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We untangled key regions of the genetic architecture of grain yield (GY) in CIMMYT
spring bread wheat by conducting a haplotype-based, genome-wide association study
(GWAS), together with an investigation of epistatic interactions using seven large sets of
elite yield trials (EYTs) consisting of a total of 6,461 advanced breeding lines. These lines
were phenotyped under irrigated and stress environments in seven growing seasons
(2011–2018) and genotyped with genotyping-by-sequencing markers. Genome-wide
519 haplotype blocks were constructed, using a linkage disequilibrium-based approach
covering 14,036 Mb in the wheat genome. Haplotype-based GWAS identified 7, 4,
10, and 15 stable (significant in three or more EYTs) associations in irrigated (I),
mild drought (MD), severe drought (SD), and heat stress (HS) testing environments,
respectively. Considering all EYTs and the four testing environments together, 30 stable
associations were deciphered with seven hotspots identified on chromosomes 1A,
1B, 2B, 4A, 5B, 6B, and 7B, where multiple haplotype blocks were associated with
GY. Epistatic interactions contributed significantly to the genetic architecture of GY,
explaining variation of 3.5–21.1%, 3.7–14.7%, 3.5–20.6%, and 4.4– 23.1% in I, MD, SD,
and HS environments, respectively. Our results revealed the intricate genetic architecture
of GY, controlled by both main and epistatic effects. The importance of these results for
practical applications in the CIMMYT breeding program is discussed.

Keywords: haplotype blocks, haplotype-based GWAS, GBS, EYT, heat map

INTRODUCTION

Bread wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD), with global production of 761.5
million tons, is a staple food source for over 2.5 billion people worldwide and an important crop
for food security (FAO, 2020). Climate change and population growth will make attainment of
food security a challenging task over the coming decades. Development of high-yielding, climate-
resilient wheat varieties has therefore become imperative for wheat breeders. Improvement of grain
yield (GY) is an arduous task for the global plant-breeding community due to low heritability
and intractable “genotype× environment” interactions associated with it, particularly under stress
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environments (Quarrie et al., 2006; Sehgal et al., 2017, 2020).
Nevertheless, wheat breeders have revealed genetic gains up
to 1% for GY annually, but further efforts are required to
cope with an estimated 2% yearly increase in world population
(Tadesse et al., 2019).

Advances in next-generation sequencing technologies have
revolutionized the field of plant genomics. Low-cost genotyping
platforms that generate thousands to millions of data points are
now available for all agronomically important crops, providing
effective means for crop genetic research studies (Ganal et al.,
2012). For wheat, where marker number and density were major
lacunae in conducting in-depth genetic analyses, the availability
of dense sets of single-nucleotide polymorphisms (SNPs) from
different genotyping platforms has made a powerful step change
in the marker tool kit (Poland et al., 2012; Cavanagh et al.,
2013; Wang et al., 2014). The resulting high-density genomic
data have opened up new possibilities for untangling the genetic
architecture of complex traits by genome-wide association study
(GWAS) and to perform other genomic studies, for instance, the
analysis of selective sweeps within or across species (Afzal et al.,
2019; Liu et al., 2019). Additionally, the recent availability of the
high-quality reference genome of bread wheat (IWGSC, 2018)
has enhanced our understanding of the regulation of genome
organization, gene expression, and evolutionary mechanisms
shaping its genome (Alaux et al., 2018; Ramírez-González et al.,
2018; Wicker et al., 2018). With genome resolution reaching
megabase-scale level in wheat, it is envisioned that genomics-
assisted breeding can be escalated to a scale that was not possible
previously (Keeble-Gagnère et al., 2018).

Although high-density markers, such as genotyping-by-
sequencing (GBS) or SNP arrays, have been used extensively
in wheat to explore the genetic architecture of GY and yield
components using GWAS (Neumann et al., 2011; Zhang et al.,
2013; Edae et al., 2014; Ain et al., 2015; Azadi et al., 2015;
Lopes et al., 2015; Sukumaran et al., 2015; Sehgal et al., 2016;
Qaseem et al., 2018; Garcia et al., 2019; Li et al., 2019, 2020; Ward
et al., 2019; Shokat et al., 2020), panel sizes have been relatively
small to dissect such a complex trait, and results therefore were
quite variable, identifying hundreds of small-effect QTL. GWAS
reports in larger germplasm panels are still rare (Sehgal et al.,
2017, 2020; Juliana et al., 2019). Small panel sizes have also
hindered scientists from exploring epistatic interactions due to
lack of reasonable statistical power (Mackay, 2014).

To boost the power of single-marker GWAS, meta-GWAS has
emerged as a leading approach to dissect traits (Evangelou and
Ioannidis, 2013). In this approach, summary statistics of multiple
trials are analyzed in a single frame to determine the most
effective stable loci over space and time while simultaneously
reducing false positives. In wheat, this approach has been used
successfully to identify important loci associated with quality
traits in unbalanced datasets (Battenfield et al., 2018). However,
this GWAS approach fails to address the issue of “missing
heritability,” which is common in single marker–based GWAS.
The alternative approach to boost the power of GWAS is
by constructing haplotypes between neighboring SNPs on a
chromosome. As specific sets of alleles observed on a single
chromosome, haplotypes are inherited together with little chance

of contemporary recombination. Recent studies on wheat and
other crops have shown that GWAS analysis with haplotypes can
be superior to single marker–based analysis in terms of statistical
significance (better p-values) and in estimating allelic effects (Hao
et al., 2012; Lu et al., 2012; N’Diaye et al., 2017; Ledesma-Ramírez
et al., 2019; Li et al., 2019; Sehgal et al., 2020; Shokat et al., 2020).

