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Mingyang Liu and Hongzhe Li*
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Estimation and prediction of heterogeneous restricted mean survival time (hRMST) is

of great clinical importance, which can provide an easily interpretable and clinically

meaningful summary of the survival function in the presence of censoring and individual

covariates. The existing methods for the modeling of hRMST rely on proportional hazards

or other parametric assumptions on the survival distribution. In this paper, we propose

a random forest based estimation of hRMST for right-censored survival data with

covariates and prove a central limit theorem for the resulting estimator. In addition, we

present a computationally efficient construction for the confidence interval of hRMST.

Our simulations show that the resulting confidence intervals have the correct coverage

probability of the hRMST, and the random forest based estimate of hRMST has smaller

prediction errors than the parametric models when the models are mis-specified. We

apply the method to the ovarian cancer data set from The Cancer Genome Atlas (TCGA)

project to predict hRMST and show an improved prediction performance over the existing

methods. A software implementation, srf using R and C++, is available at https://github.

com/lmy1019/SRF.

Keywords: estimating equation, high dimensional data, non-parametric survival estimation, regression

forest, inference

1. INTRODUCTION

In epidemiological and biomedical studies, time to an event or survival time T is often the primary
outcome of interest. Important quantities related to survival time include hazard rate (HR), t-
year survival probability, and the mean survival time. Among these, HR is one of the most
commonly used quantity due to its strong connection to the proportional hazards regression model
or Cox model. Cox model is a very popular regression model for censored survival data due to its
computational feasibility and theoretical properties (Cox, 1972, 1975; Andersen and Gill, 1982; Gill
and Gill, 1984; Huang et al., 2013; Fang et al., 2017). However, when there is a departure from the
proportional hazards assumption, the connection between HR and survival function is lost and
it is difficult to interpret HR (Wang and Schaubel, 2018). The t-year survival probability is the
probability of survival time greater than a pre-specified time t. It is not suitable for summarizing
the global profile of T over the duration of a study (Tian et al., 2014). In contrast, mean survival
time is an alternative quantity since it takes the whole distribution of T into account. However, the
mean of T may not always be estimable in the presence of censoring. For example, let C denotes the
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FIGURE 1 | Training data are simulated from Equation (2), with n = 600

training points, dimension p = 20 and errors ǫ ∼ N(0, 102). Random forests are

trained based using R package grf. Truth is shown as red curve, with green

curve corresponding to the random forest predictions, and upper and lower

bounds of the point-wise confidence intervals connected in the black lines.

Brown curve and blue curve are based on the approaches of Wang and

Schaubel (2018) with Identity and Exp link functions.

censoring time, and Cmax = infc{P(C ≤ c) = 1} be the upper
limit of the censoring distribution,

ET[T] = ET[T|T ≤ Cmax]P(T ≤ Cmax)

+ ET[T|T > Cmax]P(T > Cmax)

If the survival time T satisfies P(T > Cmax) > 0, then we cannot
estimate ET[T], since we never observe any event after Cmax.

The restricted mean survival time (RMST) (Royston and
Parmar, 2013) summarizes the survival process and provides
an attractive alternative to the proportional hazards regression
model (Tian et al., 2014). The restricted survival time of T up to a
fixed point L is defined as T ∧ L, and the restricted mean survival
time is defined as the expectation of the restricted survival time.
Denote µL(x) = E[T ∧ L|X = x] be the heterogeneous RMST
with covariates X = x. It can be written as the area under the
survival curve on [0, L].

µL(x) =

∫ ∞

0

( ∫ ∞

0
1u<t1u<Ldu

)
fT(t|X = x)dt

=

∫ L

0
S(u|X = x)du.

(1)

If L is chosen to be less than Cmax, hRMST is estimable since
P(T ∧ L > Cmax) = 0. RMST also plays a role in the
context of inverse probability censoring weighting (IPCW). A
key assumption for applying IPCW is P(T < Cmax) = 1,
making 1/(1− G(T)) well-defined, where G(T) = P(C ≤ T|T).
If we set L properly such that P(T ∧ L < Cmax) = 1, then
G(T ∧ C ∧ L|X) < 1 and the IPCW is well-defined under the
restricted survival time context.

There are two main approaches for hRMST regression.
One approach is to estimate hRMST indirectly through hazard
regression (Zucker, 1998; Chen and Tsiatis, 2001; Zhang
and Schaubel, 2011). This approach starts by estimating the
regression parameters and the baseline hazard from a Coxmodel,
calculating the cumulative baseline hazard, transforming it to
obtain the survival function and, finally, obtaining the hRMST
through Equation (1). Such an indirect hRMST estimation is
inconvenient and computationally cumbersome for obtaining a
point estimate and its corresponding asymptotic standard error.
An alternative approach is to model hRMST with the baseline
covariates X directly via some parametric assumptions, eg.
g[µL(Xi)] = β ′0Xi, where g is a strictly monotone link function
with a continuous derivative within an open neighborhood (Tian
et al., 2014; Wang and Schaubel, 2018). A major weakness of
this approach, however, is their inability to choose a proper link
function, which may lead to the model misspecification. As an
example, we simulate x1, . . . , xn independently from the uniform
distribution on [0, 1]20 with a survival time model

T = exp(2X1 + 5)+ 1+ ǫ, ǫ ∼ N(0, 102), (2)

where we assume that the censoring time C and the restricted
time L satisfy P(C ≤ T∧L) = 33% and P(L ≤ T∧C) = 11%. Our
goal is to estimateµL(x). Figure 1 shows a set of predictions on an
artificially generated data set from Equation (2). Compared with
other methods, the random forest is able to estimate the target
function closely, especially when µL(x) approaches L.

For the continuous outcomes without censoring, random
forest (Breiman, 2001, 2004) is a popular method of non-
parametric regression that has shown effectiveness in many
applications (Svetnik et al., 2003; Díaz-Uriarte and Alvarez de
Andrés, 2006; Cutler et al., 2007). It is invariant under scaling
and various other transformations of feature values, robust to
inclusion of irrelevant features (Hastie et al., 2001), and versatile
enough to be applied to large-scale problems (Biau and Scornet,
2016). Besides strong empirical results, theoretical results such
as consistency (Meinshausen, 2006; Biau et al., 2008; Biau, 2012;
Denil et al., 2014) and asymptotic normality (Wager and Athey,
2015; Mentch and Hooker, 2016; Athey et al., 2018; Friedberg
et al., 2018) have also been obtained for regression models
without censoring. Extending random forest to censored survival
data has been proposed in several recent papers (Ishwaran et al.,
2008; Steingrimsson et al., 2019), focusing on implementations
and algorithms. However, there has been little theoretical work in
statistical inference of such random survival forest. Ishwaran and
Kogalur (2011) proved the consistency of the random survival
forest by showing that the forest ensemble survival function
converges uniformly to the true population survival function.

