
fgene-11-585029 November 20, 2020 Time: 12:30 # 1

ORIGINAL RESEARCH
published: 20 November 2020

doi: 10.3389/fgene.2020.585029

Edited by:
Quan Zou,

University of Electronic Science
and Technology of China, China

Reviewed by:
Pan Zheng,

University of Canterbury, New Zealand
Martín Gutiérrez,

Diego Portales University, Chile

*Correspondence:
Shudong Wang

shudongwang2013@sohu.com
Jialiang Yang

yangjl@geneis.cn
Jionglong Su

Jionglong.Su@xjtlu.edu.cn

Specialty section:
This article was submitted to

Computational Genomics,
a section of the journal

Frontiers in Genetics

Received: 19 July 2020
Accepted: 05 October 2020

Published: 20 November 2020

Citation:
Zhang Y, Feng T, Wang S,

Dong R, Yang J, Su J and Wang B
(2020) A Novel XGBoost Method to

Identify Cancer Tissue-of-Origin
Based on Copy Number Variations.

Front. Genet. 11:585029.
doi: 10.3389/fgene.2020.585029

A Novel XGBoost Method to Identify
Cancer Tissue-of-Origin Based on
Copy Number Variations
Yulin Zhang1, Tong Feng1, Shudong Wang2* , Ruyi Dong3, Jialiang Yang3* ,
Jionglong Su4* and Bo Wang3

1 College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, China, 2 College
of Computer and Communication Engineering, China University of Petroleum (East China), Qingdao, China, 3 Geneis (Beijing)
Co., Ltd., Beijing, China, 4 School of AI and Advanced Computing, XJTLU Entrepreneur College (Taicang), Xi’an
Jiaotong-Liverpool University, Suzhou, China

The discovery of cancer of unknown primary (CUP) is of great significance in designing
more effective treatments and improving the diagnostic efficiency in cancer patients.
In the study, we develop an appropriate machine learning model for tracing the tissue
of origin of CUP with high accuracy after feature engineering and model evaluation.
Based on a copy number variation data consisting of 4,566 training cases and 1,262
independent validation cases, an XGBoost classifier is applied to 10 types of cancer.
Extremely randomized tree (Extra tree) is used for dimension reduction so that fewer
variables replace the original high-dimensional variables. Features with top 300 weights
are selected and principal component analysis is applied to eliminate noise. We find
that XGBoost classifier achieves the highest overall accuracy of 0.8913 in the 10-fold
cross-validation for training samples and 0.7421 on independent validation datasets
for predicting tumor tissue of origin. Furthermore, by contrasting various performance
indices, such as precision and recall rate, the experimental results show that XGBoost
classifier significantly improves the classification performance of various tumors with
less prediction error, as compared to other classifiers, such as K-nearest neighbors
(KNN), Bayes, support vector machine (SVM), and Adaboost. Our method can infer
tissue of origin for the 10 cancer types with acceptable accuracy in both cross-validation
and independent validation data. It may be used as an auxiliary diagnostic method to
determine the actual clinicopathological status of specific cancer.

Keywords: tissue-of-origin, copy number variations, multiclass, XGBoost, extremely randomized tree, principal
component analysis

INTRODUCTION

Recent advances in molecular biology, e.g., genomics, proteomics, and metabolics, have resulted
in a more accurate and specific prediction of tumor response to treatment, as well as trends
in metastasis recurrence and prognosis. However, traditional detection methods, e.g., clinical,
impact, and pathological examination, can only determine 50–80% of patients of metastasis cancer,
while the remaining 20–50% of patients still cannot be determined (Chen et al., 2017) as more
effective methods of diagnosis are required. In the metastasis of cancer, tumor cells are carried
from the primary site to lymphatics, blood vessels, or other sites to continue to grow and form
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the same type of tumor. Biochemical biopsy of micrometastasis
may lead to partial diagnosis and chaos due to the instability
of biochemical indicators. Identifying the type and origin of
cancer is important to determine the most appropriate treatment
for cancer patients. In practice, errors in the uncertainties will
become bigger, resulting in the error of diagnosis. The molecular
expression profile of tumor cells in the metastatic focus is more
similar to that in the primary site but different from that in the
metastatic site, suggesting that we can trace the tumor origin
according to the molecular expression profile of tumor cells in
the metastatic site.