In the present study, we targeted exploration of stable regions
in the genome that define the backbone of the genetic architecture
of GY in CIMMYT spring bread wheat germplasm using a
haplotype-based GWAS and investigating the interactions among
haplotypes. We used seven large cohorts of advanced breeding
lines from different breeding cycles phenotyped under well-
managed multiple testing environments (irrigated and stress
conditions) and genotyped with GBS markers. The specific
objectives were to (i) construct haplotypes using GBS data across
6,461 lines distributed in seven elite yield trials (EYTs); (ii)
conduct haplotype-based GWAS in each EYT using phenotyping
data derived from the four testing environments; (iii) identify
stable haplotypes associated with GY under individual testing
environments and across multiple testing environments; and (iv)
investigate the contribution of epistatic interactions to the genetic
architecture of GY.

MATERIALS AND METHODS

Plant Materials, Phenotyping, and
Statistical Analysis
A total of 6,461 spring bread wheat lines, which formed the
entries of seven EYTs during 7 consecutive years, were used
in this study (Supplementary Table 1). EYT2011-12, EYT2012-
13, EYT2013-14, EYT2014-15, EYT2015-16, EYT2016-17, and
EYT2017-18 consisted of 643, 998, 983, 942, 829, 1,086, and 980
non-overlapping lines, respectively. Each trial year the breeding
program selects 1,092 advanced lines for second-year yield
testing, which is the source for the lines above. The 1,092 lines in
each year were divided into 39 experiments, each with 28 entries
and 2 checks in an alpha lattice design with 3 replications. All
EYT were phenotyped at the Norman E. Borlaug Experimental
Research Station (CENEB) in Ciudad Obregon, Mexico, under
multiple contrasting environments by modulating planting dates
and irrigation. All trials were sown in bed planting. The plot size
was 2.8 m× 1.6 m (2 beds of 0.8 m with 3 rows each).

The multiple environments included optimum irrigated (I)
and three stress environments [mild drought stress (MD), severe
drought (SD) stress, and heat stress (HS)]. In environment I,
five irrigations were applied (at germination and 40, 70, 95, and
115 days after the first irrigation) with a total water supply of
maximum 500 mm distributed through five irrigation events
across the crop cycle, while in MD environment two irrigations
were applied, one at germination and the other after 50 days
(using furrow irrigation; the total water supply was 280 mm). In
SD environment, drip irrigation was applied at germination and
after 50 days with a total water supply of 180 mm available for the
plant. In HS environment, planting was delayed by 3 months (end
of February) and around 500 mm of water was applied across the
crop cycle through five to six irrigation events. Ciudad Obregon

Frontiers in Genetics | www.frontiersin.org 2 December 2020 | Volume 11 | Article 589490

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-589490 December 1, 2020 Time: 12:21 # 3

Sehgal et al. Stable Genomic Regions for Grain Yield

station has little to no rainfall during the crop growing season
(November to April). It has a desert-type climate with rains
concentrated during the months of August to October (Mondal
et al., 2020). However, if there is rain, the irrigation in stressed
environments is adjusted to maintain the amounts. Trials were
phenotyped for GY, days to heading (DH), and plant height (PH)
in each year, as detailed in Sehgal et al. (2020).

The phenotypic data of GY collected for each genotype were
adjusted for block effects within each of three replications per
trial (incomplete blocks considered as random effects) using the
PROC MIXED function in SAS 9. For DH and PH, the adjusted
means were calculated by the formula Y = (Yij - Yi) + Yall trials,
where Yij is the value of the entry for a trial, Yi is the mean
of checks of that trial, and Yall trials is the mean of checks of all
trials. The summary statistics function in GenStat 14th ed. was
used to obtain the minimum and maximum values of each trait
in each trial. ANOVA was performed using a customized script
in R version 3.4 (Supplementary Datasheet 1).

Genomic DNA Extraction and
Genotyping
Genomic DNA was extracted from dried leaves collected from
five plants per line using a modified CTAB method described
in CIMMYT laboratory protocols (Dreisigacker et al., 2016).
All lines were genotyped using GBS Kansas State University
using 192-plexing on Illumina HiSeq2000. SNP calling was
done using TASSEL 5 pipeline as described in Rutkoski et al.
(2016). To obtain physical positions of SNPs, sequence reads of
the SNPs were blasted to the wheat reference genome RefSeq
V.1.1 (IWGSC, 2018).

