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Legumes are unique among plants as they can obtain nitrogen through symbiosis with
nitrogen-fixing rhizobia that form root nodules in the host plants. Therefore they are
valuable crops for sustainable agriculture. Increasing nitrogen fixation efficiency is not
only important for achieving better plant growth and yield, but it is also crucial for
reducing the use of nitrogen fertilizer. Arbuscular mycorrhizal fungi (AMF) are another
group of important beneficial microorganisms that form symbiotic relationships with
legumes. AMF can promote host plant growth by providing mineral nutrients and
improving the soil ecosystem. The trilateral legume-rhizobia-AMF symbiotic relationships
also enhance plant development and tolerance against biotic and abiotic stresses. It is
known that domestication and agricultural activities have led to the reduced genetic
diversity of cultivated germplasms and higher sensitivity to nutrient deficiencies in crop
plants, but how domestication has impacted the capability of legumes to establish
beneficial associations with rhizospheric microbes (including rhizobia and fungi) is not
well-studied. In this review, we will discuss the impacts of domestication and agricultural
practices on the interactions between legumes and soil microbes, focusing on the
effects on AMF and rhizobial symbioses and hence nutrient acquisition by host legumes.
In addition, we will summarize the genes involved in legume-microbe interactions
and studies that have contributed to a better understanding of legume symbiotic
associations using metabolic modeling.

Keywords: legume−microbe interaction, arbuscular mycorrhizal fungi, symbiotic nitrogen fixation, rhizobia,
domestication, metabolic modeling, metabolic profiling

INTRODUCTION

Major macronutrients such as nitrogen (N), phosphorus (P), and potassium (K) play important
roles in crop development. Lack of soil fertility is a vital constraint on crop production. To avoid
intensifying the use of chemical fertilizers which may cause irreversible environmental damages
including soil salinization and eutrophication of local lakes and rivers from fertilizer runoffs, plant
growth-promoting rhizobacteria (PGPR) are regarded as efficient biofertilizers (Singh et al., 2016).
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The application of biofertilizers to the soil increases the
biodiversity in the soil, and improves soil fertility through N2
fixation, as well as P and K mobilization in the form of organic
acids (Egamberdiyeva and Höflich, 2004; Sulieman and Tran,
2014; Itelima et al., 2018).

Legumes are important crops in agriculture, not only because
they are a protein-rich food source, but also because of their
contribution to soil fertilization through symbiotic nitrogen
fixation (SNF) as a result of their association with nitrogen-
fixing PGPR, i.e., rhizobia (Zahran, 1999). Each year, legumes
can provide more than 70 million tonnes of N to soil (Brockwell
et al., 1995). The symbiosis between legume and rhizobium
is responsible for a substantial part of global N flux in
which atmospheric N2 is fixed to form ammonia, nitrate, and
organic nitrogen. Rhizobial species (including the genera of
Mesorhizobium, Bradyrhizobium, Azorhizobium, Allorhizobium,
and Sinorhizobium) infect legume roots and induce the
formation of root nodules (Stacey, 2007; Gopalakrishnan et al.,
2015). The infection is initiated by the flavonoids released
by legume hosts that induce the expressions of nodulation
(nod) genes in rhizobia, which in turn trigger root cell
divisions by producing lipo-chitooligosaccharide (LCO) signals
(Dakora, 1995, 2003). Nodules can generally be classified into
determinate and indeterminate ones. Determinate nodules are
round shaped, with a well-defined homogeneous central fixation
zone containing infected rhizobia-filled cells surrounded by
uninfected cells (Schultze and Kondorosi, 1998). Indeterminate
nodules have a gradient of developmental stages from the
nodule tip to the root as a result of a persistent meristem that
generates new cells continuously (Crespi and Gálvez, 2000),
which is absent in determinate nodules. Well-studied model
species with indeterminate nodules include Medicago truncatula
(barrelclover), Medicago sativa (alfalfa), and Pisum sativum (pea),
while Glycine max (soybean), Vicia faba (fava bean), and Lotus
japonicus (birdsfoot trefoil) are typical model species for the study
of determinate nodules (Gage, 2004).