Instead of focusing on predicting the survival function or the
survival probability as the algorithms implemented by Ishwaran
et al. (2008) and Steingrimsson et al. (2019), we develop in
this paper a random forest framework to model the hRMST
directly given the baseline covariates in the presence of possibly
covariate-dependent censoring. This approach provides a non-
parametric estimation of hRMST adjusting for covariates. Due
to the complex relationship between the survival time and the
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covariates, it is desirable to have more flexible methods to
estimate the hRMST than the approaches that a certain link
function has to be assumed. Our construction of random forest
is based on the estimated IPCW. We show that the resulting
survival random forest estimates of hRMST has the asymptotic
normality property that can be used to obtain the point-wise
confidence interval with theoretical guarantees. To the best of
our knowledge, it is the first asymptotic normality result for
the predictions in the context of censored survival data using
random forest.

The remainder of the paper is organized as follows. In section
2, we describe the proposed random forest estimator. Asymptotic
properties are given in section 3. In section 4, we conduct
simulation studies to evaluate the accuracy of the proposed
method in the finite sample settings. In section 5, we apply our
method to an ovarian cancer data set of The Cancer Genome
Atlas (TCGA) project (http://cancergenome.nih.gov/abouttcga)
to evaluate the predictions of the hRMST for ovarian cancer
patients using their acylcarnitine measurements and clinical
variables. We conclude this chapter with a brief discussion in
section 6.

2. RANDOM FOREST FOR ESTIMATING
THE hRMST

Webegin with some notation. LetXi be the baseline covariates for
subject i from a cohort of sample size n andTi be the survival time
for subject i. Let Ci be the censoring time, which is independent
of Ti conditional on the baseline covariates Xi. The observation
time for subject i is Zi = Ti ∧ Ci, where a ∧ b = min{a, b}. The
indicator for censoring is denoted by δi = 1{Ti≤Ci}. Our observed
i.i.d. data are given as {(Xi,Zi, δi) : i = 1, . . . , n}.

Let L be a pre-specified time point of interest, before the
maximum follow-up time τ = max{Zi : i = 1, . . . , n}. As in
Wang and Schaubel (2018), L is normally chosen as a time point
of clinical relevance or, at least, of particular interest to the
investigators, respecting the bound at the maximum follow-up
time. Denote the restricted observation time asZL

i = Zi∧L and its
corresponding indicator δLi = 1{Ti∧L≤Ci}. Our goal is to estimate
covariate-adjusted RMST or hRMST µL(x) = E(ZL|X = x) and
to construct its confidence interval.

2.1. Forest-Based Local Estimating
Equation for hRMST
Given the observed data {(Xi, δi,Zi)}

n
i=1, and a restriction

threshold L, we first present a random forest method to estimate
µL(x). The idea of the approach is to solve a weighted estimating
equation for µL(x), where the estimating equation functions of
the observations whose covariates closer to x will have larger
weights. Specifically, let wi = δ

L
i /(1− G(ZL

i |Xi)) be the IPCW of
the ith data point under the true censoring distribution G(·|Xi).
The (infeasible) estimating equation function wi(Z

L
i − µ

L(x)) of
Xi = x satisfies E[wi(Z

L
i − µ

L(x))|Xi = x] = E[Ti ∧ L|Xi =

x]−µL(x) = 0. If the local weights {αi(x)}
n
i=1 are also known, the

solution to the empirical estimating equation for µL(x)

n∑

i=1

αi(x)wi(Z
L
i − µ) = 0 (3)

is given as
∑n

i=1 αi(x)wiZ
L
i∑n

i=1 αi(x)wi
,

which provides a good candidate of estimator forµL(x). However
we do not know the censoring distribution G and the local
weights {αi(x)}

n
i=1, which need to be estimated from the data. We

assume censoring distribution G follows a Cox model, a natural
choice for modeling censoring times in the context of IPCW. Let

ŵi =
δLi

1− Ĝ(ZL
i |Xi)

be the estimated IPCW for ith observation with Ĝ(·|Xi) derived
from the data through Cox model. We define the estimating
equation function for ith observation with its corresponding
estimated IPCW as

ψµL(x)(Xi,Z
L
i , δ

L
i ) = ŵi(Z

L
i − µ

L
i (x)).

Our approach to derive the local weights {αi(x)}
n
i=1 is through the

random forest, which is an ensemble of survival trees constructed
by Algorithm 1.

Algorithm 1: Survival tree

SurvivalTree (set of observations J, domain X);
IPCW←CoxModel(J);
Root P0 ←CreateNode(J, X);
Queue Q→InitializeQueue(P0);
while Q is NotNull do

node P← Pop(Q);

Solve µ̂L
P = argmin

µ

|
∑

Xi∈P
ψµ(Xi,Z

L
i , δ

L
i )|;

Set ρi =
ŵi(Z

L
i −µ̂

L
P)

(
∑

Xi∈P
ŵi)/|{i :Xi∈P}|

;

Split P by maximizing

1̃(C1,C2) =
2∑

j=1

1
|{i :Xi∈Cj}|

( ∑
i :Xi∈Cj

ρi

)2

;

if split succeeds then
AddQueue(C1);
AddQueue(C2);

end

end

It can be shown that ρi is the influence function of the
ith observation for µ̂L

P. Let Fn be the empirical distribution
of the observations in node P, and let Fn,i = (1 − ǫ)Fn +
ǫνi, with νi be the Dirac delta function at ith observation. Set
µ̂L
P,i = µ̂L

P + 1i, where µ̂
L
P,i = argmin

µ

|
∫
ψµ(X,Z

L, δL)dFn,i|.

By Taylor expansion,

0 =

∫
ψµ̂L

P,i
(X,ZL, δL)dFn,i
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=

∫
[ψµ̂L

P
(X,ZL, δL)+ ψ ′µ∗ (X,Z

L, δL)1i]dFn,i,

where µ∗ is a value between µ̂L
P and µ̂L

P,i. The above
equation implies

1i = −
ǫψµ̂L

P
(Xi,Z

L
i , δ

L
i )∫

ψ ′µ∗ (X,Z
L, δL)dFn,i

,

and therefore the influence function of ith observation for µ̂L
P is

lim
ǫ→0

1i/ǫ = −
ψµ̂L

P
(Xi,Z

L
i , δ

L
i )∫

ψ ′
µ̂L
P

(X,ZL, δL)dFn
=

ŵi(Z
L
i − µ̂

L
P)∑

i∈P
ŵi

|{i :Xi∈P}|

= ρi.