Population Structure, Linkage
Disequilibrium (LD), and Haplotype
Blocks
The population structure was assessed through principal
component analysis (PCA) using the rgl package in R (Adler
and Murdoch, 2013). GAPIT version 2.0 was used to obtain
correlation estimates of the frequency of the squared allele of
LD (r2) for all pairwise comparisons. LD decay was visualized
by plotting pairwise r2 values against the physical distance (Mb)
for the whole genome, separately for each EYT, and using
combined data from the 6,333 lines. A smooth line was fit to the
data using second-degree, locally weighted scatterplot smoothing
(Breseghello and Sorrells, 2006). For the LOESS estimation of
LD decay, genetic distance was estimated as the point where the
LOESS curve first crosses the baseline r2 of 0.1.

To avoid obtaining different haplotype blocks in each of the
seven EYTs due to different minor allele frequencies (MAF) of
the markers, the GBS data of all seven EYTs were considered
together to generate the haplotype blocks. The MAF threshold
was set to 0.15 instead of the usual 0.05 so that a 0.05 MAF
could be achieved in each EYT. The haplotype blocks were
constructed in R, based on the confidence interval algorithm
developed by Gabriel et al. (2002) and detailed in Sehgal et al.
(2019, 2020). Briefly, D’ 95% confidence intervals between SNPs
was calculated, and comparisons were divided into categories

of “strong LD,” “inconclusive,” or “strong recombination.” If
95% of the comparisons in one block were in “strong LD,” a
haplotype block was created. The minimum lower and upper
confidence interval values were set to 0.6 and 0.95, respectively.
The constructed blocks transformed into multiallelic markers,
considering the allelic combinations within each block to be
independent alleles.

Haplotype-Based GWAS
GWAS was performed in each individual EYT using a mixed
linear model (MLM) using Plink version 1.07 (Purcell et al.,
2007) with PCA as fixed variate and kinship as random. PCA
was conducted using the rgl package in R, and the appropriate
number of principal components to be used in MLM was
assessed based on Bayesian information criteria (Schwarz, 1978).
The kinship matrix was calculated by the VanRaden algorithm
(VanRaden, 2008).

A haplotype was considered stable for a testing environment
when it showed P value < 10−4 in one EYT and at least
P < 10−3 across three or more EYTs (Sehgal et al., 2020).
Similarly, a haplotype was categorized as stable for multiple
testing environments when it showed significance of at least
P < 10−3 in two or more testing environments across two or
more EYTs. The allelic effect of the associated haplotypes was
estimated as the difference between the mean value of lines with
and without favorable allele and was presented as box plots.

Epistatic Interactions
A linear regression model was used to calculate P values
and percentage variation as R2 for two- and three-locus
haplotype interactions using an in-house designed script in
R (Supplementary Datasheet 1). A significant threshold of
P < 0.0001 was used to declare significant interactions.

RESULTS

Phenotypic Trait Variation in EYT Under
Contrasting Environments
Phenotypic traits revealed a wide distribution in all EYTs in
all environments (Supplementary Figures 1a,b). GY showed
significant (P < 0.001) and positive correlations with PH in 26
EYTs × environment combinations, while the correlations with
DH were positive in irrigated environments and negative in stress
environments (MD, SD, and HS) across years.

Mean GY across all trials and environments ranged from
1622 kg/ha (EYT2015-16 in SD) to 8622 kg/ha (EYT2011-
12 in B-5IR) (Supplementary Table 2). In general, SD and
HS were the least yielding environments, except in EYT2011-
12 and EYT2015-16 (Figure 1). ANOVA showed highly
significant effects (P < 0.001) of genotypes, environments,
and genotype × environment interactions for GY in the
seven EYTs (Supplementary Table 2). Broad sense heritability
estimates ranged from 0.31 (EYT2015-16) to 0.63 (EYT2011-12)
(Supplementary Table 2).
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FIGURE 1 | Grain yield variation under different environments in EYT2011-12 (A), EYT2012-13 (B), EYT2013-14 (C), EYT2014-15 (D), EYT2015-16 (E),
EYT2016-17 (F), and EYT2017-18 (G).

Haplotype Blocks; Genome-Wide
Coverage and Distribution
An initial set of 50,058 SNP markers was obtained on 6,461
lines. Of these, a filtered set of 14,027 SNP with maximum 30%
missing data and a minor allele frequency (MAF) ≥ 0.15 was
extracted without imputation. Lines showing more than 60%
missing data were also culled with 6,333 genotypes remaining for
further analysis.

A total of 519 haplotype blocks were established across the
genomes. The haplotype blocks covered a total genome length
of 14,036 Mb with 4,925, 5,170, and 3,941 Mb covered in the
A, B, and D genomes, respectively (Table 1). The blocks were
distributed according to the length of each chromosome, and the
density of the markers with the highest numbers were obtained
in A and B genomes (231 and 239, respectively) and the lowest
in the D genome (49). The highest number was obtained on
chromosomes 7A (51), followed by chromosomes 2B and 7B
(46 each), whereas the lowest number of haplotype blocks was
obtained on chromosome 4D (1).

Population Structure, Linkage
Disequilibrium Decay, and Significant
Associations
All seven EYTs showed a moderate structure with two to three
subgroups deciphered by PCA (Supplementary Figure 2). Whole
genome linkage disequilibrium (LD) decay in the individual
EYT and combined EYTs is shown in Supplementary Figure 3,
which revealed that LD decay varied from 1.8 Mb in EYT2014-
15 to 2.3 Mb in EYT2016-17, with an average LD decay of
approximately 2 Mb.

