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Prostate cancer (PCa) is a common lethal malignancy in men. RNA binding proteins
(RBPs) have been proven to regulate the biological processes of various tumors, but
their roles in PCa remain less defined. In the present study, we used bioinformatics
analysis to identify RBP genes with prognostic and diagnostic values. A total of 59
differentially expressed RBPs in PCa were obtained, comprising 28 upregulated and
31 downregulated RBP genes, which may play important roles in PCa. Functional
enrichment analyses showed that these RBPs were mainly involved in mRNA
processing, RNA splicing, and regulation of RNA splicing. Additionally, we identified nine
RBP genes (EXO1, PABPC1L, REXO2, MBNL2, MSI1, CTU1, MAEL, YBX2, and ESRP2)
and their prognostic values by a protein—protein interaction network and Cox regression
analyses. The expression of these nine RBPs was validated using immunohistochemical
staining between the tumor and normal samples. Further, the associations between
the expression of these nine RBPs and pathological T staging, Gleason score, and
lymph node metastasis were evaluated. Moreover, these nine RBP genes showed good
diagnostic values and could categorize the PCa patients into two clusters with different
malignant phenotypes. Finally, we constructed a prognostic model based on these nine
RBP genes and validated them using three external datasets. The model showed good
efficiency in predicting patient survival and was independent of other clinical factors.
Therefore, our model could be used as a supplement for clinical factors to predict patient
prognosis and thereby improve patient survival.

Keywords: prostate cancer, RNA binding protein, bioinformatics, biomarker, prognostic model

Abbreviations: ADT, androgen deprivation therapy; AR, androgen receptor; AUC, area under the curve; CAN, copy number
alteration; CRPC, castration-resistant prostate cancer; GEO, Gene Expression Omnibus; GO, gene ontology; GSEA, Gene
Set Enrichment Analysis; HPA, The Human Protein Atlas; KEGG, Kyoto Encyclopedia of Genes and Genomes; MCODE,
Molecular Complex Detection; NES, normalized enrichment score; PCA, principal component analysis; PCa, prostate
cancer; PPI, protein-protein interaction; PSA, prostate-specific antigen; RBP, RNA binding protein; ROC, receiver operating
characteristic; TCGA, The Cancer Genome Atlas.
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INTRODUCTION

Prostate cancer (PCa), one of the most common and lethal
neoplasms in the urologic system, results in approximately
260,000 annual deaths in men worldwide (Siegel et al., 2020).
For the past few decades, the incidence rate of PCa has
been constantly rising in developing countries and posing a
great burden on public health systems (Zhu et al., 2015). At
present, the main monitoring indicators of PCa include serum
prostate-specific antigen (PSA) levels and pathological stage
identification. Therefore, new biomarkers are needed to aid
in the diagnosis and timely treatment of PCa. With advances
in medical research, the disease-free survival of PCa patients
has improved. However, approximately 30% of PCa patients
experience recurrence and metastasis after undergoing surgical
resection (Tomita et al., 2020). While androgen deprivation
therapy is an effective therapeutic method employed in the
initial stage of treatment, many PCa patients eventually develop
aggressive castration-resistant PCa (CRPC; Graham et al., 2008;
Wong et al, 2014). Therefore, the identification of valuable
molecular markers and construction of a more effective and
specific stratification model are of great significance to guide
clinical treatment and improve the prognosis and diagnosis
of PCa patients.

Recently, the functions of RNA-binding proteins (RBPs)
have been widely studied. An RBP interacts with different
classes of target RNA to form ribonucleoprotein complexes
and regulates gene expression through RNA processing at the
posttranscriptional level (Gerstberger et al., 2014a). The RBPs are
abundantly expressed in cells and are involved in nearly every
aspect of biological processes, including RNA stability, splicing,
modification, transport, location, and translation (Gerstberger
et al., 2014b; Perron et al., 2018). Hence, RBPs are critical for
the stabilization and development of cells and organisms. The
dysregulation of RBPs leads to an aberrant gene expression
in cells, which may ultimately result in a disease. Moreover,
previous studies have indicated that RBPs play a significant
role in the initiation and progression of PCa; for instance,
TDRDI, an ERG target gene, can promote the occurrence and
development of PCa (Xiao et al., 2016), and PCBP1 could increase
the tumorigenicity and metastasis of PCa by inhibiting the
expression of mitogen-activated protein kinase 1 (Zhang et al,,
2018). Further, multiple RBPs can regulate the androgen receptor
(AR) pathway to influence PCa neoplasia and progression; for
instance, HNRNPL is aberrantly expressed in PCa and regulates
the alternative splicing of many types of RNA, including those
encoding the AR, to influence the progression of PCa (Fei
et al,, 2017). In addition, PSF could induce the dysregulation
of various spliceosome genes to promote the amplification and
splicing of the AR in advanced PCa (Takayama et al, 2017).
Further, Samé68 could enhance the expression of the AR and
modulate the transcription function of the AR splice variant
AR-V7, which drives the progression of CRPC (Stockley et al.,
2015). Finally, the expression of Musashi2 is positively correlated
with tumor grades and drives PCa progression by binding to the
3’-untranslated region to stabilize the AR (Zhao et al., 2020).
However, the molecular functions of most RBPs involved in the

tumorigenesis and progression of PCa have not been thoroughly
studied. Therefore, a systematic study of the RBPs will not
only help in discovering their potential values in PCa but also
contribute in identifying specific and effective diagnostic and
prognostic biomarkers.