Many studies have attempted to use cancer biomarkers to
predict the locations of primary tumors in CUP such as gene
expression, miRNA and DNA methylation (Talantov et al., 2006;
Clavell et al., 2008; Staub et al., 2010; Søkilde et al., 2014;
Tang et al., 2017; Grewal et al., 2019). Gene expression patterns
in tumors were the most widely used biomarkers for tumor
classification and have achieved higher accuracy with machine
learning algorithms. For instance, the support vector machines
(SVMs) have been utilized as a multiclass classifier for the
expression levels of 16,063 genes, achieving 78% classification
accuracy (Ramaswamy et al., 2001). Seventy-nine optimal gene
markers were selected and subsequently used as features for
training of SVM classifier, achieving 89% classification accuracy
with 13 classes (Tothill et al., 2005). SVM-RFE approach has been
applied to select 154 top genes and classified the 22 common
tumor types on the pan-cancer transcriptome database, obtaining
an overall accuracy of 96.5% for training set and 97.1% accuracy
for independent test set consisting of 9,626 primary tumors (Xu
et al., 2016). Other machine learning classifiers have been also
carried out to identify tissues of origin. For example, K-nearest
neighbors (KNN) classifier has been used for 39 cancers including
92 genes, achieving 84% accuracy in cross-validation and 82%
in the independent set of 112 samples (Ma et al., 2006). Neural
networks have been applied to complementary DNA (cDNA)
and oligonucleotide data consisting of training sets and test sets
independently, achieving a mean accuracy of 83% (Bloom et al.,
2004). Random forest classifiers have been utilized on publicly
available somatic mutation data in the COSMIC database to
train using leave-one-out cross-validation and achieved over 80%
accuracy (Marquard et al., 2016). Random forest has been also
used to establish classifiers for 38 kinds of tumors to methylation
data and obtained 87% accuracy in the test set. A least absolute
shrinkage and selection operator has been proposed using cross-
validated algorithm, which achieved an overall accuracy of 85%
(Søkilde et al., 2014). The artificial bee colony (ABC) and the
particle swarm optimization have been carried out on the brain
lower grade glioma data. The highest classification accuracy was
99.1% by the ABC algorithm (Bhowmick et al., 2019). Although
these methods have achieved promising results, they had the
disadvantages of lower classification accuracy on independent
sets with more features.

Copy number variations (CNVs) usually refer to the
individual difference in continuous DNA fragments with length
ranging from several thousand to several trillion base pairs in
genome. It can affect the individual phenotype by changing
the number of gene copies, thus affecting the expression dose,

disrupting the coding region structure of gene, changing the
position or length of gene regulatory sequence, exposing recessive
mutation, etc. (Redon et al., 2006; Poduri et al., 2013). So far,
few studies have explored the effects of copy number variations
on tissue-of-origin by machine learning algorithms. Zhang et al.
(2015) have executed a comprehensive genome-wide analysis of
23,082 CNVs in 3,480 cancer patients, with six cancer types
executed and 19 discriminative genes for tumor classification
selected by minimum redundancy and minimum relevancy
(mRMR) as well as incremental feature selection (IFS) methods.
The overall prediction accuracy was about 75% in 10-fold cross-
validation (Zhang et al., 2015).

In this research, an efficient multiclass model of XGBoost
is established to assist in the identification of tumor origin for
the entire data group from 10 types of tumors based on copy
number variations. Extremely randomized tree (Extra tree) is
used to design an algorithm to select fewer variables replacing
the original high-dimensional variables for training. Principal
component analysis (PCA) is subsequently applied to feature
extraction for eliminating noise. Our method is compared to
algorithms, such as SVM, KNN, Bayes, and Adaboost in terms
of its multiclass classification performance. Experimental results
indicated that XGBoost classifier can achieve an overall higher
accuracy of more than 0.8913 for all training dataset and
0.7421 for independent dataset with 300 features, significantly
improving the classification performance of other classifiers.
Refer to Figure 1 for the flow chart of our method.

This paper is organized as follows. A detailed description
of CNV datasets are given first, then feature selection method
and XGBoost classifier are introduced in section “Materials and
Methods.” In section “Result and Discussion,” five classifiers
including SVM, KNN, Bayes, Adaboost, and XGBoost are used
to assess the prediction performance. The conclusions and
discussion of the work are given in section “Conclusion.”