For environment I, seven stable associations were identified
across EYTs (Supplementary Table 3) on chromosomes 2A (1),

3A (1), 4A (1), 4B (1), 5B (1), and 6B (2). Of these, favorable alleles
of two associated blocks on chromosomes 3A and 4B showed
GY advantage of >100 kg/ha across EYTs. For haplotype block
HB3A.1, the favorable haplotype ACGA resulted in GY increase
of 215 to 525 kg/ha in three EYTs (Figure 2). Similarly, the
favorable haplotype TC in haplotype block HB4B.12 resulted in
an increase of 168 to 429 kg/ha in GY across EYTs. The HB5B.29
linked to flowering time gene Vrn-B1 had two favorable alleles
(AC and GT) and showed allelic effects of 47 to 568 kg/ha across
EYTs (Supplementary Table 3).

In environment MD, four haplotype blocks on chromosomes
1A (1), 1B (1), 2A (1), and 3B (1) showed association with
GY. Of these, HB1A.13 showed GY advantage of >100 kg/ha
across, while HB1B.19 showed effects up to 553 kg/ha in
EYT2011-12 (Supplementary Table 3). In the SD environment,
10 blocks showed association with GY. These were identified on
chromosomes 1A (1), 1B (1), 4A (2), 4D (1), 5B (2), 6A (1), and
7B (2). Of these, three associations on chromosomes 1B, 4D, and
6A showed the largest allele effects. For HB1B.3, two favorable
alleles (GG and AG) resulted in a 126–359 kg/ha increase in
GY across EYTs, while favorable alleles at HB4D.1 (TCTG) and
HB6A.6 (GA) resulted in an increase of 151–362 kg/ha and 203–
248 kg/ha, respectively (Figure 2). The block HB5B.29 linked to
the major vernalization gene Vrn-B1 showed association with GY
across five EYTs, with the favorable allele resulting in an increase
of 263–430 kg/ha (Supplementary Table 3). Since both I and
SD environments showed significant association with this block,
both phenological traits (DH and PH) were used as covariates
in GWAS to test the significance of this locus. However, when
DH and PH were used as covariates, HB5B.29 locus either
disappeared or became less significant.

For HS, 15 haplotype blocks were associated on chromosomes
2B (1), 3A (1), 3B (2), 4A (1), 5B (1), 6A (1), 6B (2), 7A (5),
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TABLE 1 | Summary of haplotype blocks (HB) in 6,333 lines of seven elite yield trials.

Chromosome No. of SNPs Physical position (bp)- First and
Last SNP across chromosome*

Number of HB Total number of
alleles

Number of SNPs in an
HB (min–max)

1A 585 114,5442–593,790,090 32 85 2–5

1B 804 143,0915–688,983,196 23 60 2–5

1D 444 78,777–492,641,722 8 21 2–5

2A 784 138,1013–779,674,593 29 82 2–6

2B 1,042 19,097–800,780,364 46 128 2–8

2D 550 152,5890–651,419,179 13 34 2–6

3A 731 711,587–750,500,626 31 86 2–7

3B 903 198,860–829,535,127 33 92 2–6

3D 576 344,069–615,458,508 6 16 2–6

4A 639 881,423–744,304,645 29 79 2–5

4B 423 622,455–672,953,537 12 30 2–6

4D 171 739,257–509,849,696 1 3 4

5A 669 217,5212–709,755,448 29 72 2–6

5B 793 16,637–712,600,907 41 103 2–6

5D 337 93,2817–565,975,773 5 13 2–4

6A 609 684,328–617,838,620 30 81 2–5

6B 880 195,536–720,519,123 38 100 2–6

6D 379 687,775–473,287,249 10 25 2–6

7A 1,055 289,461–736,572,283 51 143 2–6

7B 899 259,901–747,616,899 46 131 2–6

7D 754 114,2643–638,541,382 6 16 2–5

*Physical positions of the first and the last SNP on individual chromosomes.

FIGURE 2 | Allelic effects of haplotype blocks associated with GY under I (A–C), MD (D–F), SD (G–I), and HS (J–L) environments. The favorable haplotype in each
part of the figure is shown as underscored. The parts (A–L) show allelic effects of HB3A.1, HB2A.29, HB 4D.1, and HB7A.2, respectively.

and 7B (1). The associations on chromosomes 2B (HB2B.12) and
4A (HB4A.24) and all associations on chromosome 7A (HB7A.2,
HB7A.3, HB7A.20, HB7A.28, and HB7A.32) showed large allelic
effects compared to other blocks (Supplementary Table 3).