Athey et al. (2018) shows that maximizing the splitting
criterion 1̃(C1,C2) is approximately equivalent to minimizing
the weighted mean squared error err(C1,C2) =

∑
i=1,2 P(X ∈

Ci|X ∈ P)E[(µ̂L
Ci
− µL(X))2|X ∈ Ci].

In order to achieve consistency and asymptotic normality,
we split the tree and make predictions in an honest way as
introduced in Wager and Athey (2015). Specifically, each tree in
an honest forest is grown using two non-overlapping subsamples
of the training data. For the bth tree, given Ib and Jb, we first
choose the tree structure Tb using only the data in Jb, and write
x ↔b x′ as the boolean indicator for whether the points x and x′

fall into the same leaf of Tb. In a second step, we define the set of
neighbors of x as Lb(x) = {i ∈ Ib : x↔b xi}. The weights of point
x from a survival forest with B trees can be written as

αi(x) =
1

B

B∑

b=1

1{Xi∈Lb(x)}

|Lb(x)|
.

The empirical locally weighted estimating equation for µ̂L(x) is
then defined as

n∑

i=1

αi(x)ψµ(Xi,Z
L
i , δ

L
i ) = 0, (4)

FIGURE 2 | Simulation results of the coverage probability for Model 1 with three different link functions, sample size of n = 1, 000, 2, 000, 5, 000, and p = 2, 4, 6, 8.

For each case, prediction coverage probability is calculated over the samples in the testing data set.

Frontiers in Genetics | www.frontiersin.org 4 January 2021 | Volume 11 | Article 587378

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Liu and Li Survival Random Forest

and the random forest estimator for the hRMST is the solution of
Equation (4), which is

µ̂L(x) =

n∑

i=1

αi(x)ŵiZ
L
i∑n

i=1 αi(x)ŵi
.

We emphasize the difference between the IPCW used in building
the survival trees and IPCW used to derive µ̂L(x). The IPCW
used in building survival trees is estimated only by the data points
from Jb so that the resulting survival forest is honest. The IPCW
used to derive µ̂L(x) is estimated from all data points.

3. ASYMPTOTIC DISTRIBUTION OF µ̂
L(X)

3.1. Asymptotic Normality
We derive a central limit theorem for survival forest estimate of
hRMST. We first give three common assumptions that required
for the most of the theoretical analysis of random forests.

Assumption 1. µL(x) is Lipschitz continuous w.r.t x.

Assumption 2. There exists a restricted time threshold L, such
that P(C > t ∧ L|X = x) ≥ ǫL > 0 for any x, t.

Assumption 3. Var(T ∧ L|X = x) > 0 for any x.

As mentioned in the previous section, we model the conditional
survival function of censoring distribution G given baseline
covariates. Because of its flexibility and popularity in practice,
we adopt the proportional hazards model for hazard function of
censoring distribution.

Assumption 4. The hazard function of censoring distribution
follows λCi (t) = λ

C
0 (t) exp(X

′
iβC)

We make additional regularity assumptions that are widely used
in analysis of estimates from the proportional hazards models.
These assumptions are needed in order to quantify the difference
between the estimated IPCW and true IPCW.

Assumption 5. ||X||∞ < MX <∞

Assumption 6. λC0 (t) ≤ λ
C
0 <∞ for all t.

FIGURE 3 | Simulation results of coverage probability for Model 2 with three different link functions, sample size of n = 1, 000, 2, 000, 10, 000, and p = 2, 4, 6, 8. For

each case, prediction coverage probability is calculated over the samples in the testing data set.
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Assumption 7. �C(β) = E

[ ∫ τ
0

r(2)(t,β)

r(0)(t,β)
− x̄(t,β)⊗2dNC

i (t)

]

is positive definite, where Ri(t) = 1(Zi ≥ t), r(k)(t,β) =

E[exp(β ′Xi)Ri(t)X
⊗k
i ], x̄(t,β) = r(1)(t,β)

r(0)(t,β)
,NC

i (t) = 1Zi≤t,δi=0.

Assumption 8. P(Ri(t) = 1|Xi = x) ≥ r > 0 for some positive
constant and for any t, x. This assumption implies that

r(0)(t,β) = E[exp(β ′Xi)Ri(t)] = E[exp(β ′Xi)E[Ri(t)|Xi]]≥r>0.

Following Wager and Athey (2015) and Athey et al. (2018),
we assume that all trees are symmetric, in that their output is
invariant to permuting the indices of Estimation-Part in training
examples (see Corollary 6 of Wager and Athey (2015) for more
details about this symmetry). They also require balanced splits
in the sense that every split puts at least a fraction ω of the

FIGURE 4 | Estimated vs. the true RMST for Model 1 (left) and Model 2 (right) with exponential link function and the number of covariates p = 5, 10, 20

(top–bottom). SRF, proposed random forest-bases estimator, and upper and lower bounds of the point-wise confidence intervals of the proposed random forest

estimator are connected in the gray lines; Naive.km, estimate based on Kaplan–Meier estimator without adjusting for the covariates; Naive.Cox, Cox regression based

estimator; Lu.id, method of Tian et al. (2014) with identity link; Lu.exp, method of Tian et al. (2014) with exponential link; Wang.id, method of Wang and Schaubel

(2018) with identity link; Wang:exp, method of Wang and Schaubel (2018) with exponential link.
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observations in the parent node into each child, for some ω > 0.
Finally, the trees are randomized in such a way that, at every split,
the probability that the tree splits on the jth feature is bounded
from below by some π > 0. The forest is honest and built
via subsampling with subsample size s satisfying s/n → 0 and
s→∞.

Under the assumptions listed above, we have the following
asymptotic distribution result for the random forest-based
estimate of the hRMST.

Theorem 1. Under Assumptions 1, 2, 3, 4, 5, 6, 7, 8, for each fixed
test point x, there is a sequence σ 2

n (x) = Var(µ̂L(x))→ 0,

µ̂L(x)− µL(x)

σn(x)
→d N(0, 1)

if subsampling size

βmin = 1−

(
1+

π−1
(
log(ω−1)

)

log
(
(1− ω)−1

)
)−1
,

where ω > 0 is the low-bound fraction for observations in the
parent node into each child, and π > 0 is the lower-bound of the
probability that the tree splits on any features.

