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Anglerfishes are a highly diverse group of species with unique characteristics. Here,
we report the first chromosome-level genome of a species in the order Lophiiformes,
the yellow goosefish (Lophius litulon), obtained by whole genome shotgun sequencing
and high-throughput chromatin conformation capture. Approximately 97.20% of the
assembly spanning 709.23 Mb could be anchored to 23 chromosomes with a contig
N50 of 164.91 kb. The BUSCO value was 95.4%, suggesting that the quality of
the assembly was high. A comparative gene family analysis identified expanded and
contracted gene families, and these may be associated with adaptation to the benthic
environment and the lack of scales in the species. A majority of positively selected genes
were related to metabolic processes, suggesting that digestive and metabolic system
evolution expanded the diversity of yellow goosefish prey. Our study provides a valuable
genetic resource for understanding the mechanisms underlying the unique features of
the yellow goosefish and for investigating anglerfish evolution.
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INTRODUCTION

Lophiiformes (commonly known as anglerfishes) is a teleost order containing 68 genera and more
than ∼300 species found in benthic, shallow-water, and deep sea habitats (Miya et al., 2010).
Yellow goosefish (Lophius litulon) belonging to Lophiiformes is mainly distributed in seas of
Korea, Japan, and China. It is an important commercial fish and is widely consumed. Various
characteristics of Lophiiformes, including the functional morphology (Farina and Bemis, 2016),
geographic distribution, population structure, migration, feeding ecology, and reproduction of
species (Farina et al., 2008), have been investigated. Additionally, phylogenetic relationships in
Lophiiformes have been studied by using mitochondrial genomes of 39 species from 33 genera
(Miya et al., 2010). However, high-quality whole genome sequences for species in this order are
not available, limiting our understanding of the molecular basis of the unique characteristics of this
group, such as the lack of scales on the body surface, diverse feeding habits, and large liver.
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In this study, we sampled a female yellow goosefish from
the Yellow Sea, China, and generated a chromosome-level
genome assembly. To the best of our knowledge, this is the
first chromosome-level genome for Lophiiformes. We performed
a comparative genomic analysis, including analyses of repeat
contents, gene families, and positive selection, to understand the
genetic basis of the unique characteristics of the species.

MATERIALS AND METHODS

DNA and RNA Sequencing
The yellow goosefish used in this study was caught in the Yellow
Sea near Qingdao, China, by the Yellow Sea Fisheries Research
Institute. Genomic DNA was extracted from muscle tissues of
a female yellow goosefish (Figure 1A) and processed according
to a previously described protocol (Shao et al., 2018). The Qubit
3.0 fluorometer and gel electrophoresis were used to evaluate the
DNA quantity and integrity, respectively. Four whole genome
sequencing libraries, including one paired-end library with an
insert size of 350 bp and three mate-pair libraries with insert sizes
of 2, 5, and 10 kb, were constructed by standard protocols (Shao
et al., 2018) and sequenced using the BGISEQ-500 platform.
SOAPnuke (v1.5.6) (Chen Y. et al., 2018) was used to filter raw
data with the parameters “filter -d -n 0.1 -l 10 -q 0.5 -Q 2” to
obtain high-quality data. A Hi-C library (Lieberman-Aiden et al.,
2009) was also constructed using a blood sample according to a
previously described protocol (Shao et al., 2018) and sequenced
using the BGISEQ-500 platform, yielding paired-end reads with
lengths of 100 bp. Quality control of Hi-C data was performed
using the HIC-Pro pipeline (v2.11.1) (Servant et al., 2015) with
default parameters.

RNA was extracted from 11 tissues (liver, kidney, spleen, spina
dorsalis, heart, ovary, muscle, eye, skin, brain, and blood) of
four female yellow goosefishes using TRIzol Reagent (Invitrogen,
Waltham, MA, United States). Paired-end libraries with insert
sizes of 350 bp were sequenced on the BGISEQ-500 platform, and
the sequencing data were filtered using SOAPnuke (v1.5.6) with
the parameters “filter -l 15 -q 0.2 -n 0.05 -Q 2.”