Thirty stable haplotypes that are favorable in multiple
environments and across EYTs were identified (Table 2
and Supplementary Table 4), including seven hotspots on
chromosomes 1A, 1B, 2B, 4A, 5B, 6B, and 7B, where multiple
haplotype blocks on same chromosome were associated with GY.
The associations on chromosomes 2B (HB2B.10), 3B (HB3B.2),
4B (HB4B.12), 5D (HB5D.5), and 7B (HB7B.18) resulted in a GY

increase of 177 to 357, 148 to 449, 168 to 429, 116 to 496, and
122 to 470 kg/ha in different environments and EYT, respectively
(Supplementary Table 4). Figure 3 shows all stable haplotypes
on chromosome maps, and Figure 4 shows the frequencies of
the favorable haplotypes of each of the 30 associated blocks in all
seven EYTs. The frequencies of 23 haplotypes varied from 11 to
up to 78% across EYTs, while the frequency of seven haplotypes
(HB1B.20, HB2B.10, HB3B.2, HB4A.20, HB4A.27, HB5A.15, and
HB6B.38) remained low across EYTs (Supplementary Table 5).
Potential candidate genes underlying 28 out of 30 haplotype
blocks were identified and are listed in Supplementary Table 6.
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TABLE 2 | Thirty stable associations identified for grain yield considering all elite yield trials and testing environments (I: Irrigated; MD: Moderate drought; SD: Severe Drought; HS: Heat Stress) together.

Haplotype block Markers in blocks Chromosome Interval; First-Last
SNP (bp)

Elite yield trials; Testing environment

HB1A.12 S1A_494392059, S1A_494393037 1A 978 EYT2011-12; DS, EYT2012-13; HS, EYT2013-14; MD, EYT2013-14; SD, EYT2016-17;
MD

HB1A.13 S1A_497201550, S1A_497201682 1A 132 EYT2012-13; MD, EYT2013-14; MD, EYT2013-14; SD, EYT2016-17; MD,
EYT2016-17; HS

HB1A.14 S1A_499864157, S1A_499864420, S1A_499864432,
S1A_500074551

1A 210394 EYT2011-12; MD, EYT2012-13; HS, EYT2015-16; MD, EYT2016-17; MD,
EYT2016-17; HS

HB1B.3 S1B_18569448, S1B_18570787 1B 1339 EYT2011-12; I, EYT2013-14; SD, EYT2014-15; MD, EYT2014-15; HS, EYT2015-16;
SD, EYT2017-18; SD

HB1B.19 S1B_639415604, S1B_639415692, S1B_639426265 1B 10661 EYT2011-12; MD, EYT2012-13; HS, EYT2013-14; MD, EYT2014-15; I, EYT2014-15;
MD, EYT2014-15; HS, EYT2015-16; MD

HB1B.20 S1B_642616640, S1B_642616658 1B 18 EYT2014-15; SD, EYT2016-17; MD, EYT2016-17; HS, EYT2017-18; SD

HB2B.10 S2B_24883552, S2B_24887574, S2B_24899507,
S2B_24899536, S2B_24899572

2B 16020 EYT2012-13; HS, EYT2016-17; I, EYT2017-18; MD, EYT2017-18; HS

HB2B.15 S2B_75832544, S2B_75848057 2B 15513 EYT2012-13; DS, EYT2012-13; HS, EYT2015-16; DS, EYT2016-17; HS

HB2B.42 S2B_784544719, S2B_784774250, S2B_784905791,
S2B_784905811

2B 361092 EYT2011-12; MD, EYT2011-12; HS, EYT2012-13; I, EYT2014-15; SD, EYT2015-16;
SD

HB3B.2 S3B_7240747, S3B_7240753 3B 6 EYT2011-12; MD, EYT2011-12; HS, EYT2012-13; SD, EYT2017-18; HS

HB3B.23 S3B_758391015, S3B_758438223, S3B_758464620,
S3B_758612003, S3B_758612056, S3B_758613386

3B 222371 EYT2011-12; MD, EYT2011-12; HS, EYT2013-14; MD, EYT2016-17; I, EYT2016-17;
SD, EYT2017-18; HS

HB4A.20 S4A_713064971, S4A_713506269, S4A_713517340,
S4A_713522176

4A 457205 EYT2011-12; SD, EYT2013-14; I, EYT2013-14; SD, EYT2014-15; HS, EYT2017-18;
SD

HB4A.25 S4A_721406670, S4A_721406696, S4A_721826603,
S4A_721826636

4A 419966 EYT2012-13; MD, EYT2013-14; SD, EYT2015-16; I, EYT2015-16; MD

HB4A.27 S4A_730188545, S4A_730188899 4A 354 EYT2011-12; SD, EYT2012-13; SD, EYT2012-13; HS, EYT2014-15; I, EYT2014-15;
MD

HB4B.8 S4B_644330895, S4B_644330917 4B 22 EYT2011-12; I, EYT2012-13; SD, EYT2012-13; HS, EYT2013-14; I, EYT2013-14; MD,
EYT2013-14; SD, EYT2016-17; HS