Hence, we used comprehensive bioinformatic methods
to identify potential biomarkers for PCa patients and
constructed an RBP-based risk score model to stratify the
patients. We acquired the relevant datasets and clinical
information from public databases to screen for the RBP
genes. Then, we investigated their prognostic impact in PCa
through functional enrichment analyses, protein—protein
interaction (PPI) networks, and Cox regression analyses.
Finally, we validated our model in external datasets and
identified the association of the key RBPs with different
clinicopathological factors.

MATERIALS AND METHODS

Dataset Acquisition

We explored the pivotal roles and prognostic values of RBPs in
PCa using an integrated bioinformatics analysis. The flowchart
of this study is shown in Figure 1. The datasets were obtained
from The Cancer Genome Atlas (TCGA') and the Gene
Expression Omnibus (GEO?) database. For TCGA dataset, the
expression data and clinical information were downloaded using
UCSC Xena®. Further, the disease-free survival information
of the PCa patients was obtained from the cBio Cancer
Genomics Portal*. A total of 52 normal samples and 498 PCa
samples were obtained. Then, a differential expression analysis
was performed between the PCa and normal samples using
the “limma” package® of R with the following criteria: false
discovery rate (FDR) < 0.05 and [fold change| > 2. For the
expression data in TCGA dataset, the data were log2(x + 1)
transformed for normalization by the “RNA-Seq by Expectation-
Maximization” package®. To select genes with prognostic values
and establish a risk score model, PCa samples were screened
based on following criteria: (1) repeated tumor samples in the
same patient were removed, and (2) patients with unknown
disease-free survival status and follow-up information were
excluded. Finally, 491 PCa samples meeting the inclusion
criteria were included.

Next, the normalized microarray datasets, including
GSE54460, GSE70768, and GSE70769, were directly downloaded
from the GEO database. For the GSE54460 dataset, the
expression data were measured by fragments per kilobase per
million values. The GSE70768 and GSE70769 datasets were
produced using the Illumina HumanHT-12 V4.0 expression
BeadChip platform, and the probes were annotated using

Thttps://portal.gdc.cancer.gov/

Zhttps://www.ncbi.nlm.nih.gov/geo/

*https://xenabrowser.net/

*http://cbioportal.org
*http://www.bioconductor.org/packages/release/bioc/html/limma.html
Chttps://cran.r-project.org/web/packages/rsem/index.html
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FIGURE 1 | The flowchart of the present study design.

the corresponding “illuminaHumanv4.db” R package. The
data of duplicate genes were averaged. The expression data
in these two datasets were log2 transformed and quantile
normalized. The GSE54460 dataset included 90 PCa samples and
corresponding disease-free survival information. The GSE70768
and GSE70769 datasets included 111 and 92 PCa samples,
respectively. These three datasets were used to validate our
model. Finally, we obtained a list of RBPs from a previous
study (Gerstberger et al.,, 2014b) and included a total of 1,524
RBPs in our study.

Functional Enrichment Analyses

We performed Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) enrichment analyses of the
differentially expressed RBPs using the Database for Annotation,
Visualization and Integrated Discovery’. We identified enriched
terms for biological processes, cellular components, and
molecular functions; a P-value <0.05 was set as the cutoff
value. Moreover, a Gene Set Enrichment Analysis (GSEA) was
performed to ascertain the molecular functional mechanisms.
We selected the “h.all.v7.1.symbols.gmt” file as the reference
gene set file and set FDR < 0.25 and normalized P-value <0.05
as the threshold values.

“https://david.ncifcrf.gov/

Construction of a Protein—Protein
Interaction (PPI) Network and Screening

for the Key Modules

We submitted the differentially expressed RBP genes in
the Search Tool for the Retrieval of Interacting Genes
database (STRING)® to construct a PPI network and further
explore the potential molecular functions of these RBPs
in tumorigenesis and progression of PCa. Subsequently, we
extracted and visualized genes with an interaction score of
0.4 using Cytoscape v3.7.1 software’. Finally, we screened
the key modules from the PPI network with a k-core value
of 4 using the Molecular Complex Detection (MCODE)
plugin in Cytoscape.