Genome Assembly
To estimate the genome size of the yellow goosefish, a k-mer
analysis (k = 17) (Li et al., 2010) was conducted. The genome
was assembled using clean sequence data from different insert
size libraries (350 bp, 2 kb, 5 kb, and 10 kb) using ABySS
(v2.0.2) (Nielsen et al., 2009) with the parameters “abyss-pe
k = 63.” To further improve the quality of the assembly, krskgf
(v. 1.19) (Zhang et al., 2014) was used setting kmer = 41
and Gapcloser (v1.10) (Luo et al., 2012) was used with default
parameters to fill gaps. Allelic scaffolds were removed using the
Redundans pipeline (Pryszcz and Gabaldon, 2016) with default
parameters. Finally, valid reads were obtained from raw data
using the HiC-Pro pipeline with default parameters to generate
the chromosomal-level assembly. Juicer (v. 1.5) (Durand et al.,
2016) was used to analyze Hi-C datasets and the 3D-DNA
pipeline (v. 170123) (Dudchenko et al., 2017) was used to anchor

the yellow goosefish genome assembly to chromosomes with the
parameters “-m haploid -s 4.”

For topologically associated domains calling, pair-end reads
were aligned to genome by Bowtie2, with the parameters “-set –
local –reorder.” HicBuildMatrix tool (v2.2.3) (Wolff et al., 2018)
was used to build the matrix of read counts over the bins in the
genome with bin size of 5,000 bp, considering the sites around the
given restriction site. Then eight 5 kb bins were merged into 40 kb
bins matrix by hicMergeMatrixBins (v2.2.3). The Hi-C matrix
was corrected by hicCorrectMatrix (v2.2.3) after removing bins
with lower number of reads. The boundaries were identified and
final TADs were detected by hicFindTADs.

Genome Annotation
Two methods were combined for repeat content annotation.
Homolog-based searches against the Repbase (v21.01)
database (Jurka et al., 2005) using RepeatMasker (v4.0.6)
and RepeatProteinMask (v4.0.6) with the parameters “-nolow
-no_is -norna -engine ncbi” and “-engine ncbi -noLowSimple
-pvalue 0.0001” were first performed. Then, de novo prediction
was performed using RepeatModeler (v1.0.8) and LTR-FINDER
(v1.0.6) (Xu and Wang, 2007). Tandem Repeats Finder (v4.07)
(Benson, 1999) (with the parameters “-Match 2 -Mismatch 7 -
Delta 7 -PM 80 -PI 10 -Minscore 50 -MaxPeriod 2000”) was used
to detect tandem repeats. Additionally, repeats in another eight
representative fish genomes were evaluated, including the tongue
sole (Cynoglossus semilaevis), zebrafish (Danio rerio), stickleback
(Gasterosteus aculeatus), large yellow croaker (Larimichthys
crocea), medaka (Oryzias latipes), tilapia (Oreochromis niloticus),
spotted green pufferfish (Tetraodon nigroviridis), and fugu
(Takifugu rubripes), using the same pipelines. The genome
sequences of these eight species were downloaded from the
National Center for Biotechnology Information (NCBI) database
and ENSEMBL (release-84). To study Bovine-B (BovB) and
L2 retrotransposons, dynamic families of long interspersed
nuclear elements (LINEs) in eukaryotes (Ichiyanagi and Okada,
2008; Ivancevic et al., 2018), 1% of BovB repeats, and 1% of L2
repeats were randomly extracted from our annotation results,
respectively. These were used to generate multiple sequence
alignments respectively using MAFFT (v7.245) (Katoh and
Standley, 2013). Finally, the phylogenetic trees of BovB and L2
elements were constructed respectively using FastTree (v2.1.10)
by maximum likelihood method (Price et al., 2010).