We give a consistent estimate of σ 2
n (x) based on half-sampling

(Efron, 1980) and the method of Sexton and Laake (2009).

3.2. Estimation of the Variance
Following Athey et al. (2018), we use the random forest
delta method to develop a variance estimate of the survival
forest prediction µ̂L(x). Athey et al. (2018) provides a
consistent estimate of σ 2

n (x) using s2n(x), where s2n(x) =

(V(x)−1)Hn(x)(V(x)
−1)′ with

Hn(x) = Var[

n∑

i=1

αi(x)ψµL(x)(Xi,Z
L
i , δ

L
i )]

V(x) =
∂

∂(µL)
E[ψµL (X,ZL, δL)|X = x]|µL=µL(x)

In our context, V(x) = −1, then simply we have s2n(x) = Hn(x).
A consistent estimator for Hn(x) can be obtained using half-

sampling estimator (Efron, 1980; Athey et al., 2018). Let 9H

be the average of the empirical estimating equation functions
averaged over the trees that only use the data from the half-
sampleH, denoted by SH,

9H(x) =
1

|SH|

∑

b∈SH

∑n
i=1 1Xi∈Lb(x)ψµ̂L(x)(Xi,Z

L
i , δ

L
i )∑n

i=1 1Xi∈Lb(x)
,

where Lb(x) contains neighbors of x in the bth tree. An ideal
half-sampling estimator is then defined as

ĤHS
n (x) =

(
n

n/2

)−1 ∑

H : |H|=n/2

(E2[9H(x)]− E29̄(x))2

TABLE 1 | Comparison of Mean-Absolute-Error (MAE) and Rooted-Mean-Squared-Error (RMSE) for Model 1 with different link functions.

p SRF Naive.Cox Naive.km Lu.id Lu.exp Wang.id Wang.exp

Model 1: identity link, n = 3, 000, SNR = 0.3

5 0.1359 0.1371 0.2067 0.1341 0.1346 0.1341 0.1346

0.1699 0.1695 0.2466 0.1687 0.1691 0.1686 0.1691

10 0.1396 0.1394 0.2108 0.1371 0.1377 0.1371 0.1376

0.1721 0.1710 0.2497 0.1710 0.1715 0.1709 0.1714

20 0.1373 0.1372 0.2064 0.1342 0.1348 0.1342 0.1347

0.1703 0.1693 0.2464 0.1686 0.1691 0.1685 0.1690

Model 1: log-exp link, n = 3, 000, SNR = 0.3

5 0.1347 0.1359 0.2048 0.1330 0.1335 0.1330 0.1335

0.1684 0.1680 0.2441 0.1673 0.1677 0.1672 0.1677

10 0.1384 0.1382 0.2088 0.1359 0.1366 0.1359 0.1365

0.1706 0.1695 0.2472 0.1695 0.1701 0.1695 0.1699

20 0.1361 0.1360 0.2044 0.1331 0.1337 0.1330 0.1336

0.1689 0.1679 0.2439 0.1672 0.1678 0.1671 0.1676

Model 1: exp link, n = 3, 000, SNR = 0.3

5 24.724 25.398 33.688 24.496 24.723 24.436 24.709

30.827 30.860 39.296 30.608 30.773 30.577 30.749

10 25.254 25.681 34.208 24.843 25.162 24.812 25.149

31.085 31.052 39.621 30.869 31.076 30.850 31.048

20 24.878 25.260 33.587 24.390 24.679 24.325 24.651

30.744 30.695 39.181 30.479 30.689 30.438 30.646

The number of covariates p = 5, 10, 20, for each p, the first row is MAE, the second row is RMSE. SRF, proposed random forest-bases estimator; Naive.km, estimate based on

Kaplan–Meier estimator without adjusting for the covariates; Naive.Cox, Cox regression based estimator; Lu.id, method of Tian et al. (2014) with identity link; Lu.exp, method of Tian

et al. (2014) with exponential link; Wang.id, method of Wang and Schaubel (2018) with identity link; Wang:exp, method of Wang and Schaubel (2018) with exponential link.
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9̄(x) =

(
n

n/2

)−1 ∑

H : |H|=n/2

9H(x)

where 2 is the randomness in building honest tree, including
splitting data into random halves and randomness in selecting
variables to split. ĤHS

n (x) is similar to classic bootstrap estimator
for the standard error, except that the sampling distribution
for ĤHS

n (x) is the half sampling distribution instead of the
bootstrap sampling. Denote Ess and Varss as the expectation and
variance under the half sampling distribution, then ĤHS

n (x) =
Varss[E2[9H(x)]].

Since carrying out the full half-sampling computation and
expectation with respect to 2 are impractical, Sexton and Laake
(2009) pointed out that ĤHS

n (x) can be efficiently approximated
by the following law of total variance:

ĤHS
n (x) = Varss

[
E2[

1

M

M∑

m=1

9H,2m (x)]

]

= Varss

[
1

M

M∑

m=1

9H,2m (x)

]

−Ess

[
Var2[

1

M

M∑

m=1

9H,2m (x)]

]
(5)

which leads to a Monte Carlo approximation of ĤHS
n (x) by

σ̂ 2
n (x) = V̂arss

[
1

M

M∑

m=1

9H,2m (x)

]

− Êss

[
V̂ar2[

1

M

M∑

m=1

9H,2m (x)]

]
.

(6)

In order to approximate random forest randomness quantity
V̂ar2 and sampling randomness quantities V̂arss, Êss, we split B
trees in G groups and each group has l trees, and the trees in
the same group have the same half sample. The final consistent
estimator σ̂ 2

n (x) can be written as

σ̂ 2
n (x) =

1

G− 1

G∑

g=1

(9̄g(x)− 9̄(x))2

−
1

(l− 1)

1

B

G∑

g=1

l∑

i=1

(9ig(x)− 9̄g(x))
2

where 9̄g(x) =
1
l

l∑
i=1
9ig(x), and 9̄(x) = 1

G

G∑
g=1

9̄g(x).

The following diagram summarizes the procedure of
estimating the variance σ 2

n (x).