MATERIALS AND METHODS

Data Preparation
The study focuses on the copy number value of 10 tumor
datasets extracted from The Cancer Genome Atlas (TCGA). The
copy number signal is produced by Affymetrix SNP 6.0 arrays
for the set of samples in each TCGA study. These datasets
are from primary solid tumor samples released by MSKCC
in 2013, which are available from TCGA. The original data
consist of 9,743 samples in total1. Each sample has 24,174
genes with discrete copy number value denoted as “−2,” “−1,”
“0,” “1,” “2,” where “−2” is homozygous deletion, “−1” is
heterozygous loss, “0” is diploid, “1” is one copy gain, and “2”
is high-level amplification or multiple-copy gain. To evaluate
the performance of CNVs_origin, we perform the experiments
on another copy number datasets, which can be downloaded
from http://gdac.broadinstitute.org/ released by TCGA in 2016
(Liang et al., 2017, 2020).

1http://cbio.mskcc.org/cancergenomics/pancan_tcga/
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FIGURE 1 | Flow chart of the method.

We carry out data preprocessing on all datasets. In the first
step, genes with missing values in the samples are deleted. Then,
genes contained in both MSKCC and TCGA datasets are selected.
Finally, the TCGA samples that exist in MSKCC datasets are
removed. After preprocessing, the MSKCC datasets have 4,566
samples and 19,895 genes, which are used as training datasets.
The TCGA datasets have 1,262 samples and 19,895 genes as
independent datasets. The latter includes 112 BLCA samples, 235
BRCA samples, 170 COADREAD samples, 28 GBM samples, 216
HNSC samples, 41 KIRC samples, 120 LUAD samples, 212 LUSC
samples, 22 OV samples, and 106 UCEC samples. For details of
all tissue samples of 10 cancers including tumor status and sample
sizes after filter, refer to Table 1.

Feature Selection
Each sample contains 19,895 variables whose large number
may cause overfitting. As such, we carry out feature selection
to improve the generalization ability of classifiers and reduce

the time to train the classifier. In the research, Extra tree
(Geurts et al., 2006; Geurts and Louppe, 2011) is used for
feature selection.

A Wrapper feature selection method based on Extra
tree is proposed. Similar idea has been proposed by some
researchers utilizing random forest method (Genuer et al.,
2010; Verikas et al., 2011). First, variable importance measure
is calculated by Extra tree. The variable importance measure
of a feature is defined as the average reduction in the
classification accuracy after slight random disturbance and
before disturbance of the feature out-of-bag (OOB) (Verikas
et al., 2011). Then, the sequence backward search is utilized
to rank all features according to their importance measures.
The feature with the least score is removed from the
feature set. The process is iterated until the end of the
algorithm. The feature set with the highest classification
accuracy and minimum number of variables is selected as the
final feature set.
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TABLE 1 | Description of the datasets.

Primary site Abbreviation Sample numbers of training dataset Sample numbers of independent dataset

Bladder urothelial carcinoma BLCA 135 112

Breast invasive carcinoma BRCA 847 235

Colorectal adenocarcinoma COADREAD 575 170

Glioblastoma multiforme GBM 563 28

Head and neck squamous cell carcinoma HNSC 306 216

Kidney renal clear cell carcinoma KIRC 490 41

Lung adenocarcinoma LUAD 356 120

Lung squamous cell carcinoma LUSC 289 212

Ovarian serous cystadenocarcinoma OV 562 22

Uterine corpus endometrial carcinoma UCEC 443 106

The steps in feature selection using Extra tree are given as
follows. Refer to Figure 2 for the flow chart depicting exact
process of feature selection.

Input: Original dataset with all features and samples.
Output: All features with their ranks and corresponding

scores from the most important to the least.
Step 1. The original dataset is randomly divided into k equal

parts. We suppose it contained m features. k− 1 of them are
used to train an Extra tree, and the remaining one is used
as test dataset. Therefore, we have k extreme random trees
R1,R2, · · · ,Rk in total.

Step 2. For each Extra tree, a sequential backward selection
method is used to sort the m features from the most important to
the least. We delete the lowest ranking feature and recorded the
average classification accuracy of Ri.

Step 3. m iterations are carried out in Step 2, and Ri with
the highest classification accuracy is selected as the classification
accuracy of the ith random tree, and its feature set is obtained.

Step 4. For the k random trees, the extreme random tree
with the highest classification accuracy is used as the final
feature selection.

After feature selection, we obtain and rank all features
according to their scores from the most important to the least;
then, we use principal component analysis (PCA) (Martinez and
Kak, 2001; Yang et al., 2004) to perform feature extraction for
further analysis.