Besides rhizobia, legumes form symbiosis with soil fungi
such as arbuscular mycorrhizal fungi (AMF) and Trichoderma
spp. (TR). The symbioses with AMF and TR are considered
to be beneficial for plant growth (Brundrett, 1991; Woo et al.,
2014). AMF colonize plant roots and radiate their hyphae into
the surrounding soil, complementing the host’s root functions
(Jansa et al., 2011). The enhanced root performance due to
AMF has been shown in G. max (Wang et al., 2011), V. faba
(Jia et al., 2004), M. sativa (Jansa et al., 2011), and Phaseolus
vulgaris (common bean) (Tajini et al., 2012). Moreover, nodules
normally have a high demand for inorganic phosphate (Pi) as
nitrogenase functions in the bacteroid are highly ATP-consuming
(Jakobsen, 1985; Liu et al., 2018). In such cases, AMF have
the capability to accelerate the Pi uptake. The amount of Pi
delivered to the plant varies with specific AMF (Ianson and
Linderman, 1993; Valdenegro et al., 2001). On the other hand,
TR-based biofertilizers have also been reported to enhance N,
P, and K uptakes (Amaresan et al., 2020). TR communicates
with the plant root by chemical signals such as auxins and small
peptides. They could also colonize plant roots by penetrating the
outer layers of the root tissue. One of the well-known beneficial

effects of TR to plants is the solubilization of Pi by acidification,
chelation or redox activities to improve the Pi availability to the
plant. The benefits of AMF and TR to crop growth have been
comprehensively reviewed (Szczałba et al., 2019).

Domestication is the conversion of wild plant species to
cultivated ones through human selection and breeding of
desirable characteristics over many generations, but it often
results in the loss of genetic diversity (Gepts, 2010). It is well-
documented that the domestication of legumes has emphasized
the selection of favorable aboveground traits including larger seed
size, palatability, reduced seed dormancy and heritability of other
desirable agronomic traits (Abbo et al., 2014; Pérez-Jaramillo
et al., 2016). Such a process of artificial selection has reduced the
self-sustaining capability and increased sensitivities to diseases,
abiotic stresses and nutrient depletion in cultivated legumes.
Furthermore, artificial selection has also influenced underground
traits including root architecture and root exudate composition,
often unintentionally (Pérez-Jaramillo et al., 2016). This may
affect the establishment of rhizospheric microbial communities
in the soil where the legumes are grown. In this review, we
will discuss how domestication and agricultural practices have
influenced the interactions between legumes and rhizospheric
microbes (rhizobia and fungi), with a focus on the potential
impacts of such altered interactions on macronutrient acquisition
by the host plant. We will also summarize the identified genes that
regulate plant-rhizobia interactions in both plants and rhizobia,
and the new study approaches using metabolic modeling and
metabolic profiling, with the aim of contributing to a better
understanding of legume-microbe symbiotic associations.

DOMESTICATION AND AGRICULTURAL
PRACTICES INFLUENCE THE DIVERSITY
OF RHIZOBIA AND SOIL FUNGI

Legume-rhizobium mutualism contributes to the vast majority
of non-anthropogenically fixed N in terrestrial ecosystems
(Cleveland et al., 1999), and it is especially susceptible to
anthropogenic environmental changes (Kiers et al., 2002).
Through mutualistic symbiosis, legumes receive ammonia fixed
from atmospheric N2 by rhizobia in the root nodule, in exchange
for providing rhizobia with a carbon source obtained through
photosynthesis (Figure 1). The efficiency and intensity of SNF
is dependent on both rhizobia and plant hosts under a specific
set of conditions (Lau et al., 2012). A study comparing the SNF
efficiencies between wild (local) varieties and cultivars in major
legume crops showed that the wild populations of alfalfa, pea and
feugreek (Trigonella foenumgraecum L.) had better performance
than their cultivated counterparts (Provorov and Tikhonovich,
2003). On the other hand, a study using wild and cultivated
soybeans inoculated with the slow-growing Bradyrhizobium
japonicum strain USDA110 or the fast-growing Sinorhizobium
fredii strain CCBAU45436, indicated the SNF efficiency was
improved by the domestication process (Muñoz et al., 2016).
Moreover, the activity and diversity of rhizobia can be affected
by human activities including the use of N fertilizer, cropping
system and soil management system (Ferreira et al., 2000;
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FIGURE 1 | A schematic drawing representing the impacts of symbioses with arbuscular mycorrhizal fungi (AMF) and rhizobia on plant growth and nutrient uptake.

Bizarro et al., 2011). The utilization of high levels of N fertilizer
across soil ecosystems may result in the breakdown of nitrogen-
fixing symbiosis between legumes and rhizobia (Foley et al.,
2005). It was suggested that when the resources exchanged in
mutualistic symbiosis are abundant in the soil and the host is
less reliant on the microsymbiont, the plant-microbe interaction
could shift from mutualism to parasitism (Bronstein, 2001).
The genetic diversity of rhizobium in nodules of P. vulgaris was
decreased partially due to the N fertilization (Caballero-Mellado
and Martinez-Romero, 1999). A study showed that Trifolium
species inoculated with long-term N fertilizer-treated rhizobial
strains had less biomass and chlorophyll contents than plants
inoculated with non-fertilizer treated rhizobia, implying an
elevated N supply resulted in the evolution of less-mutualistic
rhizobia that provide fewer growth benefits to plant hosts in the
Trifolium-rhizobium symbiosis (Weese et al., 2015).

