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Among all fatal gynecological malignant tumors, ovarian cancer has the highest
mortality rate. The purpose of this study was to develop a stable and personalized
glycometabolism-related prognostic signature to predict the overall survival of ovarian
cancer patients. The gene expression profiles and clinical information of ovarian
cancer patients were derived from four public GEO datasets, which were divided into
training and testing cohorts. Glycometabolism-related genes significantly associated
with prognosis were selected. A risk score model was established and validated
to evaluate its predictive value. We found 5 genes significantly related to prognosis
and established a five-mRNA signature. The five-mRNA signature significantly divided
patients into a low-risk group and a high-risk group in the training set and validation set.
Survival analysis showed that high risk scores obtained by the model were significantly
correlated with adverse survival outcomes and could be regarded as an independent
predictor for patients with ovarian cancer. In addition, the five-mRNA signature can
predict the overall survival of ovarian cancer patients in different subgroups. In summary,
we successfully constructed a model that can predict the prognosis of patients with
ovarian cancer, which provides new insights into postoperative treatment strategies,
promotes individualized therapy, and provides potential new targets for immunotherapy.

Keywords: ovarian cancer, glycometabolism, prognosis, gene signature, PCR

INTRODUCTION

Ovarian cancer (OC) is one of the three types of gynecological malignant tumors. According to
global cancer statistics, there were approximately 290,000 new cases of cervical cancer worldwide
in 2018, resulting in 180,000 deaths (Bray et al., 2018). Due to the lack of specific clinical symptoms
and screening methods as well as its insidious onset, nearly 70% of OC patients are diagnosed
at an advanced stage (Partridge et al., 2009; Chudecka-Głaz, 2015), which leads to approximately
70% of patients with local recurrence or distant metastasis after standard treatment, and the
clinical treatment effect of cancer is not satisfactory due to drug resistance (Jayson et al., 2014;
Giornelli, 2016). Despite great progress in clinical treatment, including surgery, targeted therapy,
chemotherapy and radiotherapy, the 5 years overall survival rate of OC is only 30% (Bray et al.,
2018). In clinical practice, histopathology and CA-125 are often used to predict the prognosis of
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patients with OC (Mittermeyer et al., 2013; Yuan et al., 2017;
Zwakman et al., 2017; Hua et al., 2019). However, these methods
have their own limitations. In clinical practice, doctors often
use the same treatment for patients with the same clinical stage
and pathological type; however, the clinical outcomes are usually
different because of the heterogeneity of tumors.

With the development of high-throughput sequencing, several
patient genome databases have been established, which have
enabled us to gain a more systematic and comprehensive
understanding of patients’ genome changes. By mining databases,
we identified a number of biomarkers associated with clinical
outcomes (Buttarelli et al., 2020; Nash and Menon, 2020; Zhang
et al., 2020; Zhou et al., 2020). However, a single gene cannot
accurately predict the outcomes of OC. In contrast, the evaluation
of multiple gene combinations may be able to better predict
the prognosis of patients and guide clinicians in selecting more
appropriate treatment options and intervening with patients
earlier to prolong their survival time.