XGBoost Classifier
XGBoost classifier is a gradient boosting method incorporating
the regression tree (Chen and Guestrin, 2016). It uses the
combination of weak learners to create a single strong learner.
The idea is to continuously add tree and continuously perform
feature splitting to grow a tree.

ŷi = φ (xi) =
T∑

k=1

fk (xi) , fk ∈ F =, (1)

Defining the function as follows.

F =
{
f (x) = wq(x)

} (
q : Rm → T,w ∈ RT

)
. (2)

in which ŷi is the predicted label of ith sample, xi represents
the ith sample, T represents the total number of trees, fk
represents the kth tree model, and q represents the structure
of each tree that maps an example to the corresponding
leaf index. The objective function of XGBoost classifier is
defined as L(φ) =

∑n
i=1 l(

∧
yi, yi)+

∑
k=1 �(fk), where �(f ) =

FIGURE 2 | Flow chart of feature selection using extremely randomized tree
(Extra tree).
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γT + 1
2λ||w||2. There are two terms in the objective function. The

first term is the loss function measuring the difference between
the predicted value and the real value. The second term is the
regularization term. T and w refer to the number of leaf nodes
and the weight of leaf nodes, respectively. γ controls the number
of leaf nodes, and λ is used to prevent overfitting. Each time when
a tree is added, it automatically learns a new function to fit the
residuals arising from the last prediction. If we obtain k trees after
training, it is necessary to sum the scores corresponding to each
tree to get the predicted value of a sample. In the research, we
choose XGBoost classifier, the maximum depth of which is nine,
learning rate γ is 0.1, and λ is 0.3 by 10-fold cross-validation as
the model for numerical experiments.

RESULTS AND DISCUSSION

CNVs Performance on Training Datasets
For the training dataset, first, we choose the proper classifier and
feature numbers using 10-fold cross-validation with respective
overall prediction accuracy. Figure 3 shows the curves of five
classifiers changing with dimensions of the training samples.
It is found that XGBoost classifier achieves the best result
compared with four other classifiers. The overall accuracy
changes from 0.8499 to 0.8999 vs. the feature number from
100 to 1,000. The best prediction accuracy is 0.8999 for 700,
800 features of XGBoost classifier. The overall accuracy is
0.8913 using 300 or 400 genes as features for the training
datasets. The top 300 features with relatively high between-
group variance are more likely to contribute to cancer
classification, so we select the top 300 features for training and
testing finally.

TABLE 2 | Classification accuracy for each cancer with XGBoost classifier on
training datasets via 10-fold cross-validation.

Dataset Precision

BLCA 0.9611

BRCA 0.7852

COADREAD 0.8716

GBM 0.9101

HNSC 0.9378

KIRC 0.9776

LUAD 0.8928

LUSC 0.9453

OV 0.8052

UCEC 0.7988

In this research, the metrics to assess the efficacy of our
model included true positives, true negatives, false positives, and
false negatives. We also used recall rate, precision, F1 score,
and overall prediction accuracy of each cancer for assessing the
multiclass predictive performance (Zhao and Zhang, 2020). The
recall rate intuitively represents the ability of the classifier to
correctly identify all positive cases. Precision is defined as the
proportion of the true positives out of all the positive results
(both true and false positives). F1 score is the harmonic mean of
precision and recall. Accuracy is defined as the ratio (true positive
+ true negative)/(total number of cases) and calculated for the
entire cohort.

Table 2 lists the classification accuracy for each cancer
with XGBoost classifier on training datasets via 10-fold cross-
validation. Further based on the values of the recall and precision
obtained, we plot a receiver operating characteristic curve (ROC)
to describe the performance of classification models. The ROCs

FIGURE 3 | Classification accuracy for different dimensions using extremely randomized tree (Extra tree) and principal component analysis (PCA).

Frontiers in Genetics | www.frontiersin.org 5 November 2020 | Volume 11 | Article 585029

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-585029 November 20, 2020 Time: 12:30 # 6

Zhang et al. XGBoost-Based Cancer Tissue-of-Origin Identification

FIGURE 4 | Receiver operating characteristic to predict the tissue of origin of CNV_origin.

of these datasets are shown in Figure 4. We are interested in the
area under an ROC curve, denoted by AUC, which is another
commonly used evaluation criterion. In these experiments, our
proposed model achieves fine results. The minimum AUC is 0.84,
and microaverage AUC is 0.96.