Arbuscular mycorrhizal fungi belong to the subphylum
Glomeromycotina, which are asexual obligate biotrophs that
infect roots and establish a mutualistic relationship with
the host plant to complete their life cycle. The mutualism
is characterized by the transfer of nutrients including P, N,
and carbon (C) between the fungi and the plants (Figure 1).
Moreover, AMF play an important role in improving N2
fixation by providing a favorable environment to facilitate
the infection of plant roots by rhizobia (Mohammadi et al.,
2012). It is believed that the responsiveness of crops to
AMF is not under intentional selection by breeders during
domestication (Bennett et al., 2013). However, agricultural
activities such as soil disturbance, grazing, fertilizer application
and monocropping may have reduced the AMF diversity and

their community structure in the soil (Jansa et al., 2006).
Plants having sufficient P supplies are also less responsive to
AMF for symbiosis (Jansa et al., 2006). Moreover, soil types
can also influence the structure of soil fungal communities
(Chang et al., 2020). By simulating the monocropping of
cultivated and wild soybeans in the greenhouse, it was shown
that monocropping resulted in a stable fungal community
in the rhizospheres of both types of soybeans, but with
different community structures (Tian et al., 2020). Therefore,
modern agricultural practices may have resulted in the
reduced AMF diversity and the inadvertent selection of crop
genotypes with reduced responsiveness to AMF for symbiosis
(Bennett et al., 2013).

WILD LEGUMES RECRUIT MORE
DIVERSE RHIZOBIA AND SOIL FUNGI

It is documented that domesticated legumes tend to have
fewer compatible symbionts than wild legumes (Mutch and
Young, 2004). Rhizobia varies on their ability to nodulate
various legume species. Some strains show high nodulation
specificities and only form nodules with a limited number
of legume species, while others can have a wide range of
hosts (Pueppke and Broughton, 1999). G. max is one of
the most important cultivated legumes. G. soja is the wild
progenitor species of G. max, with high genetic diversity and
better resistance to environmental stresses (Muñoz et al., 2017).
Both G. soja and G. max can be nodulated with rhizobia,
including Sinorhizobium fredii, Bradyrhizobium japonicum and
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Bradyrhizobium elkanii (Wang et al., 2009). A study on bacterial
isolates from G. soja nodules collected from different ecoregions
in China showed that the biodiversity of rhizobia is associated
with the geographical distribution of the particular ecotype
of G. soja (Wu et al., 2011). Moreover, by comparing the
rhizospheric bacteria between wild and cultivated soybeans in
different soil types, wild soybean has the ability to recruit a
higher abundance of Bradyrhizobium strains than cultivated
soybean (Chang et al., 2019). A study of the impacts of
domestication on the chickpea-Mesorhizobium symbiosis using
10 accessions of chickpea showed that the wild chickpea
progenitor (Cicer reticulatum) could associate with more diverse
Mesorhizobium populations than the cultivated chickpea (C.
arietinum) (Kim et al., 2014).

By comparing the rhizospheric fungal communities of
wild soybeans, ZYQ95 and 01-289, to those of cultivated
soybeans, Williams 82 and Zhonghuang, the wild and cultivated
germplasms were found to recruit different fungi in the
rhizosphere (Chang et al., 2020). The wild soybeans recruited
soil fungi with diverse potential functions while the cultivated
soybeans mainly recruited those soil fungi which can enhance
nutrient uptake by the plant (Chang et al., 2020). In another
study conducted in the greenhouse, it was found that the
genus Paraglomus was more enriched in the rhizosphere of wild
soybean ZYQ95 while Funneliformis and Rhisophagus were more
enriched in the rhizosphere of cultivated soybean Williams 82
(Zhang et al., 2019). In the field, no AMF could be found
in the rhizosphere of Williams 82 while only Paraglomus was
found in the rhizosphere of ZYQ95 under drought condition
(Zhang et al., 2019). The reduced diversity of symbiotic
rhizobia and fungi in modern legume cultivars compared to the
wild relatives is likely a result of domestication. Agricultural
practices such as monocropping might have played a role.
Moreover, domesticated crops are usually grown in a confined
cultivation area. As a result, the selection force on legume-
associated soil microbe diversity in complex natural habitats
might be absent.