HB4B.12 S4B_663621978, S4B_663622013 4B 35 EYT2013-14; I, EYT2014-15; I, EYT2014-15; SD, EYT2016-17; I

HB5A.15 S5A_548234618, S5A_548234636, S5A_548387200,
S5A_548422588

5A 187970 EYT2012-13; HS, EYT2014-15; MD, EYT2016-17; I, EYT2017-18; I

HB5B.3 S5B_24292046, S5B_24537970, S5B_24648800,
S5B_24677091

5B 385045 EYT2011-12; HS, EYT2012-13; I, EYT2013-14; HS, EYT2017-18; MD

HB5B.6 S5B_47584429, S5B_47592949 5B 8520 EYT2011-12; HS, EYT2012-13; SD, EYT2012-13; HS, EYT2013-14; SD, EYT2014-15;
SD

HB5B.21 S5B_513712393, S5B_513713184 5B 791 EYT2011-12; SD, EYT2012-13; MD, EYT2014-15; I, EYT2015-16; HS

HB5D.5 S5D_550192169, S5D_550192174 5B 5 EYT2012-13; HS, EYT2014-15; I, EYT2016-17; I, EYT2016-17; MD
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;I We constructed heat maps for all seven EYTs to visualize
the series of favorable haplotypes accumulated in individual
genotypes. Figures 5, 6 show heat maps of selected lines in
EYT2015-16 displaying having none to maximum number of
favorable haplotypes under HS environment and across all
environments and EYTs, respectively (15 and 30 haplotype
blocks). Heat maps shown here revealed that the maximum
number of favorable haplotypes accumulated in lines from
EYT2015-16 were 11 and 23 from the total 15 and 30 haplotypes
identified under HS environment, and across environments and
EYTs, respectively. We further estimated the additive effects of
the favorable haplotypes on GY for (a) the environment-specific
haplotypes and (b) all 30 stable multi-environmental haplotypes.
The trend showed that with an increasing number of haplotypes,
GY increases in all EYTs in all environments. Figure 7 shows
the additive effects with an increasing number of haplotypes on
GY in the two stress environments, SD and HS (Figures 7A,B)
and across all environments (Figure 7C). The increase in GY
ranged from 2.5 to 14.1% and 4.3 to 17.7% across EYTs in SD
and HS environments, respectively (Figures 7A,B). When stable
associations from all environments were tested, GY increase was
on average 8% (Figure 7C).

Epistatic Interactions
Except in MD environment, epistatic interactions were observed
in all environments among associated loci (Supplementary
Figures 4–6). Most importantly, in both I and SD environments,
Vrn-B1-linked locus HB5B.29 contributed significantly to
epistatic interactions. In environment I, HB5B.29 interacted with
HB4B.12 and HB6B.6 more frequently than others, while in
environment SD, interactions between HB5B.29 and HB6A.6
were frequent. In environment HS, four associated haplotype
blocks from chromosome 7A (HB7A.2, HB7A.3, HB7A.28,
and HB7A.32) were mainly involved in interactions among
themselves and with other loci. The percent variation explained
ranged from 1.5 to 7.5%, 3.6 to 12.9%, and 3.4 to 10.9% in I, SD,
and HS environments, respectively.

Genome-wide epistatic interactions were observed in all four
environments (Supplementary Figures 7–10). In environments
SD and HS, interactions were observed in all EYTs. The
percent variation explained ranged from 3.5 to 21.1%, 3.7 to
14.7%, 3.5 to 20.6%, and 4.4 to 23.1% in I, MD, SD, and HS
environments, respectively.

DISCUSSION

Although much research exploring the genetic architecture of
yield and yield-associated traits has been reported in wheat using
GWAS, the identification of more stable key determinants of GY
remain relatively unexplored, largely due to the complexity of
the trait and small panel sizes used in previous studies leading to
the so-called “large p small n” or “short-fat data” problem (Diao
and Vidyashankar, 2013). Additionally, use of bi-allelic SNPs
accentuated “missing heritability” issues and therefore reported
markers had limited impact in breeding. In the present study, we
performed haplotype-based GWAS using 519 haplotype blocks
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FIGURE 3 | Environment-specific stable haplotypes and haplotypes identified to be significant across multiple environments and EYTs. Green, blue, brown, and red
colors show environment-specific associations with GY under I, MD, SD, and HS environments, respectively. Purple color shows stable (S) associations significant
across multiple environments and EYTS, while turquoise, pink, yellow, orange, and gray show associations that were identified under two categories; turquoise (MD,
S), pink (HS, S), yellow (I, S), orange (SD, HS), and gray (SD, S).

FIGURE 4 | Frequency of stable haplotypes over 7 years (EYT2011-12 to EYT2017-18).

on seven large cohorts of advanced CIMMYT spring bread
wheat lines consisting of 6,333 genotypes overall. In addition,
epistatic interactions among the genome-wide haplotypes were
investigated, an important aspect that has not yet been fully
explored in wheat GWAS in order to address the missing
heritability (Zuk et al., 2014; Sehgal and Dreisigacker, 2019).

Three approaches are generally used to construct haplotype
blocks: (1) user-defined length, (2) sliding-window, and (3) LD.
The user-defined fixed length of haplotype blocks (2–15 bp)

is the easiest approach; however, generated haplotypes do not
reflect genetic principles such as recombination or LD (Gabriel
et al., 2002) or a shared evolutionary history (Templeton et al.,
2005). The sliding-window approach is the most widely used for
building haplotypes in GWAS (Braz et al., 2019). This approach
is easy to use and handle; however, when adjacent SNPs are
in strong LD, it provides redundant information, making it
no more informative than SNPs. Similarly, when LD patterns
vary over large genomic regions, it is difficult to determine the
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FIGURE 5 | Heat map showing contrasting lines from EYT2015-16 showing all 15 haplotype blocks identified in HS environment. Each yellow vertical line represents
a genotype, and each green vertical green rectangle represents a favorable haplotype of an associated block from a chromosome. The name of the haplotype block
is shown on the left.