σ 2
n (x)

Asym.equivalent
←−−−−−−−−− s2n(x)

Half-Sampling estimator
←−−−−−−−−−−−−−

TABLE 2 | Comparison of mean-absolute-error (MAE) and rooted-mean-squared-error (RMSE) for Model 2 with different link functions.

p SRF Naive.Cox Naive.km Lu.id Lu.exp Wang.id Wang.exp

Model 2: identity link, n = 3, 000, SNR = 0.3

5 0.1218 0.1386 0.1384 0.1388 0.1388 0.1382 0.1382

0.1498 0.1658 0.1656 0.1660 0.1660 0.1656 0.1656

10 0.1257 0.1414 0.1412 0.1418 0.1418 0.1411 0.1411

0.1525 0.1682 0.1679 0.1687 0.1687 0.1684 0.1684

20 0.1239 0.1390 0.1385 0.1393 0.1393 0.1387 0.1387

0.1507 0.1662 0.1655 0.1667 0.1667 0.1663 0.1663

Model 2: log-exp link, n = 3, 000, SNR = 0.3

5 0.1201 0.1366 0.1364 0.1368 0.1368 0.1362 0.1362

0.1479 0.1635 0.1633 0.1637 0.1637 0.1634 0.1634

10 0.1240 0.1395 0.1393 0.1399 0.1399 0.1392 0.1392

0.1506 0.1660 0.1657 0.1664 0.1664 0.1661 0.1661

20 0.1222 0.1371 0.1366 0.1374 0.1374 0.1368 0.1368

0.1487 0.1640 0.1633 0.1645 0.1645 0.1641 0.1641

Model 2: exp link, n = 3, 000, SNR = 0.3

5 21.030 23.794 23.733 23.915 23.911 23.542 23.541

25.984 28.185 28.135 28.297 28.292 28.126 28.125

10 21.641 24.165 24.127 24.322 24.319 23.928 23.928

26.357 28.475 28.430 28.618 28.614 28.473 28.472

20 21.368 23.802 23.712 23.956 23.952 23.571 23.571

26.071 28.216 28.102 28.379 28.375 28.208 28.207

The number of covariates p = 5, 10, 20, for each p, the first row is MAE, the second row is RMSE. SRF, proposed random forest-bases estimator; Naive.km, estimate based on

Kaplan–Meier estimator without adjusting for the covariates; Naive.Cox, Cox regression based estimator; Lu.id, method of Tian et al. (2014) with identity link; Lu.exp, method of Tian

et al. (2014) with exponential link; Wang.id, method of Wang and Schaubel (2018) with identity link; Wang:exp, method of Wang and Schaubel (2018) with exponential link.
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ĤHS
n (x)

Empirical estimator
←−−−−−−−−−− σ̂ 2

n (x)

where from left to right, the first arrow is based on Theorem 5 of
Athey et al. (2018), the second arrow is based on half-sampling of
Efron (1980), and the third arrow is supported by Equations (5)
and (6) and the method of Sexton and Laake (2009).

4. SIMULATION STUDIES

We present simulations to evaluate the performance of the
proposed method in finite sample setting. Two different models
for the survival time are considered

• Model 1: T = g−1(α0 +
∑p

i=1 αiXi)+ ǫ

• Model 2: T = g−1(α0 +
∑p

i=1 αiX
2
i )+ ǫ

where Xi1, . . . ,Xip are independently generated from
Unif (−1, 1), α0 = 5, α1 = α2 = 0.25 and αi = 0 for
i > 2, and ǫ ∼ N(0, σ 2). The variance σ 2 is chosen to have
proper signal-noise ratio (SNR),

SNR =
Var(g−1(α0 +

∑p
i=1 αiXi))

Var(ǫ)
.

We generate the independent censoring time Ci from a Cox
model with the following hazard λ = λC exp(X1 log 2) and λC

is chosen to have a proper un-censoring rate. The link function g
can have the following form

• Identity link: g−1(x) = x;
• Exp link: g−1(x) = exp(x);
• Log-exp link: g−1(x) = log(exp(x)+ 1).

4.1. Evaluation of Coverage Probability of
Predictions
To evaluate the asymptotic results in Theorem 1, we generate five
training data sets and one testing data set with the same sample
size. The coverage probability performance is evaluated on the
testing data set with predictions and confidence intervals derived
from 5 independent training data sets. More specifically, for each
observation in the testing sample, we obtain the 95% confidence
intervals and record how many times a hRMST observation in
test sample is within five estimated 95% confidence intervals.
The coverage probability of an observation is defined by the its
proportion of being covered, and the overall coverage probability
of the testing sample is defined by the average of coverage
probability of each of its observation. We present the coverage
probability results with sample size n = 1, 000, 2, 000, 5, 000 for
Model 1, and n = 1, 000, 2, 000, 10, 000 for Model 2. By choosing
the proper λC, we control the un-censoring rate around 60–70%
for different link functions: λC ∼ 0.08 for Identity link and Log-
exp link, and λC ∼ 0.003 for Exp link. The truncation time L is

TABLE 3 | Comparison of Mean-Absolute-Error (MAE) and Rooted-Mean-Squared-Error (RMSE) for Model 1 with different link functions and the censoring distribution is

mis-specified with α = 0.5.

p SRF Naive.Cox Naive.km Lu.id Lu.exp Wang.id Wang.exp

Model 1: identity link, n = 3, 000, SNR = 0.3

5 0.1361 0.1353 0.2051 0.1337 0.1344 0.1336 0.1342

0.1706 0.1681 0.2457 0.1687 0.1693 0.1685 0.1690

10 0.1444 0.1430 0.2160 0.1402 0.1408 0.1403 0.1408

0.1755 0.1732 0.2523 0.1726 0.1731 0.1725 0.1730

20 0.1392 0.1372 0.2078 0.1345 0.1351 0.1345 0.1351

0.1723 0.1699 0.2484 0.1694 0.1700 0.1692 0.1698

Model 1: log-exp link, n = 3, 000, SNR = 0.3

5 0.1348 0.1341 0.2032 0.1325 0.1333 0.1324 0.1330

0.1691 0.1667 0.2432 0.1673 0.1679 0.1671 0.1676

10 0.1431 0.1418 0.2139 0.1390 0.1396 0.1391 0.1396

0.1740 0.1718 0.2497 0.1712 0.1717 0.1711 0.1716

20 0.1380 0.1360 0.2060 0.1335 0.1341 0.1334 0.1340

0.1708 0.1685 0.2460 0.1681 0.1687 0.1679 0.1685

Model 1: exp link, n = 3, 000, SNR = 0.3

5 24.906 25.157 33.628 24.471 24.826 24.427 24.784

30.984 30.687 39.205 30.609 30.852 30.591 30.800

10 26.381 26.553 35.410 25.738 26.015 25.678 25.996

31.799 31.593 40.265 31.403 31.607 31.373 31.574

20 25.096 25.145 33.418 24.461 24.741 24.365 24.680

30.940 30.746 39.152 30.609 30.831 30.551 30.759

The number of covariates p = 5, 10, 20, for each p, the first row is MAE, the second row is RMSE. SRF, proposed random forest-bases estimator; Naive.km, estimate based on

Kaplan–Meier estimator without adjusting for the covariates; Naive.Cox, Cox regression based estimator; Lu.id, method of Tian et al. (2014) with identity link; Lu.exp, method of Tian

et al. (2014) with exponential link; Wang.id, method of Wang and Schaubel (2018) with identity link; Wang:exp, method of Wang and Schaubel (2018) with exponential link.
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chosen to make the truncation rate fall into 2%−5%. Specifically,
L ∼ 5.4 for Identity link and Log-exp link, and L ∼ 220 for
Exp link.