For gene annotation, gene structures were predicted using
three methods. For de novo prediction, Augustus (v3.1) (Stanke
et al., 2006) and GENSCAN (v2.1) (Burge and Karlin, 1997)
were applied to the repeat-masked genome. Protein sequences
of six species were downloaded from the NCBI database for
homolog-based prediction. The six species were the tongue sole
(Cynoglossus semilaevis), zebrafish (Danio rerio), large yellow
croaker (Larimichthys crocea), tilapia (Oreochromis niloticus),
medaka (Oryzias latipes), and fugu (Takifugu rubripes). BLAT
(v35.1) (Kent, 2002) was used to map the protein sequences
to the yellow goosefish genome and then GeneWise (v2.4.1)
(Birney et al., 2004) was used to obtain gene models. For
transcriptome annotation, the filtered transcriptome reads were
assembled using Trinity (v2.0.6) (Grabherr et al., 2011) and the
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FIGURE 1 | Genome assembly and expansion of LINEs in yellow goosefish. (A) Example of a yellow goosefish (Lophius litulon). (B) 23 chromosomes contact maps
of the yellow goosefish genome. The blocks represent the contact between locations, and the color represents the intensity of each contact. (C) Phylogenetic tree of
LINE/L2. (D) Phylogenetic tree of LINE/RTE-BovB.

assembly was mapped to the yellow goosefish genome using
BLAT (v35.1) and PASA to obtain coding sequence models.
Finally, all results were integrated to obtain a non-redundant gene
set using GLEAN (Elsik et al., 2007). The final gene sets were
assessed using BUSCO with the actinopterygii database. For gene
function annotation, protein sequences were aligned to several
databases, including Swiss-Prot (Bairoch and Apweiler, 2000),
TrEMBL (Bairoch and Apweiler, 2000), and Kyoto Encyclopedia
of Genes and Genomes (KEGG v84.0) (Kanehisa and Goto,
2000), using BLASTP (v2.6.0+) (Altschul et al., 1990) with an
E-value threshold of 10−5. InterProScan (v5.16-55.0) (Zdobnov
and Apweiler, 2001) was used to determine function-specific
motifs and domains in protein databases, including Pfam,
SMART, PANTHER, PRINTS, PROSITE profiles, ProDom, and

ProSitePatterns. Gene Ontology (GO) annotation results were
extracted from the InterProScan results.

Synteny Analysis With Fugu
A whole genome alignment between yellow goosefish and fugu
(Takifugu rubripes) genomes was generated using LASTZ (v1.1)
(Harris, 2007) with the parameter settings “T = 2 C = 2 H = 2000
Y = 3400 L = 6000 K = 2200.” After filtering the aligned blocks
shorter than 2 kb, the synteny between the two genomes was
visualized by Circos (v0.69-6).

Gene Family Analysis
Coding sequences of nine species were downloaded from the
NCBI and ENSEMBL databases for a gene family analysis,
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including the stickleback (Gasterosteus aculeatus), medaka
(Oryzias latipes), tilapia (Oreochromis niloticus), fugu (Takifugu
rubripes), spotted green pufferfish (Tetraodon nigroviridis),
tongue sole (Cynoglossus semilaevis), zebrafish (Danio rerio),
large yellow croaker (Larimichthys crocea), and spotted gar
(Lepisosteus oculatus). BLASTP (v2.6.0+) was used to generate
an alignment of all protein sequences with an E-value threshold
of 1e − 5, and the high-quality mapped genes were analyzed
by using OrthoMCL (v2.0.9) (Li et al., 2003) to define gene
families. MUSCLE (v3.8.31) (Edgar, 2004) was used to align the
proteins of single-copy orthologs gene families, and phase sites
were extracted from each alignment and concatenated to obtain a
super gene for each species. PhyML (v3.0) (Guindon et al., 2010)
was used to construct phylogenetic tree. Divergence times were
estimated by using MCMCtree (v4.5) in the PAML (v4.4) (Yang,
2007) package. Next, Café (v2.1) (Hahn et al., 2007) was used to
define the expansion and contraction of gene families.

Gene families exhibiting expansion and contraction were
mapped to KEGG pathways and GO terms for an enrichment
analysis. Using the whole genome annotation results as
background, hypergeometric tests were used to identify
significant enrichment. Genes were extracted from the same
expanded gene families and sequences were aligned using
CLUSTALW (Thompson et al., 2002) of MEGA-X (v10.1)
(Kumar et al., 2018). Finally, maximum likelihood tests were
used to construct the phylogenetic tree.