AMF IMPROVE THE EFFICIENCY OF
RHIZOBIUM-MEDIATED NITROGEN
ASSIMILATION IN BOTH WILD AND
DOMESTICATED LEGUMES

In a survey of 27 crops including legumes such as chickpea,
soybean, grass pea, lentil, white clover and common bean, the
domesticated crops and their wild relatives were inoculated
with Rhizophagus irregularis (Blaszk, Wubet, Renker & Buscot)
C. Walker & A. Schüßler strain EEZ 58 (Gi), which is a
common strain of AMF in wild and agricultural lands. The
inoculation led to increases in leaf Pi concentrations across
all domesticated crops and wild relatives tested (Martín-
Robles et al., 2018). In the same study, for the 14 non-
leguminous crops such as barley, corn and tomato, when Pi
availability in the soil was high, the growth benefits to the
domesticated crops by the arbuscular mycorrhizae were reduced

but not for their wild relatives (Martín-Robles et al., 2018).
In another study, wild soybean (G. soja) or cultivated soybean
(G. max) was inoculated with both Scutellospora heterogama
(S. heterogama) and their own rhizobial cells (Eom et al.,
1994). It was found that S. heterogama stimulated the triple
symbiosis among the wild soybean plant, S. heterogama and
the rhizobial cells (Eom et al., 1994; Figure 1). Furthermore,
it was demonstrated that unimproved soybean accessions
showed a greater mycorrhizal dependency (MD) than improved
accessions (Khalil et al., 1994). When inoculated with the
vascular-arbuscular mycorrhizal fungi, Gigaspora margarita
or Glomus intraradices, under low soil Pi condition, the
positive growth effects due to the inoculation were greater
in the unimproved accessions than in the improved ones
(Khalil et al., 1994). A follow-up study showed that the
unimproved soybean accession having a high MD value,
G. soja Sieb. & Zucc. PI 468916, developed symbiosis with
G. margarita more quickly than G. max (L.) Merr. cv. Mandarin
(unimproved) and G. max cv. Swift (improved), which have
intermediate and low MD values, respectively (Khalil et al.,
1999). Among the three soybean accessions, G. soja Sieb. &
Zucc. PI 468916 also had higher phosphatase activities and
higher percentage increases in phosphatase activities when
inoculated with G. margarita (Khalil et al., 1999). In contrast,
in a study on cowpea using three cultivated accessions,
Katumani 80, KenKunde 1 and Kunde Mboga, and one wild
accession, SP 219, it was found that the ability to respond
to mycorrhizal inoculation was retained in the cultivated
accessions, which are the common modern cultivars grown
by smallholding farmers in Kenya (Oruru et al., 2017). In
these experiments, the cowpea accessions were grown in
sterilized soil inoculated with a filtrate from non-sterilized
soil and a commercial mycorrhizal inoculum comprising
Funneliformis mosseae, Glomus aggregatum, Glomus etunicatum,
and Rhizophagus irregularis (Oruru et al., 2017). AMF root
colonization was observed in all the accessions in both non-
sterilized and sterilized soil. In all the accessions, the inoculation
of the mycorrhizal inoculum improved the nodule number, dry
weights of nodules, roots and shoots, and both the nitrogen
and Pi levels in the shoots of all the wild and cultivated
accessions. However, the increase in biomass of nodules, roots
and shoots were more significant in the cultivated accessions
than in the wild counterpart (Oruru et al., 2017). Katumani 80
and Kunde Mboga also had higher percentages of mycorrhizal
colonization compared to the wild accession while Katumani
80 and KenKunde 1 had more nodules than the wild SP 219
(Oruru et al., 2017).

Although several studies showed that wild legumes
benefited more from the inoculation with AMF than cultivated
counterparts (Eom et al., 1994; Khalil et al., 1994, 1999; Martín-
Robles et al., 2018), the opposite effect of AMF was also reported
(Oruru et al., 2017). It is important to note that different legumes
and AMF species were tested in these studies. It has been pointed
out that the responses to soil fungi could be genotype-specific,
instead of wild versus cultivated accessions of the legume in
question (Prashar and Vandenberg, 2017). As discussed above,
the response to soil fungi is probably not intentionally selected
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for during domestication. Therefore, it may not be appropriate to
generalize the observations to all wild and domesticated legumes.

THE CAPABILITY TO RESPOND TO AMF
AND Trichoderma spp. (TR) IS RETAINED
IN MODERN LEGUME CULTIVARS

During plant breeding, varieties which are more resistant to
diseases are usually selected for. It has been hypothesized that
such selections may also have influenced the susceptibility of
these varieties to beneficial microbes such as AMF. When
different varieties of chickpea were grown in paddock soil
containing naturally occurring AMF, there was a correlation
between the level of resistance to Phytophthora root rot
(PRR) and the degree of AMF colonization on the root (Plett
et al., 2016), where the PRR-susceptible variety, Sonali, had a
significantly higher root AMF colonization level than the PRR-
resistant varieties, Yorker and PBA HatTrick, although such
a correlation was absent when the varieties were grown in
sterilized soil inoculated with Funneliformis mosseae (Plett et al.,
2016). A possible explanation for such a phenomenon is that
there is a certain degree of overlap between genes which confer
resistance against beneficial AMF and those against pathogenic
microbes (Plett et al., 2016). Although there are few studies on
the response of wild legumes to TR, current findings also suggest
that the capability to respond to TR is retained in domesticated
legumes. In a study on 23 wild and cultivated lentil accessions
inoculated with commercial TR inocula, RootShield R© (RS) and
RootShield R© Plus (RSP), based on Trichoderma harzianum T22
and Trichoderma virens G41, respectively, the wild accession,
Lens tomentosus PI 572390, had enhancements in most of
the tested agronomic traits such as root and shoot biomass
(Prashar and Vandenberg, 2017). Positive effects on the cultivated
accessions by such inoculations were also observed (Prashar
and Vandenberg, 2017). However, in some accessions, be they
cultivated or wild, the inoculation had no or negative effects
on the same agronomic traits (Prashar and Vandenberg, 2017).
This showed that the TR responses were genotype-specific rather
than distinguished along the line of wild versus domesticated
accessions (Prashar and Vandenberg, 2017).