Current studies have shown that malignant tumors are
related not only to genetic information but also to their own
energy metabolism (Hanahan and Weinberg, 2011). The most
striking effect is the Warburg effect (Warburg, 1956a,b). Even
under the condition of normal oxygen content, tumor cells
still use glycolysis as a source of energy metabolism, which is
characterized by high glucose uptake and active glycolysis, which
converts glucose into lactic acid to produce ATP. Therefore, the
inhibition of glycolysis can inhibit the proliferation of tumor
cells and kill tumor cells, and the rate-limiting enzymes of
glycolysis and hypoxia-inducible factors are expected to become
new targets for the treatment of tumors. Previous studies have
shown that glycolysis is related to the activation of oncogenes
(such as RAS and MYC) and mutations of tumor suppressor
genes (such as TP53) (DeBerardinis et al., 2008; Dejana et al.,
2009). Specifically, the overexpression of MYC can lead to
an imbalance in the translation mechanism. RAS and c-MYC
affect translation and metabolism by stimulating glycolysis and
disrupting protein synthesis (Biffo et al., 2018). P53 is a tumor
suppressor gene in the human body that plays a core role in
metabolic pathways. TP53 mutations are reported in at least
80% of advanced serous OC cases, and the poor prognosis
associated with TP53 mutations is thought to be due to the
resistance of cancer cells to chemotherapy-induced apoptosis
(Duffy et al., 2017). It has been reported that the increased glucose
metabolism caused by the upregulation of HK II can inhibit
the activity of p53 (Han et al., 2019), which suggests that the
high level of glycolysis in tumor cells may contribute to the
downregulation of the antitumor effect of p53. Other studies
have shown that SIK2 can upregulate HIF-1 phosphorylation
by activating the PI3K/AKT signaling pathway and promote
mitochondrial division by phosphorylating Drp1 at the Ser616
site, thereby promoting glycolysis and inhibiting mitochondrial
oxidative phosphorylation (Gao et al., 2020). Elucidating the
relationship between glucose metabolism and tumors is critical
for us to understand the mechanisms of tumorigenesis and
development, and it is of great clinical significance to construct
a model that can accurately predict OC prognosis based on
glycometabolism-related genes.

In this study, we integrated the gene expression profiles
of 380 patients with OC from the GEO database, screened
glycometabolism-related genes closely related to patient
prognosis, and constructed a risk score model based on 5
glycometabolism-related genes to predict the prognosis of OC
patients individually. With external validation of the independent
dataset, we demonstrated the model’s accuracy and reliability. In
addition, we conducted a comprehensive analysis of this model
with clinical characteristics to improve the accuracy of overall
survival prediction.

MATERIALS AND METHODS

Acquirement of Public Gene Expression
Profiles and Glycometabolism-Related
Genes
Gene expression profiles were downloaded from the GEO
database, and the nucleic acid sequences of 380 OC patients
were downloaded from the GSE140082 dataset as the training
set. Clinical data such as age, stage, treatment, and OS were
also obtained from the GEO database. A total of 380 patients
with OC were included in the analysis. Table 1 shows the
clinical information of the included patients. Moreover, the gene
expression profiles and clinical information of patients were
obtained from the GSE17260, GSE 26712 and GSE32062 datasets
as the testing group, respectively. In addition, we searched for
“glycolysis” in GSEA1 to select the set of genes most closely
related to glucose metabolism. Six glycometabolism-related gene

1https://www.gsea-msigdb.org/gsea/index.jsp

TABLE 1 | Clinicopathological parameters of the ovarian cancer
patients in this study.

Clinical characteristic N %

Age(years)

≤65 275 72.3

>65 105 27.6

FIGO stage

I–II 51 13.4

III–IV 329 86.6

Treatment

Standard 181 47.6

Bevacizumab 199 52.4

Grade

High 281 73.9

Low 74 19.5

Molecular subgroup

Immunoreactive 124 32.6

Proliferative 97 25.5

Differentiated 86 22.6

Mesenchymal 73 19.2

Outcome of surgery

Optimal 290 76.3

Sub-optimal 88 23.1
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sets were obtained from GSEA to identify glycometabolism-
related genes.

Arrangement of the Gene Expression
Database
The datum have been standardized by the original data providers.
According to the annotation file, the gene probe of each gene
expression profile was converted to the corresponding gene
name. In this study, only patients with complete overall survival
(OS), staging and other clinical information were selected.

Pathway Enrichment Analysis to Identify
Molecular Functions
Furthermore, to better comprehend the gene functions of all of
the glycometabolism-related genes that we obtained from GESA,
pathway enrichment analysis of these genes was carried out.
We used the clusterProfiler package to analyze the signaling
pathways of all the related genes through the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database and also analyzed
their biological processes (BPs), molecular functions (MFs) and
cellular components (CCs) through the Gene Ontology (GO)
database in the R program. The aim was to determine whether the
screened genes were indeed associated with glucose metabolism.