Figures 2, 3 present the results for Model 1 and Model 2
under three different link functions. We see that the coverage
probability approaches to nominal level 95% when the sample
size gets larger. If p is smaller, the coverage probability is closer
to 95%. This corresponds to the result of Theorem 3 in Wager
and Athey (2015), which states that the rate of convergence of

the bias of random forest estimator is O(n
K
p ) for some constant

K. When the sample size n is fixed, bigger p leads to larger
bias in the estimates of hRMST, and under-coverage of the
confidence interval. On the other hand, when p is fixed, bigger
n results in a smaller bias and leads to a better coverage of the
confidence interval.

4.2. Comparison of Prediction
Performance With Existing Methods
We compare our proposed method with several existing methods
for hRMST estimation, including

• Naive.km: using Kaplan–Meier estimator for survival function
and computing hRMST by Equation (1). Covariates are not
adjusted.
• Naive.Cox: using proportational hazards estimator for the

survival function and computing hRMST by Equation (1). The

censoring distribution is assumed to follow the proportional
hazards assumption.
• Lu.method: using some parametric forms of hRMST and

computing hRMST by solving a weighted estimating equation.
The censoring distribution is assumed to be independent of
the covariates (Tian et al., 2014).We consider Identity link and
Exp link in the simulations.
• Wang.method: using some parametric forms of hRMST

and computing hRMST by solving a weighted estimating
equation. The censoring distribution is assumed to follow the
proportional hazards assumption. We consider Identity link
and Exp link in the simulations (Wang and Schaubel, 2018).

We compare all these methods under Model 1 and Model 2,
and use the Mean-Absolute-Error (MAE) and Rooted-Mean-
Squared-Error (RMSE), introduced in Davison and Hinkley
(1997), Tian et al. (2007), and Wang and Schaubel (2018), to
measure the performance of these methods.

MAE =
1

n

n∑

i=1

δLi

1− Ĝ(ZL
i |Xi = x)

∣∣∣∣Z
L
i − µ̂

L(Xi)

∣∣∣∣,

RMSE =

√√√√ 1

n

n∑

i=1

δLi

1− Ĝ(ZL
i |Xi = x)

[
ZL
i − µ̂

L(Xi)

]2
.

(7)

TABLE 4 | Comparison of Mean-Absolute-Error (MAE) and Rooted-Mean-Squared-Error (RMSE) for Model 2 with different link functions and the censoring distribution is

mis-specificed with α = 0.5.

p SRF Naive.Cox Naive.km Lu.id Lu.exp Wang.id Wang.exp

Model 1: identity link, n = 3, 000, SNR = 0.3

5 0.1230 0.1378 0.1374 0.1385 0.1385 0.1377 0.1377

0.1514 0.1657 0.1653 0.1663 0.1663 0.1658 0.1658

10 0.1310 0.1450 0.1442 0.1457 0.1457 0.1447 0.1447

0.1562 0.1704 0.1695 0.1712 0.1712 0.1704 0.1704

20 0.1262 0.1394 0.1384 0.1403 0.1403 0.1392 0.1392

0.1533 0.1668 0.1657 0.1681 0.1681 0.1673 0.1673

Model 1: log-exp link, n = 3, 000, SNR = 0.3

5 0.1213 0.1359 0.1355 0.1365 0.1365 0.1358 0.1358

0.1494 0.1634 0.1630 0.1640 0.1640 0.1636 0.1636

10 0.1292 0.1430 0.1422 0.1437 0.1437 0.1427 0.1427

0.1543 0.1681 0.1673 0.1689 0.1689 0.1681 0.1681

20 0.1244 0.1374 0.1364 0.1383 0.1383 0.1372 0.1372

0.1512 0.1645 0.1634 0.1658 0.1658 0.1650 0.1650

Model 1: exp link, n = 3, 000, SNR = 0.3

5 21.270 23.793 23.697 24.016 24.009 23.535 23.534

26.187 28.147 28.075 28.329 28.322 28.133 28.132

10 22.824 25.159 24.946 25.408 25.399 24.843 24.842

27.067 29.009 28.823 29.239 29.227 28.945 28.943

20 21.832 23.896 23.708 24.188 24.177 23.698 23.697

26.635 28.417 28.221 28.753 28.740 28.499 28.499

The number of covariates p = 5, 10, 20, for each p, the first row is MAE, the second row is RMSE. SRF, proposed random forest-bases estimator; Naive.km, estimate based on

Kaplan–Meier estimator without adjusting for the covariates; Naive.Cox, Cox regression based estimator; Lu.id, method of Tian et al. (2014) with identity link; Lu.exp, method of Tian

et al. (2014) with exponential link; Wang.id, method of Wang and Schaubel (2018) with identity link; Wang:exp, method of Wang and Schaubel (2018) with exponential link.
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TABLE 5 | Comparison of Mean-Absolute-Error (MAE) and Rooted-Mean-Squared-Error (RMSE) for Model 1 with different link functions and the censoring distribution is

mis-specificed with α = 1.5.