Performance Comparison on
Independent Datasets
Furthermore, other classifiers, e.g., KNN, SVM, Bayes, and
Adaboost, are used to compare with our model with the
same benchmark datasets using the same 300 features. In our
experiment, we compare the performance of the algorithm to
other classical classifiers with the same benchmark datasets. We
set the parameters of XGBoost classifier with the learning_rate
γ = 0.1, max_depth = 9, andλ = 0.3. The number of categories
in KNN is chosen to be equal to five. The parameter n_estimators
for Adaboost classifier are 200. For SVM, linear kernel function
is chosen with an optional constant C = 0.01.

Table 3 gives the performance for independent validation
datasets. Clearly, XGBoost classifier performs much better than
other classifiers in recall and F1 score on seven cancer datasets
including COADREAD, GBM, HNSE, KIRC, LUAD, LUSC, and
OV. For other datasets, XGBoost achieves 0.8771 prediction
accuracy on BLCA cancer, far higher than that on KNN. For

the BRCA dataset, XGBoost achieves an accuracy of 0.7034.
For UCEC dataset, XGBoost achieves 0.4864, which is only
lower than the Adaboost. For BLCA dataset, the best prediction
accuracy comes from XGBoost, with a value of 0.8771.

Furthermore, we compare the overall accuracy with the
classifiers on all 10 cancer datasets. It is obvious that XGBoost
achieves the best results whether on the training datasets
or the independent validation datasets. The overall accuracy
is 0.7421 and 0.8913, respectively, which is 17 and 22%
higher than that of SVM, higher than KNN by 22%, and
higher than Adaboost by 37 and 33%. Refer to Figure 5
for the comparison of the overall accuracy between different
classifiers based on the training datasets and independent
validation datasets.

CONCLUSION

In this paper, we propose a cancer type classifier that exploited
the copy number variations data of the tumor samples. The
copy number variations data contain much noise and is of
high dimensionality, so we utilize Extra tree for dimensionality
reduction and principal component analysis to reduce noise.
Subsequently, XGBoost classifier is applied to 10 types of cancer.
Our method achieves the best accuracy regardless of the training
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TABLE 3 | Comparison with other algorithms on independent datasets.

Cancer Predictor Precision Recall F1 score

BLCA XGBoost 0.8771 0.4464 0.5917

KNN 0.5984 0.6785 0.6359

Bayes 0.3232 0.2857 0.3033

Adaboost 0.8000 0.1785 0.2919

SVM 0.5555 0.6250 0.5882

BRCA XGBoost 0.7034 0.7872 0.7429

KNN 0.7777 0.4170 0.5429

Bayes 0.3153 0.1489 0.2023

Adaboost 0.4192 0.6297 0.5034

SVM 0.7777 0.5361 0.6347

COADREAD XGBoost 0.8224 0.8176 0.8200

KNN 0.5265 0.7588 0.6216

Bayes 0.1250 0.1000 0.1574

Adaboost 0.6891 0.6000 0.6415

SVM 0.7986 0.4861 0.7324

GBM XGBoost 0.6666 0.8571 0.7500

KNN 0.5135 0.6785 0.5846

Bayes 0.1250 0.0357 0.0555

Adaboost 0.5483 0.6071 0.5762

SVM 0.6176 0.7500 0.6774

HNSE XGBoost 0.8369 0.7129 0.7700

KNN 0.6371 0.6667 0.6515

Bayes 0.3297 0.2870 0.3069

Adaboost 0.5363 0.5462 0.5412

SVM 0.6774 0.4861 0.5660

KIRC XGBoost 0.7358 0.9512 0.8297

KNN 0.4137 0.8780 0.5625

Bayes 0.0723 0.9268 0.1342

Adaboost 0.6341 0.6341 0.6341

SVM 0.6271 0.9024 0.7400

LUAD XGBoost 0.5526 0.3500 0.4285

KNN 0.3535 0.2916 0.3196

Bayes 0.1212 0.0333 0.0522

Adaboost 0.2341 0.3083 0.2661

SVM 0.4869 0.4666 0.4765

LUSC XGBoost 0.8310 0.8584 0.8445

KNN 0.7486 0.6745 0.7096

Bayes 0.5000 0.0849 0.1450

Adaboost 0.7227 0.3443 0.4664

SVM 0.7142 0.6603 0.6862

OV XGBoost 0.3684 0.9545 0.5316

KNN 0.3090 0.4415 0.7727

Bayes 0.0408 0.3636 0.0733

Adaboost 0.2142 0.4090 0.2812

SVM 0.3508 0.9090 0.5063

UCEC XGBoost 0.4864 0.6698 0.5669

KNN 0.4927 0.3207 0.3885

Bayes 0.0500 0.0094 0.0158

Adaboost 0.4965 0.7641 0.5702

SVM 0.3785 0.6792 0.5062

The bold values in table are the scores of the predictors with the best score in a specific metric for a given type of cancer.