Construction of a
Glycometabolism-Related Signature for
OC
We established a glycometabolism prognostic model using
the GEO database and glycometabolism-related gene set. The
expression profiles of 20,790 mRNAs were taken as the original
data. First, we converted the gene expression profiles of
GSE140082 from the gene probe to the corresponding gene
name. These genes were intersected with the glycometabolism-
related genes that were obtained from six glycometabolism-
related gene sets, and univariate Cox analysis was performed
on the candidate genes (P < 0.01). The purpose was to
identify genes that were clearly associated with overall survival.
Simultaneously, to screen genes with higher correlations and
to prevent overfitting of the model, we used the glmnet
package for the LASSO algorithm to reduce the number
of candidate genes to 10. Then, stepwise multivariate Cox
regression analysis was carried out to determine the most valuable
genes related to glycometabolism. We eventually obtained five
glycometabolism-related genes associated with prognosis to
construct a predictive risk score model. Risk score = expression
of B3GAT3 ∗ (−0.136052404) + expression of COL5A1 ∗
0.31010011 + expression of FAM162A ∗ 0.424815423 +
expression of IDUA ∗ (−0.091168453)+ expression of PPP2R1A
∗ (−0.210503843). The patients were divided into a high-risk
group and a low-risk group according to the median risk score.
Finally, the survival package was used for survival analysis, and
Kaplan-Meier (K-M) curves and ROC curves were drawn by
the survival ROC package to evaluate the difference in survival
outcomes between the high-risk group and the low-risk group.
Moreover, univariate and multivariate analyses were used to

assess the impact of risk scores and other clinical features on
overall survival.

External Validation of the Five-mRNA
Signature
To verify the predictive prognostic value of the glycometabolism-
related gene risk model, we used the GSE17260, GSE 26712, and
GSE32062 datasets as the validation cohorts. The same formula
was used to calculate the risk score, and the patients were divided
into high-risk and low-risk groups based on the median value.
A K-M curve and ROC curve were drawn to analyze the data.

Cell Culture
The human ovarian cancer SKOV-3 and A2780 cells and
HOSEpiC human ovarian epithelial cells were maintained in
adherent culture conditions. A2780 and SKOV-3 cells were
cultured in RPMI 1640 medium (Gibco, Grand Island, NY,
United States), and HOSEpiC cells were cultured in DMEM
(Gibco) supplemented with 10% fetal bovine serum (FBS) and
1% antibiotic-antimycotic solution. All cell lines were grown in
a humidified incubator at 37◦C (5% CO2).

Detection of Gene Expression Levels of
Five Genes in OC
Total RNA was extracted from the cells using TRIzol reagent
(Thermo Fisher Scientific, Waltham, MA, United States). Single-
stranded cDNA was synthesized from 1 mg of total RNA using
the PrimeScript RT Reagent Kit with gDNA Eraser (Takara
Biotechnology Co., Ltd., Dalian, China).

Reverse transcription quantitative PCR was used to detect
the mRNA expression of the hub genes by a 7500 PCR system
(Thermo Fisher Scientific). The primers used are shown in
Table 2. The following cycling conditions were used: 95◦C for 5
min, followed by 40 cycles of 95◦C for 20 s and 60◦C for 30 s.
qPCR assays were conducted in triplicate in a 10 mL reaction
volume for each sample. The relative expression of B3GAT3,
COL5A1, FAM162A, IDUA, and PPP2R1A mRNA was calculated
by the 2-Ct method.

Statistical Analysis
All analyses were performed using Rversion 3.6.2. All statistical
tests were two-sided. Unless otherwise specified, P < 0.05 was
considered significant.

TABLE 2 | The primers for the five genes.