p SRF Naive.Cox Naive.km Lu.id Lu.exp Wang.id Wang.exp

Model 1: identity link, n = 3, 000, SNR = 0.3

5 0.1363 0.1378 0.2067 0.1352 0.1357 0.1352 0.1357

0.1701 0.1702 0.2467 0.1697 0.1702 0.1697 0.1702

10 0.1376 0.1385 0.2073 0.1358 0.1363 0.1358 0.1363

0.1709 0.1706 0.2472 0.1699 0.1704 0.1699 0.1704

20 0.1371 0.1371 0.2062 0.1341 0.1347 0.1342 0.1347

0.1698 0.1691 0.2464 0.1682 0.1688 0.1682 0.1688

Model 1: log-exp link, n = 3, 000, SNR = 0.3

5 0.1350 0.1366 0.2046 0.1340 0.1345 0.1340 0.1345

0.1686 0.1687 0.2441 0.1683 0.1688 0.1683 0.1688

10 0.1363 0.1373 0.2053 0.1346 0.1352 0.1347 0.1352

0.1695 0.1692 0.2447 0.1685 0.1690 0.1685 0.1690

20 0.1359 0.1359 0.2043 0.1330 0.1335 0.1330 0.1336

0.1683 0.1677 0.2439 0.1669 0.1674 0.1669 0.1674

Model 1: exp link, n = 3, 000, SNR = 0.3

5 24.537 25.171 33.190 24.322 24.601 24.304 24.600

30.701 30.750 38.999 30.549 30.735 30.532 30.715

10 24.802 25.317 33.359 24.468 24.743 24.445 24.744

30.798 30.832 39.142 30.577 30.757 30.560 30.742

20 24.852 25.188 33.406 24.300 24.567 24.272 24.570

30.732 30.654 39.103 30.384 30.583 30.371 30.576

The number of covariates p = 5, 10, 20, for each p, the first row is MAE, the second row is RMSE. SRF, proposed random forest-bases estimator; Naive.km, estimate based on

Kaplan–Meier estimator without adjusting for the covariates; Naive.Cox, Cox regression based estimator; Lu.id, method of Tian et al. (2014) with identity link; Lu.exp, method of Tian

et al. (2014) with exponential link; Wang.id, method of Wang and Schaubel (2018) with identity link; Wang:exp, method of Wang and Schaubel (2018) with exponential link.

We set n = 3, 000, SNR = 0.3. For Identity link and Log-exp
link, λC = 0.08, L = 5.3. For Exp link λC = 0.0026, L = 190.
We calculate the MAE and RMSE for our method and four
existing methods(both Lu.method and Wang.method have two
link functions) under Model 1 and Model 2 and p = 5, 10, 20.
Among all the considered models, our method in general has
a better performance. As an example, Figure 4 visualizes the
observed hRMST generated from Log-exp link and predicted
hRMST from our method and Wang.method, showing that the
random forest can give better predictions.

Tables 1, 2 show the MAE and RMSE for Model 1 and Model
2, respectively. For Model 1, the parametric models are correctly
specified using the methods of Tian et al. (2014), Wang and
Schaubel (2018), we expect that both methods perform well, and
our method can have a comparable performance. For Model 2,
our proposed method dominates all other methods. Increasing
the number of non-predictive covariates does not have a big
impact on the performance of our method.

When the censoring distribution does not follow PH
assumption, we may expect a difference in the prediction
performance because of the bias of IPCW frommis-specification.
To check whether our method can still outperform the
existing methods, we conduct additional numerical studies. In
particular, we simulate the censoring time from the following
gamma distributions

C ∼ Ŵ(α,β),β =
1

λC exp(X1 log 2)
, and α ∈ {0.5, 1.5}

When α = 1, the gamma distribution degenerates to the
exponential distribution we used for Tables 1, 2. Tables 3, 4 show
the MAE and RMSE for Model 1 andModel 2 when α = 0.5, and
Tables 5, 6 show the MAE and RMSE for Model 1 and Model 2
when α = 1.5. Results of α ∈ {0.5, 1.5} are not very different
from the results of α = 1. Under Model 1, our method performs
comparably well as methods of Tian et al. (2014), Wang and
Schaubel (2018), and it dominates the others under Model 2.
When feature dimension is low(p = 5), the error metrics of
our method when α = 1 are in general lower than the error
metrics when α = 0.5, 1.5 for both Model 1 and Model 2. The
additional errors can be regarded as the bias induced from the
violation of PH assumption of the censoring distribution. When
feature dimension is high(p = 10, 20), bias from large p may
dominate the bias from the violation of PH assumption of the
censoring distribution.

5. APPLICATION TO THE TCGA OVARIAN
CANCER DATA SET

We apply the proposed method to The Cancer Genome Atlas
(TCGA) ovarian cancer functional proteomics data set (Akbani
et al., 2015) that is publicly available (http://gdac.broadinstitute.
org). The data sets include proteomic characterization of tumors
using reverse-phase protein arrays (RPPA). Specifically, Akbani
et al. (2015) reported an RPPA-based proteomic analysis using
195 high-quality antibodies that target total, cleaved, acetylated
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and phosphorylated forms of proteins in 412 high-grade serous
ovarian cystadenocarcinoma (OVCA) samples. The function
space covered by the antibodies used in the RPPA analysis
emcompasses major functional and signaling pathways of
relevance to human cancer, including proliferation, DNA
damage, polarity, vesicle function, EMT, invasiveness, hormone
signaling, apoptosis, metabolism, immunological, and stromal
function as well as transmembrane receptors, integrin, TGFβ ,
LKB1/AMPK, TSC/mTOR, PI3K/Akt, Ras/MAPK, Hippo,
Notch, and Wnt/beta-catenin signaling (Akbani et al., 2015).

After removing a few samples with missing data, the final
data set includes 407 OVCA samples with a mean/median

follow-up of 3.20/2.79 years and a total of 242 deaths and
40% censoring. To assess how different methods predict the
hRMST, we performed the following cross-validation analysis.
For a given L, we did 10-fold cross-validation on the data set.
For each training data set in the cross-validation, we perform
a univariate analysis to select top 5 most significant features
based on univariate Cox regression analysis. We then estimate
the hRMST on the test set using the training data sets with
these 5 features as the predictors. We apply 7 different methods,
including estimate based on the KM estimator, estimate based
on the Cox model, the method of Tian et al. (2014) and the
method of Wang and Schaubel (2018). We report the average

TABLE 6 | Comparison of Mean-Absolute-Error (MAE) and Rooted-Mean-Squared-Error (RMSE) for Model 2 with different link functions and the censoring distribution is

mis-specificed with α = 1.5.