Detection of Positive Selection
To identify positively selected genes (PSGs) in the yellow
goosefish genome, the yellow goosefish was used as the
foreground branch. The coding sequences of single copy genes
for the yellow goosefish and other nine species (the same
species used in the gene family analysis) were extracted. PRANK
(v100802) (Loytynoja, 2014) was used to generate multiple
alignments of homologs genes with the parameters “ + F
− codon,” and Gblocks (v0.91b) (Castresana, 2000) was used to
extract conserved positions from the alignment results with the
parameters “ − a = y, − c = y, w = y, − t = c, − e = gb1,
− b4 = 5, − d = y.” PSGs were identified by comparing
the alternative model (fix_omega = 1, omega = 1) to the null
model (fix_omega = 0, omega = 1.5), and then using codeml
to perform likelihood ratio tests (LRTs) at a 5% significance
level implemented in PAML (v4.4). The PSGs were mapped to
KEGG pathways and GO terms, and hypergeometric tests were
performed using the whole gene set as background. Moreover, a
Model Organisms Phenotype Enrichment Analysis (modPhEA)
(Weng and Liao, 2017) was used to identify phenotypes known
to be associated with the identified genes under positive selection
based on a zebrafish phenotype database available at http://evol.
nhri.org.tw/modPhEA/.

RNA-Seq Analysis
RNA-seq clean data for 11 tissues were aligned to the yellow
goosefish coding genes using Bowtie2 (v2.2.5) (Langmead and
Salzberg, 2012). RSEM (Li and Dewey, 2011) was used to calculate
gene expression levels in each sample. Differentially expressed
genes (DEGs) were detected using the NOIseq (Tarazona et al.,

2015) algorithm with the cutoff of foldchange of 1 and the
cutoff of probability of 0.8. A gene co-expression network was
constructed using the Weighted Gene Co−Expression Network
Analysis (WGCNA) method (Langfelder and Horvath, 2008).
The whole genome was background to perform KEGG pathway
enrichment analyses of the genes of interest.

RESULTS AND DISCUSSION

Genome Assembly and Annotation
A total of ∼416.79 Gb of raw data (about 554.98-fold coverage
of the estimated genome size) were generated using the
BGISEQ-500 platform (Mak et al., 2017), with read lengths
of 100 bp for the paired-end library, 50 bp for mate-pair
libraries, and 100 bp for the Hi-C library (Supplementary
Table 1 and Supplementary Figure 2). After filtering raw data
and estimating the genome size (Supplementary Figure 1),
we assembled the genome with a total length of ∼709.23 Mb,
which was close to the estimated genome size (∼750.88 Mb)
after masking allelic scaffolds. The contig and scaffold N50
of the assembled genome were 164.91 kb and 32.49 Mb,
respectively (Supplementary Table 2). By performing quality
control of Hi-C sequencing data and implementing the 3D-
DNA pipeline, we obtained 166,195,977 valid Hi-C read pairs
and anchored 689.34 Mb (∼97.20%) of the assembled scaffolds
to 23 clear linkage groups based on chromatin interactions
(Supplementary Table 3 and Figure 1B), indicating that the
karyotype number for Lophius litulon is 2n = 46, which is
different from that of Lophiomus setigerus (2n = 48) (de Cascia
Barreto Netto et al., 2007). To evaluate the quality of the genome
assembly, we assessed the BUSCO (v3.0.2) (Simao et al., 2015)
values with a complete percentage of 95.4% (Supplementary
Table 4) against the actinopterygii database (odb9). We also
aligned 171,254 de novo assembled transcripts using RNA-seq
data for 11 tissues to the genome and found that 99.46%
could be covered by the genome assembly (Supplementary
Table 5). Together with the compact GC-depth distribution
(Supplementary Figure 3), these results suggested that the high-
quality genome assembly can be used as a reference genome for
further analyses.