Primer
name

Forward sequence Reverse sequence

B3GAT3 GCCCTTGCTGTTAGATAAGCCC GCTTCTCTGTCCGAGTATGCCA

COL5A1 GGAGATGATGGTCCCAAAGGCA CCATCATCTCCTTTGTCACCAGG

FAM162A ATTGCCCTGACGGTGGTAGGAT CTGCTTCCTCTTTCAGACGAGC

IDUA CAGCAGGTGTTTGAGTGGAAGG GGAGACGTTGTCAAAGTCGTGG

PPP2R1A ACCGCATGACTACGCTCTTCTG TTGAAGCGGACATTGGCAACCG

Frontiers in Genetics | www.frontiersin.org 3 November 2020 | Volume 11 | Article 585259

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-585259 November 11, 2020 Time: 12:9 # 4

Liu et al. Glycometabolism-Related Gene Signature of OC

RESULTS

Screening of Glycometabolism Genes
The gene expression profiles and clinical information of 380
patients were obtained from the GSE140082 dataset. We first
downloaded six sets of glycometabolism-related genes
from GSEA. Namely, six different gene sets (BIOCARTA_
GLYCOLYSIS_PATHWAY, HALLMARK_GLYCOLYSIS, KEGG_
GLYCOLYSIS_GLUCONEOGENESIS,MODULE_306,
REACTOME_GLYCOLYSIS, and REACTOME_REGULATION_
OF_GLYCOLYSIS_BY_FRUCTOSE_2_6_BISPHOSPHATE_
METABOLISM) were used. Then, the transcriptome matrix of
380 patients was intersected to obtain the expression of 289
glycometabolism-related genes.

Identification of
Glycometabolism-Related Genes
To ensure that the genes present in the screening were
indeed associated with glycometabolism, we used GO and
KEGG enrichment analyses to analyze the 289 glycometabolism-
related genes. GO analysis revealed that the primary functions
enriched in the biological process (BP) category were pyridine
nucleotide metabolic process, nicotinamide nucleotide metabolic
process, pyridine–containing compound metabolic process,
oxidoreduction coenzyme metabolic process, pyruvate metabolic
process, and carbohydrate catabolic process. For cellular
components (CCs), the nuclear envelope was the mainly enriched
GO term. For molecular functions (MFs), coenzyme binding,
carbohydrate binding and oxidoreductase activity, and acting
on the CH–OH group of donors were the most enriched
(Figure 1A). For the KEGG pathways, glycolysis/gluconeogenesis
and carbon metabolism were most often enriched by the
glycometabolism-related genes (Figure 1B). These results
indicated that the screened candidate genes were indeed
related to glycometabolism.

Identification of Glycometabolism Genes
Related to the Survival of OC Patients
To identify novel genetic biomarkers related to the prognosis of
patients with OC, we first performed univariate Cox analysis of
289 genes enriched by glycometabolism, and a total of 12 genes
were significantly associated with OS (P < 0.01). Moreover, to
screen genes with higher correlations and to prevent overfitting
of the model, we used the LASSO algorithm to reduce the
number of candidate genes to 10 (Figure 2), and these genes were
included in a stepwise multivariate Cox regression analysis. Five
genes independently associated with OS were finally obtained
by the multivariate Cox analysis (B3GAT3, COL5A1, FAM162A,
IDUA, and PPP2R1A). Then, we analyzed the changes in the five
candidate genes in 311 clinical OC samples from the cBioPortal
database. The results showed that the genetic sequences of
62 patients (17.04%) had changed (Figure 3A). Specifically,
1.29% had mutations, 12.86% had amplifications, 2.25% had
deep deletions and 0.64% had multiple alterations (Figure 3B).
Specific alterations in the genes that were selected were also
distinct in OC. In the B3GAT3 gene, there was a mutation in
the Glycosyl transferase family 43 (Glyco_transf_43) structural
domain, resulting in a change in N162K (Figure 3C). In the
COL5A1 gene, there was a mutation in the fibrillar collagen
C-terminal domain (COLFI) structural domain, resulting in
a change in D1657N (Figure 3D). At the same time, there
were three mutations in the HEAT repeats (HEAT_2) structural
domain in the PPP2R1A gene, namely, R183W, R260C and
W257C, and T145P appeared outside the structural domain
(Figure 3E). We hypothesized that the changes in proteins in the
domain might affect the function of the structural domain.