p SRF Naive.Cox Naive.km Lu.id Lu.exp Wang.id Wang.exp

Model 1: identity link, n = 3, 000, SNR = 0.3

5 0.1227 0.1396 0.1395 0.1397 0.1397 0.1394 0.1394

0.1507 0.1666 0.1664 0.1668 0.1668 0.1666 0.1666

10 0.1241 0.1391 0.1389 0.1393 0.1393 0.1390 0.1390

0.1514 0.1667 0.1664 0.1669 0.1669 0.1668 0.1668

20 0.1232 0.1390 0.1386 0.1393 0.1393 0.1389 0.1389

0.1499 0.1659 0.1654 0.1663 0.1663 0.1661 0.1661

Model 1: log-exp link, n = 3, 000, SNR = 0.3

5 0.1210 0.1376 0.1375 0.1378 0.1378 0.1374 0.1374

0.1487 0.1643 0.1642 0.1645 0.1645 0.1643 0.1643

10 0.1224 0.1372 0.1370 0.1374 0.1374 0.1371 0.1371

0.1494 0.1644 0.1642 0.1646 0.1646 0.1645 0.1645

20 0.1215 0.1371 0.1368 0.1374 0.1374 0.1370 0.1370

0.1480 0.1637 0.1632 0.1641 0.1641 0.1638 0.1638

Model 1: exp link, n = 3, 000, SNR = 0.3

5 21.071 23.719 23.699 23.787 23.785 23.581 23.580

26.092 28.241 28.217 28.313 28.311 28.238 28.238

10 21.334 23.649 23.612 23.711 23.710 23.524 23.524

26.159 28.231 28.186 28.283 28.281 28.224 28.224

20 21.176 23.629 23.571 23.748 23.745 23.492 23.492

25.893 28.077 27.993 28.208 28.204 28.085 28.085

The number of covariates p = 5, 10, 20, for each p, the first row is MAE, the second row is RMSE. SRF, proposed random forest-bases estimator; Naive.km, estimate based on

Kaplan–Meier estimator without adjusting for the covariates; Naive.Cox, Cox regression based estimator; Lu.id, method of Tian et al. (2014) with identity link; Lu.exp, method of Tian

et al. (2014) with exponential link; Wang.id, method of Wang and Schaubel (2018) with identity link; Wang:exp, method of Wang and Schaubel (2018) with exponential link.

TABLE 7 | Performance of the proposed random forest estimator compared with other methods for L = 3, 4, 5.

L SRF Naive.Cox Naive.km Lu.id Lu.exp Wang.id Wang.exp

3 0.6879 0.9247 0.9463 0.9266 0.9355 0.7630 0.7721

0.8258 0.8925 0.8967 0.8966 0.8983 0.8438 0.8455

4 1.2033 1.5450 1.5686 1.5704 1.5777 1.2862 1.3044

1.2403 1.3597 1.3648 1.3830 1.3817 1.2719 1.2752

5 1.7479 2.2107 2.2395 2.2467 2.2306 1.8251 1.8540

1.6761 1.8594 1.8655 1.8989 1.8858 1.7168 1.7193

The first row is MAE, the second row is RMSE. SRF, proposed random forest estimator; Naive.km, estimate based on Kaplan–Meier estimator without adjusting for the covariates;

Naive.Cox, Cox regression based estimator; Lu.id, method of Tian et al. (2014) with identity link; Lu.exp, method of Tian et al. (2014) with exponential link; Wang.id, method of Wang

and Schaubel (2018) with identity link; Wang:exp, method of Wang and Schaubel (2018) with exponential link.
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FIGURE 5 | Performance of the proposed random forest estimator compared with other methods for L = 3, 4, 5. The left penal is the MAE across of 10-fold

cross-validation. The right panel is the RMSE across of 10-fold cross-validation. SRF, proposed random forest estimator; Naive.km, estimate based on Kaplan–Meier

estimator without adjusting for the covariates; Naive.Cox, Cox regression based estimator; Lu.id, method of Tian et al. (2014) with identity link; Lu.exp, method of Tian

et al. (2014) with exponential link; Wang.id method of Wang and Schaubel (2018) with identity link; Wang:exp, method of Wang and Schaubel (2018) with

exponential link.

of MAE and RMSE on the samples in the testing sets over the
10-fold cross-validation.

The results are shown in Table 7 and Figure 5 for L =
3, 4, 5 (see Supplementary Material for L = 6, 7, 8). There are
45.9, 31.2, 19.4, 11.8, 8.1, 4.4% of the observations larger than L
for L = 3, 4, 5, 6, 7, 8 correspondingly. For different choices
of L, our proposed random forest based method dominates
the other methods in MAE and RMSE. The methods of Tian

et al. (2014) and Wang and Schaubel (2018) are based on
parametric form of hRMST. Cox model is heavily dependent
on the proportional hazard assumption, and the Kaplan–Meier
approach does not take the covariates into account. We also
notice that the method of Wang and Schaubel (2018) always
performs better than the method of Tian et al. (2014), possibly
due to the fact that the censoring mechanism in the data depends
on the covariates.
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6. DISCUSSION

In this paper, we have developed a non-parametric random
forest-based method for estimation of hRMST. Compared
with traditional Cox model, which gets hRMST estimates by
transforming the estimated hazard functions, directly modeling
hRMST would be more preferable for computation and feature
importance analysis. The proposed estimator can relax the
parametric assumptions imposed on the survival time used in
Tian et al. (2014) and Wang and Schaubel (2018), and can
achieve better prediction performance. We have derived the
asymptotic distribution of the random forest estimator using
IPCW approach, and presented a procedure based on bags of
little bootstraps to obtain the variance of the estimator. Our
simulation results and analysis of TCGA data sets have shown
promising performance in predicting hRMST as compared to
the other available methods, even when the dimension is high
and the covariates include irrelevant variables. The method is
implemented by R and C++, and is available at https://github.
com/lmy1019/SRF.

The proposed method can be used to estimate the
heterogeneous treatment effects in randomized clinical
trials when the outcome is censored. One can simply apply
the method separately to the treated group and the placebo
group and take the difference. However, for the observational
studies, one needs to account for the fact that the treatment
assignments might not be completely at random. Wager
and Athey (2015) developed a non-parametric causal forest
for estimating heterogeneous treatment effects that extends
Breiman’s random forest algorithm. In the potential outcomes
framework with non-confounding, they showed that causal
forest are pointwise consistent for the true treatment effect
and have an asymptotically Gaussian and centered sampling
distribution. For the observational studies with censored
survival outcomes, it is also possible to combine the methods
proposed here and the method of Wager and Athey (2015) in
order to estimate the treatment effect on the restricted mean
survival time.

The proposed methods can also be extended to take into
account possible competing risk. This can be done by introducing

an additional inverse probability weight (IPCW) to differentiate
the non-informative censoring and competing risk censoring.
In this case, the estimation equation ψ function with covariates
history X̃ = x̃ under true GC and GR becomes

ψ̃µ(x̃,Z
L, δL) =

1

1− GC(ZL|X = x)

1

1− GR(ZL|X̃ = x̃)

δL
(
ZL − µ

)
, (8)

where under competing risk scenario, δL = 1{T∧L≤C∧R}. The
method proposed in this paper can be automatically adapted to
the competing risk case and the asymptotic normality result can
be derived similarly.
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