It was hypothesized that new high-yield crops may be less
responsive to AMF compared to their ancestors (Lehmann
et al., 2012). However, a meta-analysis of the data on 320
different crops, including those in the families Poaceae, Fabaceae,
Pedaliaceae, Asteraceae, and Cucurbitaceae, from 39 published
studies suggested that the new crops have not lost the ability to
respond to AMF compared to their ancestors (Lehmann et al.,
2012). Wild and domesticated legume accessions usually have
distinct root system architectures. For example, in a study on
the quantitative trait locus (QTL) of root system architecture in
soybean, a recombinant inbred (RI) population was produced
by crossing a G. max parent, V71-370, with a G. soja parent,
PI407162 (Prince et al., 2015). The domesticated parent G. max
V71-370 had a larger root system than the wild parent. The
resulting RI population displayed a transgressive segregation of
the root traits, including taproot length and total root length,

from the domesticated and wild parents (Prince et al., 2015).
In another study on the QTL governing the root architecture of
soybean, a cultivated parent, G. max Dunbar, and a wild parent,
G. soja PI 326582A, were used to construct the RI population
(Manavalan et al., 2015). The cultivated parent had longer tap
root and more lateral roots than the wild parent (Manavalan et al.,
2015). In common bean (P. vulgaris), it was found that the wild
accessions, A1 and A2, have longer specific root lengths (root
length: root dry weight) than the cultivated accessions, M1, M2,
M3, M4, and M5, and a lower root density (root dry weight:
root volume) than the cultivated M2 (Pérez-jaramillo et al.,
2017). A link between domestication, specific root morphology
and rhizobacterial community assembly was observed (Pérez-
jaramillo et al., 2017). It is therefore convenient to suggest that
the different root architecture of wild and domesticated legumes
may result in different responses to soil fungi. However, based on
the published data on root architecture and mycorrhizal growth
responses, a meta-analysis suggested that there is no strong
correlation between the mycorrhizal growth response and root
diameter, root hair length or root hair density (Maherali, 2014).
It appears that the differential responses to AMF colonization
by different genotypes/accessions are influenced by factors other
than the physical attributes of the root system. Similar to the
improved efficiency of rhizobium-mediated nitrogen assimilation
by AMF which happens in both wild and cultivated legumes,
the capability to respond to AMF and TR is also retained
in modern legume cultivars. As the symbiosis with AMF and
TR are beneficial for plant growth (Brundrett, 1991; Woo
et al., 2014), the capability of legumes to interact with these
beneficial soil fungi should be have been selected by breeders
during domestication.

FUNCTIONAL GENES INVOLVED IN
LEGUME-RHIZOBIUM-AMF SYMBIOSIS

Symbiosis with rhizobia and AMF play a key role in plant
nutrient acquisition. The mechanisms of these interactions and
the genes driving these processes have been investigated for
decades. In these endeavors, mutant libraries have been highly
valuable resources for the research on symbiotic nitrogen fixation
in legumes. They have been used for the identification and
functional analyses of essential SNF-related genes. Over the years,
legume mutants have been produced using physical/chemical
mutagenesis, insertional mutagenesis and targeted genome
editing tools (Le Signor et al., 2009; Urnov et al., 2010; Cui
et al., 2013), including zinc finger nucleases (ZFNs), transcription
activator-like effector nucleases (TALENs) and CRISPR-Cas
systems (Wang L. et al., 2017).

Genes and/or functions required for rhizobium and AMF
symbiosis are summarized in Table 1. In L. japonicus, the
biological functions of leghemoglobins were validated using
RNAi and the CRISPR/Cas9 system (Ott et al., 2005; Wang et al.,
2016, 2019). Leghemoglobins are plant hemoglobins required
to maintain a low-oxygen environment inside root nodules for
the efficient functioning of nitrogenases in bacteroids (Vázquez-
Limón et al., 2012). The Ljlb1, Ljlb2, and Ljlb3 mutants had
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TABLE 1 | Functional genes involved in legume symbiosis.