Repeat content annotation of the newly obtained genome
was carried out by combining de novo prediction and homolog-
based methods. Finally, ∼3.99 and ∼25.34% of the yellow
goosefish genome sequences were recognized as tandem repeats
(Supplementary Table 6) and transposable elements (TEs)
(Supplementary Table 7), respectively. In addition, we integrated
RNA sequencing data, homolog-based results using six species
(tongue sole, zebrafish, large yellow croaker, tilapia, medaka,
and fugu), and de novo predicted gene models, resulting in
22,382 protein-coding genes. Additionally, ∼92.80% of the
genes could be assigned to known functions by mapping
protein sequences to the KEGG, Swiss-Prot, TrEMBL, Interpro,
and GO databases (Supplementary Table 8). Moreover, 90.6%
of the complete BUSCO genes could be identified in our
gene sets (Supplementary Table 4), indicating high quality of
gene prediction.
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Expansion of LINEs in the Yellow
Goosefish
LINEs in eukaryote genomes are important for the regulation of
nearby genes and even affect phenotypes (Ong-Abdullah et al.,
2015). When comparing repeat contents in the yellow goosefish
genome to those of eight representative fish genomes, we found
that the yellow goosefish genome contains∼9.54% LINEs, which
is similar to the content in medaka (∼10.41%) and tilapia
(∼10.85%) and notably higher than those of the six other species
(∼5.70% in fugu,∼3.74% in tongue sole,∼6.22% in three-spined
stickleback,∼4.07% in large yellow croaker,∼4.43% in zebrafish,
and∼4.41% in spotted green pufferfish, Supplementary Table 9).
In particular, LINE/L2 (51.94% of LINEs) and LINE/RTE-BovB
(22.48% of LINEs) were the two most abundant subtypes among
LINEs (Supplementary Figure 4). To explore the evolution of
LINEs in representative fishes, phylogenetic trees of L2 and
RTE-BovB were constructed. Based on these phylogenetic trees,
L2 and RTE-BovB sequences can be classified into seven and
three clusters, respectively (Figures 1C,D). Compared with other
genomes, clusters 1 and 7 of L2, which contained elements
from all the species, exhibited obvious outburst in the yellow
goosefish genome. And clusters 1 and 3 of RTE-BovB also
expanded significantly. Additionally, we found that RTE-BovB
of cluster 3 expanded in each sub-cluster, indicating that
these expansions may have occurred simultaneously during the
evolutionary process, different from the pattern observed in
cluster 1 exhibiting three single sub-clusters expansion in the
yellow goosefish.

In summary, the yellow goosefish genome contained all L2 and
RTE-BovB clusters, and these were characterized by expansions.

Chromosome Evolution in the Yellow
Goosefish
Chromosome evolution, including whole genome duplication,
chromosome fissions/fusions/deletions/rearrangements, and
random duplications of large fragments, is associated with
genome size, gene family evolution, and even speciation (Li
et al., 2017). We compared 23 chromosomes of yellow goosefish
with 22 chromosomes of fugu (Takifugu rubripes, the most
closely related species with a chromosome-level genome,
Figure 2A, Supplementary Figure 5, and Supplementary
Table 10) to investigate chromosome evolution. A total of 17
fugu chromosomes shared one-to-one synteny with distinct
goosefish chromosomes, such as Fugu_20-chr15, indicating high
consistency between the chromosomes of the two genomes.
In addition, four fugu chromosomes could be mapped to
five chromosomes of the yellow goosefish, such as Fugu_16-
chr16&chr19. Thus, at least four fusion and one fission events
occurred between the two species. Moreover, we identified
40 chromosomal inversion events in the yellow goosefish,
which could be confirmed by sequencing data (Figure 2B
and Supplementary Figure 6). We found 21 genes located
in the 2 kb flanking regions of these inversion breakpoints
(Supplementary Table 11) based on the alignment of the
chromosomes between the yellow goosefish and the fugu. Some
of these 21 genes were involved in important biological processes.

For example, Gnl2 (Lolit01435) regulates cell cycle progression
and neural differentiation in the brain and retina in zebrafish
(Paridaen et al., 2011).