Construction of a Five-mRNA Signature
to Predict Patient Prognosis
To construct a prognostic model, we used the five
glycometabolism-related genes to evaluate the survival

FIGURE 1 | Gene functional enrichment of the 289 specific glycometabolism-related genes. (A) Gene Ontology analysis; BP,CC and MF represent biological
process, cellular component and molecular function, respectively. (B) The most significant Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways.
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FIGURE 2 | Construction of the prognostic prediction model for patients with ovarian cancer by LASSO. (A) The changing trajectory of each independent variable.
The horizontal axis represents the log value of the independent variable lambda, and the vertical axis represents the coefficient of the independent variable.
(B) Confidence intervals for each lambda. The horizontal axis represents the log value of the independent variable lambda, and the vertical axis represents the error
of cross-verification.

FIGURE 3 | Identification of a prognostic risk signature associated with glycometabolism. (A) Selected gene alterations in 311 clinical samples. (B) Specific alteration
frequencies of the selected gene sequences of the clinical samples. (C) Mutations in B3GAT3. (D) Mutations in COL5A1. (E) Mutations in PPP2R1A.

risk of each patient. Risk score = expression of B3GAT3 ∗
(−0.136052404) + expression of COL5A1 ∗ 0.31010011 +
expression of FAM162A ∗ 0.424815423 + expression of IDUA ∗
(−0.091168453) + expression of PPP2R1A ∗ (−0.210503843).
Then, we divided the patients according to their risk score
(Figure 4A) using the median risk score value as the threshold:
the 380 patients were divided into a high-risk group (N = 190)
and a low-risk group (N = 190). The survival status of the
patients and the expression of the five glycometabolism-related
genes are shown in Figures 4B,C. As shown in the figure, with
the increase in risk score, the mortality rate of patients in the

high-risk group was significantly higher than that in the low-risk
group, and the survival time was generally lower than that
in the low-risk group. Kaplan-Meier (K-M) analysis revealed
significant differences in prognosis between the high-risk and
low-risk groups (Figure 5A, P < 0.001). The survival rate in the
low-risk group was significantly higher than that in the high-risk
group. We drew a ROC curve to indicate the accuracy of the
model, and the area under the curve (AUC) values of the model
for 2, 3, and 4 years were 0.668, 0.785, and 0.744, respectively
(Figure 5B), which demonstrated that the model had good
sensitivity and specificity for survival prediction.
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FIGURE 4 | The relationship between the risk score and patient outcomes. (A) The risk value of each ovarian cancer patient in the GSE140082 dataset. (B) The
survival status and survival time of patients in different groups. (C) Heatmap of the expression profiles of 5 glycometabolism-related genes in OC patients.

External Validation of the Five-mRNA
Signature in Other GEO Datasets
We used the gene expression profiles and clinical information of
patients from the GSE17260, GSE 26712, and GSE32062 datasets
as the testing sets. According to the median risk score, the

patients were divided into a high-risk group and a low-risk group.
The results were consistent with those of the training group
(Figures 5B–D). The survival rate of patients in the high-risk
group in the validation group was significantly lower than that
in the low-risk group (P = 0.034, 0.004, 0.036). The AUC value
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FIGURE 5 | The development and validation of the five-mRNA signature. (A) Kaplan-Meier analysis and ROC curves of overall survival in the high- and low-risk
groups of OC patients in the GSE140082 dataset. (B) Kaplan-Meier analysis and ROC curves of overall survival in the high- and low-risk groups of OC patients in the
GSE17260 dataset. (C) Kaplan-Meier analysis and ROC curves of overall survival in the high- and low-risk groups of OC patients in the GSE 26712 dataset.
(D) Kaplan-Meier analysis and ROC curves of overall survival in the high- and low-risk groups of OC patients in the GSE32062 dataset.

of the model for 2, 3, and 4 years were showed in the pictures,
which proved the robust effectiveness of the five-mRNA signature
in predicting OS.