Gene Function Organism References

LjLB1 Leghemoglobin Lotus japonicus Ott et al., 2005; Wang et al., 2016, 2019

LjLB2 Leghemoglobin Lotus japonicus Ott et al., 2005; Wang et al., 2016, 2019

LjLB3 Leghemoglobin Lotus japonicus Ott et al., 2005; Wang et al., 2016, 2019

nifV Homocitrate synthase Azorhizobium caulinodans ORS571 and Bradyrhizobium Nouwen et al., 2017

Fen1 Homocitrate synthase Lotus japonicus Imaizumi-Anraku et al., 1997

Rj4 Symbiotic partnership specificity Glycine max Hayashi et al., 2014; Tang et al., 2016

MtNFS1 Symbiotic partnership specificity Medicago truncatula Jemalong A17 Wang Q. et al., 2017; Yang S. et al., 2017

MtNFS2 Symbiotic partnership specificity Medicago truncatula Jemalong A17 Wang Q. et al., 2017; Yang S. et al., 2017

SYMRK Infection thread initiation and
nodule development by rhizobia

Lotus japonicus Kistner et al., 2005

CASTOR Infection thread initiation and
nodule development by rhizobia

Lotus japonicus Kistner et al., 2005

POLLUX Infection thread initiation and
nodule development by rhizobia

Lotus japonicus Kistner et al., 2005

SYM3 Infection thread initiation and
nodule development by rhizobia

Lotus japonicus Kistner et al., 2005

SYM6 Infection thread initiation Lotus japonicus Kistner et al., 2005

SYM15 Infection thread initiation and
nodule development by rhizobia

Lotus japonicus Kistner et al., 2005

SYM24 Infection thread initiation and
nodule development by rhizobia

Lotus japonicus Kistner et al., 2005

Leghemoglobin Medicago truncatula Liese et al., 2017

Nicotianamine synthase-like protein Medicago truncatula Liese et al., 2017

Nodule-specific cysteine-rich
peptides

Medicago truncatula Liese et al., 2017

GmEXLB1 Regulation of root development and
responses to abiotic stress

Glycine max Kong et al., 2019

GmACP1 Acid phosphatase Glycine max Zhang et al., 2014

elevated free-oxygen concentrations in infected zones and N2
fixation was abolished (Ott et al., 2005; Wang et al., 2019).
Transcript analyses of bacteroid genes from the nodules of
these mutants revealed lower expression levels of nif and
fix genes compared to those from the wild type (Ott et al.,
2005, 2009). In particular, the NifH protein was not detected
despite the presence of nifH transcripts in the mutant nodules
(Ott et al., 2005).

Efficient nitrogenase activities also depend on other
conditions besides the microaerobic environment (Kuzma
et al., 1993). Homocitrate is a component of the iron-
molybdenum cofactor of nitrogenases (Rubio and Ludden,
2008). For rhizobia lacking the homocitrate synthase-encoding
gene (nifV), homocitrate supplied by the host plant is a key
element of successful SNF, as demonstrated using an SNF-
defective L. japonicus mutant, fen1 (Imaizumi-Anraku et al.,
1997). A homocitrate synthase gene, FEN1, in the host plant was
identified as responsible for compensating for the lack of nifV
in rhizobia (Hakoyama et al., 2009). Additionally, an external
supply of homocitrate was shown to restore the nitrogen-fixing
capacity in the ineffective nodules.

On the other hand, the editing of genes responsible for the
recognition mechanism underlying legume-rhizobium specificity
enables nodulation with unspecific strains. In soybean, the
disruption of the dominant allele Rj4 allowed nodulation with
some strains of Bradyrhizobium japonicum and Bradyrhizobium

elkanii (Hayashi et al., 2014; Tang et al., 2016). Rj4 encodes
a thaumatin-like protein that usually restricts nodulation with
these ineffective rhizobial strains. In M. truncatula Jemalong
A17, the editing of two nodule cysteine-rich (NCR) peptide-
encoding genes, MtNFS1 and MtNFS2, allowed nodulation by
S. meliloti strain Rm41 (Wang Q. et al., 2017; Yang S. et al., 2017).
NCR peptides control and regulate the symbiotic partnership
specificity in M. truncatula. MtNFS1 and MtNFS2 were identified
using a recombinant inbred line (RIL) population of Jemalong
A17 and DZA315. Parental genotypes were segregated according
to their ability to form functional nodules with S. meliloti strain
Rm41 or not (Wang Q. et al., 2017; Yang S. et al., 2017).

