delicate interplay between gene expression and co-expression.
This is a first approach to draw close both worlds in an
integrative manner.
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all stages. HTML files for volcano plots are also provided.

Supplementary Material 3 | Heatmaps for intersections and differences in all
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