The Five-mRNA Signature Is an
Independent Prognostic Factor for OC
To determine whether the prognostic ability of the five-mRNA
signature is independent of various clinical features, including
treatment mode, age and stage, we further used univariate
and multivariate Cox analyses. Univariate Cox analysis showed
that age, stage and risk score were correlated with OS in
OC patients. After adjusting for other clinical parameters in
the dataset, the five-mRNA signature remained a significant
independent prognostic indicator (P-value < 0.001, HR = 1.155,
95% CI = 1.074–1.243, Figure 6). In addition, we found
that age and stage were significantly different in univariate
and multivariate Cox analyses and were also independent
prognostic factors. However, compared with the standard
treatment (paclitaxel + carboplatin), whether bevacizumab
is added or not had no significant prognostic effect and
was not found to be an independent prognostic factor.
Then, we divided the patients into groups according to their
age, stage and treatment mode and used the K-M survival
curve for further analysis, and similar results were obtained.
Age over 65 and stage III–IV were associated with poor
prognosis in patients (Figure 7), which further validated the
dependability of the model. After further data mining and
stratified analysis, we found that the survival curve was not
affected by age, stage or treatment (Figure 8), confirming that

the five-mRNA signature can be used to predict the outcomes of
patients with OC.

Exploration of the Specific Roles of the
Candidate Genes in Tumorigenesis by
RT-PCR
We further analyzed the differential expression of B3GAT3,
COL5A1, FAM162A, IDUA, and PPP2R1A in ovarian cancer
SKOV-3 and A2780 cells and HOSEpiC human ovarian epithelial
cells. The RT-qPCR results showed that compared with human
ovarian epithelial cells, the expression of B3GAT3, COL5A1,
FAM162A, IDUA, and PPP2R1A in ovarian cancer cells was
significantly downregulated (Figure 9).

DISCUSSION

In recent years, features such as age, pathological stage, lymph
node metastasis and distant metastasis have been commonly
used in clinical work to predict the prognosis of patients with
OC (Mittermeyer et al., 2013; Yuan et al., 2017; Zwakman
et al., 2017; Hua et al., 2019), but the accuracy of these
factors is insufficient. With the development of high-throughput
sequencing technology, an increasing number of mRNAs have
been discovered as biomarkers that can be used to evaluate
and predict the prognosis of OC (Buttarelli et al., 2020; Nash
and Menon, 2020; Zhang et al., 2020; Zhou et al., 2020). For
instance, some scholars found that the high expression of TET3
was related to the progression of OC and the poor prognosis
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FIGURE 6 | Univariate and multivariate Cox analyses evaluating the independent predictive ability of our signature for OS. (A) Univariate Cox analyses and
(B) multivariate Cox analyses.

FIGURE 7 | Clinical features, including age, stage, and treatment, predict patient survival. (A) Age, (B) stage, and (C) treatment.

of patients (Cao et al., 2019). Other scholars found that the
upregulated expression of the CDCA gene family in OC may
play important roles in the occurrence and development of
OC (Chen et al., 2020). However, these genes cannot be used
to predict the survival rate of patients because various factors
can affect the same gene in a variety of ways, resulting in
a deviation in the predictive effect. Therefore, an increasing
number of researchers began to evaluate the prognosis of
patients through models formed by a combination of multiple
gene markers (Subramanian and Simon, 2010). Currently, many
researchers are focusing on the roles of metabolic factors
in the development and progression of tumors (Wang and
Li, 2020). Glycolysis is a significant part of glycometabolism,
but there is no prognostic model based on glycometabolism-
related genes for evaluating the prognosis of patients with OC.
Therefore, the construction of a predictive model that can
accurately predict the prognosis of patients with OC has vital
clinical significance.