datasets or the independent invalidation dataset by selecting 300
features compared with other four classifiers, such as KNN, DNN,
SVM, and Adaboost. XGboost classifier adds regular terms to

the cost function for controlling the complexity of the model,
which contains the number of leaf nodes in the tree and the score
sum of squares on each leaf node. From the perspective of bias
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FIGURE 5 | Comparison of the overall accuracy for the classifiers on training datasets and independent validation datasets.

TABLE 4 | Top six genes and corresponding molecular function.

ID Gene Molecular function GO annotation Related cancer

28512 NKIRAS1 Intracellular signal transduction GO:0035556 LUAD KIRC

1030 CDKN2B Positive regulation of transforming growth factor beta receptor signaling pathway GO:0030511 HNSC

64848 YTHDC2 Positive regulation by host of viral genome replication GO:0044829 COADREAD BRCA

2122 MECOM Negative regulation of JNK cascade GO:0046329 COADREAD

54715 RBFOX1 Regulation of alternative mRNA splicing, via spliceosome GO:0000381 COADREAD

51560 RAB6B Intra-Golgi vesicle-mediated transport GO:0006891 COADREAD

FIGURE 6 | Enriched terms bar graph colored by p-values in gene lists.

variance, the regular term reduces the variance of the classifier
and simplifies the learned classifier (Chen and Guestrin, 2016), so
it can better prevent overfitting in training and its performance
is the best compared to the other four classifiers. The results
may provide a useful revelation to determine the machine

learning model and to understand actual pathological conditions.
Furthermore, our results are confirmed by the literatures, with 6
out of top 10 features associated with specific cancers including
NKIRAS1 (Gerashchenko et al., 2010; Khodyrev et al., 2012),
CDKN2B (Clavell et al., 2008), YTHDC2 (Wittliff et al., 2015;
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Yu et al., 2020), MECOM (Choi et al., 2017), RBFOX1
(Sengupta et al., 2013), and RAB6B (Kou et al., 2015). The
corresponding molecular functions and related cancer of six
genes are given in Table 4.

NKIRAS1 regulates the nuclear factor (NF)-kappa B activity
by encoding a Ras-like protein. In addition, it is known that the
copy number of NKIRAS1 is usually lower in RCC, and this gene
is downregulated in malignant renal tumors.

By forming a complex with CDK4 or CDK6, CDKN2B encodes
a cyclin-dependent kinase inhibitor. It is found that transforming
growth factor (TGF) beta can drastically induce the expression
of this gene, suggesting that CDKN2B might play roles in TGF-
beta-related functions. In addition, the aberrant methylation
of p15 (INK4B), a protein encoded by CDKN2B, can silence
TRβI. Thus, CDKN2B and other tumor suppressor genes, such
as CDKN2A, might be used as biomarkers for early detection in
HNSC patient.

RBFOX1 is a member of the Fox-1 family of RNA-binding
proteins, which regulates tissue-specific alternative splicing in
metazoa.RBFOX1mutations are found in COADREAD cell lines,
and the loss of RBFOX1 may account for the anomalous splicing
activity associated with COADREAD.

Function enrichment analysis is performed on the 300
genes. Specifically, all genes have been used as the enrichment
background in Figure 6 (Shannon et al., 2003; Zhou et al.,
2019). Terms with a p <0.01 and an enrichment factor >1.5 are
identified and grouped into clusters. Log10(p) is the p-value in log
base 10. All genes mainly participated in four primary biological
pathways to be specific: adhesion via plasma–membrane
adhesion molecules (4.61%), cell morphogenesis involved in
differentiation (7.45%), positive regulation of establishment of
protein localization (4.96%), and cell growth (4.96%).

LIMITATIONS

The traditional clinical pathology experiment has its limitation.
Our model recovers the original signal under the condition of

oversampling, and the additional signal samples generated by the
cancer sample need to be taken into account. Due to the limited
data, only 10 types of tumors are selected in this manuscript
for the construction of the classifier, and further studies can
incorporate more types of tumors into the cancer of unknown
primary model in the future work.
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