Topological Domains in the Genome
We identified 1535 TADs in the genome and, as expected,
the domain size is largely ranged from 80 kb to 2.12 Mb
(Supplementary Figure 7a), while topological boundary size
expands more than 40 to 80 kb (Supplementary Figure 7b).
Both topological domain and topological boundaries appear to
differ from what is expected at random in terms of their gene
content (Supplementary Figures 7c,d). We explored the genes
near the topological boundary regions in the genome, and we
found housekeeping genes were enriched in the boundaries that
were reported associated with the boundary formation (Dixon
et al., 2012; Eisenberg and Levanon, 2013). From the KEGG
enrichment results (p-value < 0.05), the genes in the boundaries
were enriched in pathways related to transport, catabolism,
metabolism, organismal systems, and cell growth and death
(Supplementary Table 12).

Evolutionary Relationship and Gene
Family Analysis
We investigated the evolutionary relationships between yellow
goosefish and nine representative fish taxa (Gasterosteus
aculeatus, Oryzias latipes, Oreochromis niloticus, Takifugu
rubripes, Tetraodon nigroviridis, Cynoglossus semilaevis, Danio
rerio, and Larimichthys crocea) using Lepisosteus oculatus as an
outgroup based on gene families, defining 19,487 gene families in
these 10 species. The yellow goosefish genome contained 6,081
single-copy orthologs and 246 unique paralogs (Supplementary
Figure 8). The single copy orthologs genes were used to
construct a phylogenetic tree, which was consistent with previous
observations (Shao et al., 2018). The tree showed that the
yellow goosefish was most closely related to Tetraodontiformes
species, with a divergence time of about 95.5 million years ago
(Supplementary Figure 9).

Using Café, we identified 463 expanded gene families and
3,310 contracted gene families in the yellow goosefish genome
(Figure 3A). We focused on 51 and 20 significantly expanded
and contracted gene families (p < 0.01). By performing a
KEGG enrichment analysis, we found that the expanded family
genes were significantly enriched for pathways related to
metabolism, transcription, signaling molecules and interaction,
organismal systems, and human diseases (Supplementary
Table 13, p < 0.05). In particular, homeodomain-interacting
protein kinase family (HIPK), which is involved in the regulation
of eye size (Inoue et al., 2010), was expanded in the yellow
goosefish genome. This may explain the large eye size in
the species, which may help individuals perceive and adapt
to the benthic environment. In addition, we found that the
KRAB domain-containing zinc finger (KRAB-ZFP)-like protein,
which was reported to controls gene expression in response
to environmental changes like nutrition, fasting, and hormone
stimulation (Urrutia, 2003; Lupo et al., 2013), included 28
copies in yellow goosefish but fewer than four copies in
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FIGURE 2 | Chromosome evolution of yellow goosefish. (A) Synteny analysis with Takifugu rubripes. Collinear blocks between yellow goosefish and fugu.
(B) Validation of two breakpoints by the pair end mapping of reads. More detailed information in Supplementary Material.

FIGURE 3 | Gene family analysis, GO enrichment of PSG, and identification of gene coexpressed in yellow goosefish. (A) Expansion and contraction gene families in
yellow goosefish and other nine species (stickleback, medaka, tilapia, fugu, spotted green pufferfish, tongue sole, zebrafish, large yellow croaker, and spotted gar).
(B) The phylogeny of the zinc finger proteins gene family in six species (yellow goosefish, fugu, large yellow croaker, tongue sole, tilapia, and stickleback). (C) GO
enrichment for the PSGs of yellow goosefish. Number of genes were indicated for each GO term. (D) WGCNA co-expression modules were constructed by
comparing 11 tissues. The x-axis shows sampled tissues, and y-axis shows WGCNA modules. In total, 30 modules were identified, and the correlation value for
each module ranges from –1 to 1.