In this study, we performed bioinformatics analysis with data
from the GEO database and obtained 289 glycometabolism-
related genes in OC. After univariate and multivariate Cox
regression analyses, we identified five significantly independent
prognostic genes, including B3GAT3, COL5A1, FAM162A,
IDUA, and PPP2R1A. Based on these results, we developed
a five-mRNA signature to predict the prognosis of OC. In

addition, we validated this signature in the GSE17260 dataset
and obtained consistent results, which indicates that the five-
mRNA signature can be used as a prognostic indicator in OC.
In addition, we analyzed and verified the expression of the five
genes in tumor and normal tissues, with the purpose of further
exploring the specific roles of the candidate genes in the process
of tumor development.

Among the five genes, the protein encoded by beta-
1,3-glucuronyltransferase3 (B3GAT3) is a member of the
glucuronyltransferase gene family and plays an important
role in the biosynthesis of proteoglycan (Barré et al., 2006).
Studies have shown that compared with normal tissues,
B3GAT3 is upregulated in human hepatocellular carcinoma,
and the knockout of the B3GAT3 gene can inhibit cell
proliferation, migration and invasion and reverse the process
of epithelial mesenchymal transformation (Zhang et al., 2019).
Furthermore, it was found that the high expression of B3GAT3
is disadvantageous to the prognosis of human liver cancer and
has independent prognostic value in patients with different
pathological features of liver cancer (Zhang et al., 2019).
However, according to our results, B3GAT3 is expressed at low
levels in OC cell lines, and the Coef value of B3GAT3 is −0.136;
thus, it is a protective factor that may be related to cancer species
and is worthy of further study, This phenomenon may be related
to the type of tumor. Collagen type V α1 (COL5A1) encodes the
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FIGURE 8 | Kaplan-Meier curves for the prognostic value of the risk score signature for the patients grouped according to each clinical feature. (A) Age ≤ 65,
(B) Age > 65, (C) stage I-II, (D) stage III-IV, (E) bevacizumab, and (F) Standard.

alpha 1 chain of collagen V and is involved in extracellular matrix
formation (Zhang et al., 2018). Previous studies have shown that
COL5A1 may affect the development of a variety of cancers,
such as breast cancer, gastric cancer, lung adenocarcinoma, oral
squamous cell carcinoma and ovarian cancer (Chai et al., 2016;

Zhao et al., 2016; Li et al., 2017; Sun et al., 2017; Liu et al., 2018);
moreover, the expression level of COL5A1 was an independent
prognostic factor (Boguslawska et al., 2016). Recent studies
have shown that COL5A1 is of high value in the prediction
of breast cancer (Ritelli et al., 2013; Riches et al., 2014). At the
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FIGURE 9 | Expression of five mRNAs in ovarian cancer cells and human ovarian epithelial cells. (A) B3GAT3, (B) COL5A1, (C) PPP2R1A, (D) IDUA, (E) FAM162A.
Compared to normal groups, ***P < 0.001.

protein level, the HPA database confirmed that the expression of
COL5A1 in breast cancer was higher than that in normal tissues,
which was consistent with the results of immunohistochemistry;
moreover, the COL5A1 mutation was negatively correlated with
the prognosis of breast cancer patients (Wu et al., 2019). In
view of the findings of the above studies, we conclude that
COL5A1 plays an important role in cancer, especially in OC, and
the upregulation of COL5A1 expression will increase cisplatin
resistance in cancer cells (Yu et al., 2014). According to the
PCR results, we found that COL5A1 in OC cells was generally
downregulated, what’s more, SKOV-3 and A2780 were not
resistant cells, indicating that cisplatin resistance may be more
related to the tumor microenvironment of the human body,
which is worth further study. COL5A1 could be a potential
therapeutic target, maybe we can change the prognosis of patients
by affecting the tumor microenvironment which has important
guiding significance for clinical work. FAM162a is known as
an HIF-1 alpha-responsive pro-apoptotic molecule (Mazzio and
Soliman, 2012). When FAM162A was overexpressed, the hypoxia
signal was sent directly to the mitochondria, which led to cell
death (Kim et al., 2006). In the field of neurological research,
the overexpression of FAM162A causes brain injury by activating
caspase-3 to transfer apoptosis-inducing factor into the nucleus
where programmed cell death and chromatin condensation
occur, leading to ischemia and hypoxia (Qu et al., 2009).
However, we did not find that this gene was studied in a cancer-
related field, and according to our results, when FAM162A was
expressed at high levels, it was detrimental to the prognosis of
patients. Iduronidase (IDUA) is an enzyme in lysosomes that
participates in the hydrolysis process. Its deficiency will lead to a