FIGURE 6 | Heat map showing contrasting lines from EYT2015-16 showing favorable alleles of all 30 haplotype blocks identified to be stable across environments
and EYTs. Each yellow vertical line represents a genotype. Each dark green rectangle represents the first favorable haplotype of an associated block from a
chromosome while light green color represents the second favorable haplotypes identified in a few haplotype blocks. The name of the haplotype block is shown on
the left.

appropriate window size for a genome-wide scan. The LD-based
approach is the most advantageous because it focuses directly on
the detection of historical recombination in the test population
(Qian et al., 2017).

We constructed haplotypes using an LD-based approach
and conducted a haplotype-based GWAS and epistatic scan to
dissect the genetic architecture of GY under contrasting sets

of environments and across seven EYTs. The total number of
genome-wide haplotype blocks obtained was in a similar range as
reported in the recent studies using same marker platform (Singh
et al., 2018; Ledesma-Ramírez et al., 2019; Shokat et al., 2020).
Li et al. (2019) used a much higher density of markers from two
platforms (wheat 90K and 660K Illumina SNP arrays) and thus
were able to obtain much higher numbers of haplotype blocks
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FIGURE 7 | Average grain yield per trial observed by simulating numbers of favorable haplotypes identified in SD (A) and HS (B) environments and all
environments (C).

per chromosome and across the genome. However, panel size
remained small (166 lines) in their study. The average LD decay
in the seven EYTs in the present study was observed at ∼2 Mb.
Comparison of LD decay with previous studies in wheat in which
physical distance was used for estimating LD decay (Liu et al.,
2017; Ladejobi et al., 2019; Li et al., 2019) revealed a faster decay in
the CIMMYT germplasm (2 Mb in CIMMYT germplasm vs. 4–
8 Mb in the above-mentioned studies). This suggests high levels
of genetic diversity in the current CIMMYT breeding germplasm,
which consists of lines selected from a wide range of genetic
backgrounds. The higher diversity of CIMMYT germplasm vis-
à-vis other wheat germplasm sets has also been observed in
previous studies (Warburton et al., 2006; Dreisigacker et al., 2008;
Sehgal et al., 2015).

We compared the stable haplotypes identified in the our study
with GWAS peaks for GY and yield-related traits identified in
various other panels using the GrainGenes genome browser1.
Additionally, we investigated overlaps of the stable haplotypes
against the meta-QTL (MQTL) reported by Acuña-Galindo et al.
(2015) associated with adaptation to drought and heat stress
(Supplementary Table 3). Furthermore, we compared our results
with those reported by Li et al. (2019), who located 12 stable
QTL for GY on the wheat reference genome using haplotype-
based GWAS (Supplementary Table 4). Of the 7, 4, 10, and 15
environment-specific associations identified in the I, MD, SD, and
HS environments, respectively, the four associations identified
in the MD environment corresponded to MQTL 2, 6, 13, and
27. One (HB5.6) and three (HB5B.16, HB7A.20, HB7A.32)
haplotype blocks identified in the SD and HS environments,
respectively, corresponded to MQTL 44, 58, and 59 of Acuña-
Galindo et al. (2015). Further, two (HB3A.1 and HB6B.7),
three (HB4A.20, HB5B.6, and HB6A.6), and two (HB3B.25
and HB7A.3) haplotype blocks identified in the I, SD, and HS
environments, respectively, overlapped with known GY QTL
in GrainGenes (Supplementary Table 3). Juliana et al. (2019)
used single marker–based GWAS on a smaller subset (3,485

1https://wheat.pw.usda.gov/GG3/genome_browser

lines) of the same EYT investigated here. The authors reported
QTL within 0.2–2.2 Mb of the stable haplotype blocks reported
on chromosome 3B (HB3B.25) in the HS environment and on
chromosome 4A (HB4A.23 and HB4A.24) in the I, SD, and
HS environments. Other QTL reported by Juliana et al. (2019)
were on the same chromosomes as the present study; however,
these were 58–510 Mb apart. For instance, haplotype blocks
identified on chromosomes 5B (HB 5B.21) and 6B (HB 6B.20)
were 58 and 146 Mb apart, whereas the four haplotype blocks
identified on chromosome 7B (HB7B.11, HB7B.18, HB7B.21, and
HB7B.45) were 98, 353, 382, and 510 Mb apart, respectively. Most
significantly in our study, a haplotype block hotspot region was
identified on chromosome 7A for heat tolerance, which was not
detected in previous studies.