other species (Figure 3B). It is possible that the expansion
of the KRAB-ZFPs may help deep-sea yellow goosefish to
respond to environment perturbations better. With respect to
the contracted gene families, the extracellular calcium-sensing

receptor family, involved in the maintenance of mineral ion
homeostasis (Brown, 1999) and scale regeneration (Kakikawa
et al., 2012), may be associated with the lack of scales in the
yellow goosefish.
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Detection of Positively Selected Genes
Positively selected genes usually contribute to adaptive
phenotypic evolution. The yellow goosefish is a bottom-
dwelling fish, consistently found on the mud, sand, and gravel of
the seafloor. It feeds on variety of species, requiring strong and
adaptable digestive and metabolic systems (Yamada et al., 1995).
Thus, we detected PSGs based on the 3,043 single-copy orthologs
genes. We identified 167 PSGs containing 787 positively
selected sites. We then performed a GO (Figure 3C) and KEGG
enrichment analysis of these PSGs, and we found that 50 genes
were enriched for metabolism-related GO terms (Supplementary
Table 14) and PSGs were mainly enriched in metabolism and
organismal system pathways (Supplementary Figure 10).
Among these genes, SGPL1 (sphingosine-1-phosphate lyase
1) has been reported to play a role in maintenance of lipid
homeostasis in liver (Bektas et al., 2010). Two genes (CPB1
and PLPP2) play important roles in protein and fat digestion
and absorption (Whitcomb and Lowe, 2007; Carman and Han,
2009). PLPP2 encodes a key enzyme that regulates the process
of triacylglycerol synthesis. The liver of the yellow goosefish is
largely composed of fat and is considered a delicacy; it occupies
a relatively large proportion of the whole fish by weight. Positive
selection on the PLPP2 gene may reflect its important role in
liver growth, but further studies are needed to confirm this
hypothesis. Overall, these metabolism-related PSGs may be
involved in the diverse feeding habits of the yellow goosefish,
which could be an adaptation to its environment. Moreover,
30 genes were associated with specific phenotypes based on
a zebrafish database by using modPhEA (Supplementary
Table 15). The PSGs were significantly (p < 0.05) mainly
associated with the phenotypes of tissue structures, compound
organs, and neuron cells.

Analysis of Transcriptomes
A total of 106.54 Gb of RNA-seq data were generated by the
BGISEQ-500 platform (Supplementary Table 16). The RNAs in
11 different tissues were extracted from four yellow goosefishes.
We calculated gene expression levels in each tissue and identified
DEGs (Supplementary Figure 11). WGCNA (Weng and Liao,
2017) was used to identify genes expressed in concert in particular
tissues based on gene expression data. A total of 30 modules
(M1–M30) were identified (Figure 3D). We extracted genes from
the most highly correlated module with a sample type, such as
module M17 in the brain, and further identified significantly
enriched KEGG pathways (p< 0.05) (Supplementary Figure 12).
Genes in M9, M11, M22, and M26 were mainly enriched in
metabolism-related pathways, including the metabolism of lipids,
carbohydrates, and energy. Genes in M16 and M17 were enriched
in organismal systems, mainly functional pathways related to the
digestive system, nervous system, sensory system, and endocrine
system. Moreover, we further investigated the genes in module
M16 associated with the eye tissue. We found some genes
(PRPH2, RHO, RBP3, and PDE6G) play a critical role in the visual
process (Quadro et al., 1999; Toyama et al., 2008; Dvir et al., 2010;
Nevo, 2013). Among these genes, RHO encodes rhodopsin, which
is a necessary visual pigment for eyes of marine fish (Chen J. N.

et al., 2018) and may be helpful in visual adaptations for yellow
goosefish that live in dim light environments.

CONCLUSION

In this study, we reported the first chromosome-level
Lophiiformes genome, using whole genome shotgun and Hi-C
sequencing data generated by the BGISEQ-500 platform. We
characterized repeat elements, gene function, and chromosomal
evolution. Based on the high-quality gene set, we identified the
evolutionary position of the species based on a phylogenetic
tree and investigated expanded gene families and PSG to find
candidate loci for traits related to growth, development, and
metabolism in the yellow goosefish. Our research provides a
reference genome for the yellow goosefish, which is expected to
be an important resource for further genetic and evolutionary
studies of Lophiiformes.
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