Seven L. japonicus genes (SYMRK, CASTOR, POLLUX, SYM3,
SYM6, SYM15, and SYM24) are required for infection thread
initiation for both fungal and bacterial symbiosis (Kistner
et al., 2005). Mutant phenotypes showed that these genes are
involved in the intracellular infection by fungal and bacterial
symbionts. Additionally, these genes are required for nodule
development by rhizobia, specifically for the formation of nodule
primordia, except SYM6, since small nodule-like structures could
still be observed on sym6 mutants during the interaction with
Mesorhizobium loti but not on the other six mutants. After
inoculation with AMF, sym mutant roots had a limited ability
to form arbuscules, indicating the key role of the symbiosis-
related genes for intracellular infection by fungal partners
(Kistner et al., 2005).
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Symbiotic nitrogen fixation in nodules is also affected when
the growth is slow due to nutrient deficiency. An RNA-
Seq transcriptome profiling of the nodules of M. truncatula
inoculated with S. meliloti under P-deficient conditions revealed
lower nitrogenase activities (Liese et al., 2017). The reduction
in SNF efficiency was due to a downregulation of genes
encoding leghemoglobins, nicotianamine synthase-like proteins
and NCR peptides. Also, low-Pi conditions reduced growth,
nodule numbers and P concentrations in stem, root and nodule
tissues compared to the control (Liese et al., 2017). However, the
P concentration in nodules was relatively higher than in stem
and root tissues. In soybean, GmEXLB1, encoding an expansin,
was identified as a key gene involved in the response to low-
P stress through transcription profiling (Kong et al., 2019).
Expansins are involved in the regulation of root development and
responses to abiotic stresses in plants (Cosgrove, 2015). It was
observed that GmEXLB1 expression was induced in the lateral
roots of soybean under P starvation conditions. The ectopic
expression of GmEXLB1 in transgenic Arabidopsis promoted
changes to the root architecture by increasing the number and
length of lateral roots, thus improving P acquisition under low-P
conditions (Kong et al., 2019). The acid phosphatase-encoding
gene, GmACP1, has also been associated with P efficiency
in soybean (Zhang et al., 2014). GmACP1 is located in the
QTL, qPE8, related to soybean P efficiency, on chromosome 8.
Transgenic soybean hairy roots overexpressing GmACP1 showed
a 2.3-fold increase in acid phosphatase activity and increased
the efficiency of P usage by 11.2-20.0% relative to the control
(Zhang et al., 2014).

METABOLIC MODELING AND
METABOLIC PROFILING STUDIES ON
LEGUME-RHIZOBIUM SYMBIOSIS

Legume-rhizobium symbiosis involves biological nitrogen
fixation as well as the exchange of nutrients. Transport
systems and carbon-nitrogen metabolism are coordinated
to provide nutrients for effective SNF. Each host plant-
rhizobium interaction is association-specific and determines the
accumulation of carbon and energy storage metabolites inside
the microsymbionts (Terpolilli et al., 2012). Metabolic modeling
provides new insights into the metabolism in plant systems. An
emerging approach to studying the process of SNF in legumes
is constraint-based modeling, which relies on network topology
and the integration of genomic and high-throughput data for
analyzing the metabolic capabilities of organisms (Feist et al.,
2009; Heirendt et al., 2019). Among the most frequently used
frameworks is flux balance analysis using genome-scale models
(Orth et al., 2010). This approach has been successfully used
to study the process of SNF carried out in mature nodules
by rhizobia. Metabolic network reconstructions have been
reported for S. meliloti (Zhao et al., 2012; diCenzo et al., 2016,
2018), Bradyrhizobium diazoefficiens (Yang Y. et al., 2017), the
symbiotic forms of Rhizobium etli (Resendis-Antonio et al., 2007,
2012), and Sinorhizobium fredii (Contador et al., 2020). These
studies included the nutrient requirements for each N2-fixing

relationship and performed preliminary analyses of SNF such
as flux analyses of relevant biochemical pathways (e.g., the
TCA cycle, the pentose phosphate pathway, and the production
of cofactors for nitrogenase) and determination of the genes
required for an efficient SNF through computational simulations.
However, these analyses simplified the plant metabolism by only
including inputs from the host plant to the microsymbiont
metabolism during symbiosis.

Recently, the impact of wild and cultivated soybeans on
nitrogen fixation was assessed in the S. fredii model (Contador
et al., 2020). Transcriptome profiles of S. fredii in symbiotic
conditions were used to capture the differential nitrogen-fixing
capacity of S. fredii strain CCBAU45436 in symbiosis with
G. max C08 and G. soja W05, respectively. The bacteroid model
quantified and predicted a higher nitrogen fixation activity and
C/N ratio of S. fredii with the cultivated soybean than with the
wild accession. This is consistent with previous experimental
observations that this soybean cultivar (C08) outperformed
the wild accession (W05) in a series of nitrogen fixation-
related traits including nodule number, total nitrogen and total
ureide accumulation, and new QTLs for ureide content and
nodule fresh weight have been identified using RIL populations
(Muñoz et al., 2016). An examination of these QTLs revealed a
very low diversity in some regions among cultivated soybeans.
Domestication process was suggested as the responsible for the
selection of these traits (Muñoz et al., 2016).