Of the 30 stable haplotype blocks identified in multiple
environments and across EYTs, six corresponded with GWAS
peaks identified in GrainGenes, while eight blocks corresponded
to five MQTL (MQTL2 covered by HB1A.12, HB1A.13, and
HB1A.14; MQTL6 covered by HB1B.19 and 1B.20; MQTL27
covered by HB3B.2; MQTL44 covered by HB5B.21; and MQTL51
covered by HB6B.6) of Acuña-Galindo et al. (2015). When
comparisons were made with the 12 stable QTL reported by Li
et al. (2019) for GY and yield components, only two were found
in close vicinity from 5 to 20 Mb (Supplementary Table 4).

The frequencies of the favorable haplotypes of the 30
stable multi-environmental haplotypes blocks revealed that eight
favorable haplotypes in blocks HB1A.12, HB1B.3, HB1B.19,
HB2B.42, HB4B.8, HB5B.3, HB6B.20, and HB7B.18 decreased
slightly by 10–18% over the 7 years, and only one favorable
haplotype in the block HB7B.21 showed a sharp decrease of 36%
in the seventh year (EYT2017-18). Eleven favorable haplotypes
were maintained in moderate (30–50%) frequencies. Intriguingly,
favorable haplotype in the block HB5D.5, with an allelic effect
of +116–496 kg/ha across environments, was maintained at
the highest frequency (up to 77%) in all seven EYTs, whereas
the frequencies of the seven favorable haplotypes in blocks
HB1B.20, HB2B.10, HB3B.2, HB4A.20, HB4A.27, HB5A.15,
and HB6B.38 remained consistently low (2–15%) across EYTs.
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These low-frequency haplotypes were significantly associated
with GY in three or all four environments and showed moderate
to high allelic effects varying from +85–233 kg/ha to +148–
449 kg/ha across EYTs and hence are important targets for
future validation.

Despite the awareness that epistasis contributes significantly
to the genetic architecture of most quantitative traits, epistatic
interactions are usually not explored in GWAS studies (Sehgal
et al., 2017, 2020; Assefa et al., 2019). The most important
reason is that it is time consuming and computationally
exhaustive to estimate genome-wide interactions in large
datasets. Further, unlike in bi-parental populations, ready-to-
use models are not available to estimate marker interaction
effects along with main additive effects in GWAS panels
(Rio et al., 2020). Additionally, the lack of sufficiently large
experimental datasets has been a limiting factor to obtain
reasonable statistical power when screening the genome for
multi-locus epistasis. The size of our GWAS panel (6,333 lines)
in the present study, along with the comprehensive phenotypic
datasets generated in multiple environments (irrigated and
stress environments), in combination with the fact that a large
single SNP dataset was reduced to a set with fewer haplotype
blocks, made the study of multi-locus epistatic interactions
feasible with reasonable statistical power. We observed significant
interactions among stable haplotypes. Most importantly, the
haplotype block HB5B.29 linked to the vernalization locus Vrn-
B1 seemed to contribute significantly to interactions in both
irrigated and drought-stressed environments, explaining up to
12.9% additional variation (Supplementary Figures 4, 5). This
reinforces that major flowering genes can contribute to yield
advantage in both irrigated and drought-stressed environments
by both additive and epistatic effects (Cockram et al., 2007; Sehgal
et al., 2017; He et al., 2019).

Likewise, significant epistatic interactions were obtained
among genome-wide haplotypes for GY, explaining a higher
percentage of variation in severely stressed environments (SD and
HS) compared to the I environment in all EYTs (Supplementary
Figures 9, 10). Our results are in contrast to Reif et al. (2011), who
reported that main effects dominated the genetic architecture of
GY and epistatic interactions contributed only little. We attribute
these discrepancies to a narrower panel of elite breeding lines
(455 lines, derivatives from a few parents) used in Reif et al.
(2011) that probably did not retain enough power to reveal
epistasis among loci. Further, Reif et al. (2011) studied GY only
in irrigated environments whereas in the current study multiple
environments were analyzed.

To be able to utilize stable QTL in a breeding program,
we constructed heat maps for all environments in all EYTs.
This approach led us to recognize different sets of lines
with contrasting haplotype composition. CIMMYT and other
breeding programs start to routinely genotype all lines that
enter yield trials. Therefore, lines with higher numbers of
favorable haplotypes and complementary haplotypes can be
identified and re-incorporated as parents in breeding programs
to maintain and further accumulate the favorable haplotypes in

subsequent breeding cycles. The results can also be exploited in
multiple-trait integration or line-conversion pipelines by using
the lines carrying high numbers of favorable haplotypes as elite
parents in crosses with donor parents selected for additional
target traits (e.g., disease resistance) to be able to reveal a
comprehensive performance package. The latest studies have
shown that integrating haplotypes and epistatic interactions as
fixed effects in genome-wide prediction models can improve
prediction abilities for GY by about 10% (Spindel et al., 2016;
Sehgal et al., 2020). This approach that attempts to boost
prediction abilities with the contribution of GWAS peaks has
yet to be further tested. Further, Mérida-García et al. (2020)
reported candidate genes underpinning metaQTL reported by
Acuña-Galindo et al. (2015) on chromosomes 3B and 4A.
The candidate genes reported here (Supplementary Table 6)
with proven roles in abiotic stress tolerance in model crops
or having expression evidences in wheat under various stress
conditions expand opportunities for future validation studies
(Mérida-García et al., 2020).
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