severe genetic disease type called mucopolysaccharidosis I (MPS-
I) (Osborn et al., 2008, 2011). At present, the role of IDUA in
cancer is not clear, and research on its relationship with cancer
is very limited. One study found that the expression level of
IDUA was significantly downregulated in breast cancer patients
with visceral metastasis compared with those without visceral
metastasis (Savci-Heijink et al., 2019). Similar to our findings,
IDUA expression levels were higher in HOSEpiC human ovarian
epithelial cells as a protective factor, indicating a better prognosis.
Therefore, combined with the coef value obtained from the
model, we can infer that IDUA is a protective factor. The in-
depth study of IDUA is of great significance in the prevention
of cancer metastasis. Protein phosphatase 2 scaffold subunit
Aalpha (PPP2R1A) is a constant regulatory subunit that encodes
protein phosphatase 2 (PP2), which is related to the negative
regulation of cell growth and division (Shi, 2009).Studies have
found that PPP2R1A has a high-frequency mutation in serous
endometrial carcinoma, indicating a poor prognosis (Nagendra
et al., 2012), we found that there were more PPP2R1A mutations
in ovarian cancer than in other genes. Some studies found that the
overexpression or mutation of PPP2R1A in OC and endometrial
carcinoma can promote the growth and migration of tumor cells
(Jeong et al., 2016). PPP2R1A may be an effective target for
personalized therapy. Interestingly, in this study, according to the
Coef value of PPP2R1A, we suggest that PPP2R1A is a protective
factor. Therefore, we can understand why it is highly expressed
in normal ovarian epithelial cells. We speculate that the mutation
of the gene is closely related to the tumor microenvironment
or that the special metabolic pattern of tumor tissue in the
human body affects the mutation of the gene to some extent,
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thus promoting the growth and migration of tumor cells. We
used these five genes to construct a five-mRNA signature to
predict the prognosis of patients with OC. In the cell experiments,
all genes were expressed in tumor cells at a low level, which
contradicted the risk score model. We believe that this conflicting
finding is due to the human tumor microenvironment and the
special metabolic pattern of tumors in the human body. In our
opinion, protective genes and damaging genes together with the
tumor microenvironment affect the occurrence and development
of tumors. This topic is worthy of further study. Although
the five-mRNA signature can provide an effective model for
predicting the prognosis of OC, the current research also has
some limitations. First, the risk score model is based on the GEO
database rather than the TCGA database, and some genes may
be left out. Second, since there were no data from normal OC
samples in the GSE140082 detection platform GPL14951, we did
not look for differentially expressed genes in the course of the
study but carried out PCR experiments to show the differential
expression of the five genes in tumor and normal tissues. Third,
the prediction function of this model in early OC needs to be
improved. Currently, we are actively collecting clinical specimens
and data for future research.

In summary, we constructed and validated a five-mRNA
signature associated with glycometabolism that can predict the
prognosis of patients with OC. According to the risk score,
the prognosis of the high-risk population is significantly worse.
The findings of this study provide a more comprehensive
understanding of glycometabolism-related genes that affect
the prognosis of patients with OC, and these genes can
more accurately predict the prognosis of patients with OC.
These results may provide a new perspective for the study
and individualized treatment of OC, have important clinical
significance, will help future clinical workers to determine new
treatment methods for OC and will provide more gene targets for
the treatment of OC patients.
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