The representation of whole-rhizobium metabolic networks
has been achieved for S. meliloti and B. diazoefficiens USDA110
(diCenzo et al., 2016; Yang Y. et al., 2017). These reconstructions
were used to build context-specific models to characterize
the metabolic capabilities of rhizobia in bulk soil, rhizosphere
and nodule bacteroids. However, metabolic models have been
published for only two legume species, G. max and M. truncatula,
despite the significance of legumes to sustainable agriculture.
A compartmentalized reconstruction for G. max was used
to construct a multi-organ model to represent the reserve
mobilization in the cotyledon and hypocotyl/root tissues
(Moreira et al., 2019). This reconstruction can also be used
to represent other tissues and conditions since the whole set
of metabolic reactions in soybean were used to construct the
metabolic model. Annotations of the G. max genome were used
to define the gene-protein-reaction associations in the model. On
the other hand, the M. truncatula model was used to capture
both biomass production during day and night conditions and
host-microsymbiont interactions (Pfau et al., 2018). This was the
first attempt to elucidate the effects of symbiosis on metabolic
fluxes and plant growth. Computational analyses revealed
the costs and benefits of the symbiotic system for biomass
growth when external ammonium is not available. Recently,
the M. truncatula model was built to represent multi-organism
metabolic interactions in different developmental zones within
the nodule during nitrogen fixation (diCenzo et al., 2020). The
multi-organism model consisted of M. truncatula nodulated
by S. meliloti Rm1021. The plant system was represented by
a multi-compartmental reconstruction that includes root and
shoot tissues together with five nodule zones (apical meristem,
distal, proximal, interzone, and nitrogen fixation zones). The
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accuracy of the metabolic reconstruction for S. meliloti was
improved over the previous versions of the model. The integrated
model was used to evaluate the use of nutrients by N2-fixing
bacteroids, N2 fixation efficiency and costs related to the nitrogen
fixation process.

The metabolic states of the legume-rhizobium association can
also be assessed by performing metabolic profiling (Roessner
et al., 2001; Rambla et al., 2015), which can provide a
comprehensive picture of a particular sample or a genetically
manipulated system. Metabolic profiling has been used to
study metabolic shifts in SNF associations. Recently, metabolic
profiling were performed on effective and ineffective nodules of
soybean to identify the active processes according to the partners
involved in the symbiosis (Agtuca et al., 2020). Metabolite
levels were determined to characterize the different plant
phenotypes and interactions with rhizobia. Similar comparative
studies have been performed in Medicago and L. japonicus
to investigate metabolites and related pathways that influence
nodule metabolism during nitrogen fixation (Desbrosses et al.,
2005; Ye et al., 2013; Gemperline et al., 2015). Other metabolomic
studies have characterized the differentiation process from free-
living rhizobia into bacteroids to detect differences in the
metabolite composition of these two physiological conditions
(Vauclare et al., 2013). Metabolite profiling of root hairs was
also performed to characterize the early stage of rhizobial
infection, by identifying those metabolites the accumulation
of which was regulated in response to rhizobial inoculation
(Brechenmacher et al., 2010).

CONCLUSION AND PERSPECTIVE

Legumes engage in mutualistic relationships with rhizobia and
mycorrhizal fungi, enabling them to obtain essential nutrients,
promote growth, and enhance biotic and abiotic stress resistance.
There is extensive evidence to support that AMF affect the
establishment and functions of rhizobial nodulation in both
wild and cultivated legumes and enhance nitrogen acquisition
in the host plant through SNF. However, domestication has
reduced the genetic diversity in host plants and impacted their
compatibility with rhizobial strains and AMF. And the intensive
applications of chemical fertilizers and large-scale monoculture

farming practices during domestication actually have a negative
impact on AMF community structures and their colonization
of legume roots. It is important for researchers to engineer
or screen for rhizobium strains, which are both competent for
nodulation and capable of high nitrogen fixation efficiency, and
AMF, which can effectively improve the nutrient acquisition by
the host plants. Meanwhile, it is also vital to improve host plant’s
ability to interact with the best beneficial mutualistic symbionts.
Understanding the genetic control of the symbiosis specificity
between wild and cultivated legumes and identifying the key
genetic factors controlling the symbiotic interaction will provide
useful information for improving legume-soil microbe symbiosis.
Moreover, utilizing advanced approaches such as metabolic
modeling and metabolic profiling to investigate the molecular
mechanisms of metabolite exchanges among legumes, AMF and
rhizobia under nutrient-deficient conditions will help researchers
better understand legume-microbe symbiosis, and ultimately
contribute to the implementation of sustainable agriculture.
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