Identification and Validation of the
Survival-Related RBPs

To identify survival-related RBP genes, we performed a
univariate Cox regression analysis for the differentially expressed
RBPs. Next, we used the least absolute shrinkage and selection
operator (lasso) Cox regression analysis (Tibshirani, 1997) to
screen the most significant prognostic RBPs of PCa using the

Shttps://string$-$db.org/
“http://cytoscape.org/
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“survival” and “glmnet” R package'®. The optimal values of
penalty parameters (lambda value) were determined by 10-fold
cross-validation. Then, the Kaplan-Meier curves were plotted
and log-rank tests were performed to verify the prognostic
values of these survival-related RBP genes. A P-value <0.05
was set as the cutoft value. We further validated the expression
levels of these RBP genes in the Human Protein Atlas (HPA)
database (Uhlen et al, 2017). Then, the receiver operating
characteristic (ROC) curves and the areas under the curves
(AUCs) were calculated using the “pROC” package' in R to
evaluate the diagnostic efficiency of these RBPs (Sing et al,
2005). Furthermore, we utilized the segmentation analysis
and “Genomic Identification of Significant Targets in Cancer”
algorithm from cBioPortal (GISTIC) (see text footnote 4) to
determine the mutation and copy number alteration changes of
each survival-related RBP (Gao et al., 2013).

Consensus Clustering of the
Survival-Related RBPs

To further detect the functions and prognostic values of the RBPs
in PCa, we performed a consensus clustering to determine the
cluster numbers using the “ConsensusClusterPlus” R package'
based on the survival-related RBPs (Wu et al.,, 2017). Next,
a principal component analysis (PCA) was used to assess the
distribution patterns and confirm the cluster numbers using the
“ggplot2” R package.

Construction of a Prognostic Model

Based on the selected survival-related RBP genes, we performed a
multivariate Cox regression analysis to acquire their coefficients.
Then, we constructed a prognostic risk score model to
stratify the patients. The risk score was calculated using the
following formula:

Risk score = p1 x Expl + p2 x Exp2 + i x Expi

where f and Exp represent the regression coeflicients and
gene expression levels, respectively. Finally, the Kaplan-Meier
and ROC curves were used to evaluate the efliciency of the
risk score model.

Statistical Analyses

We used Pearson’s chi-square test to investigate the differences
in the distributions of the clinical information. We performed
a t-test or Wilcoxon test for two samples and a Kruskal-Wallis
test for multiple samples. The univariate and multivariate Cox
regression analyses were performed to evaluate the prognostic
values of the RBPs. The Kaplan-Meier curves and log-rank tests
were used to identify the survival difference. All procedures
involved in the present study were conducted using the R
software. All statistical results were considered to be significant
if the P-value is <0.05.

1Ohttps://cran.r-project.org/web/packages/survival/index.html
https://cran.r-project.org/web/packages/pROC/index.html

http://www.bioconductor.org/packages/release/bioc/html/
ConsensusClusterPlus.html

RESULTS

Acquisition of the Differentially

Expressed RBPs

We obtained 59 differentially expressed RBP  genes
comprising 28 upregulated and 31 downregulated RBPs
(Supplementary Table 1). The functional enrichment analyses
of the upregulated differentially expressed RBPs revealed the
following enriched terms: “translation and rRNA processing”
for biological processes; “nucleolus, cytosolic large ribosomal
subunit, and ribosome” for cellular component; and “RNA
binding, poly(A) RNA binding, and nucleic acid binding” for
molecular function (Supplementary Table 2). In contrast,
the downregulated RBPs were primarily enriched in “mRNA
processing, RNA splicing, regulation of RNA splicing, and
cytidine deamination” for biological processes; “cytoplasm
and nucleus” for cellular component; and “nucleotide binding,
RNA binding, nucleic acid binding, and poly(A) RNA binding”
for molecular function (Supplementary Table 3). In addition,
the KEGG pathway analysis revealed that the upregulated
RBPs were significantly enriched in “ribosome,” “mRNA
surveillance pathway,” “RNA degradation,” and “RNA transport”
(Supplementary Table 2).

PPI Network Construction and Module

Screening

To further explore the potential molecular functions, we
submitted these differentially expressed RBP genes to the
STRING database to construct a PPI network (Figure 2).
The upregulated and downregulated RBPs are shown in red
and green circles, respectively. We obtained a total of 58
PPI nodes and 75 PPI edges with a PPI enrichment P-value
<1.0e®. The functional enrichment analyses of the PP network
revealed the following enriched terms: “mRNA metabolic
process,” “RNA metabolic process,” “RNA process,” “nucleic
acid metabolic process,” and “mRNA processing” in biological
processes; “RNA binding,” “nucleic acid binding,” “heterocyclic
compound binding,” “organic cyclic compound binding;” and
“mRNA binding” in molecular function; and “ribonucleoprotein
complex,” “cytoplasmic ribonucleoprotein granule,” “cytosolic
ribosome,” and “cytosolic large ribosomal subunit” in cellular
components. In the KEGG pathway analysis, the enriched terms
were “ribosome,” “mRNA surveillance pathway,” and “RNA
degradation.” Moreover, two key modules were obtained using
the MCODE software (Figures 2B,C). We found that module 1
was mainly enriched in “cytosolic large ribosomal subunit” and
“polysomal ribosome” (Figure 2B), while none of the enriched

pathways were detected in module 2 (Figure 2C).

Identification of the RBPs With

Prognostic Values

A total of 58 differentially expressed RBP genes were
obtained from the PPI network and used to perform the
univariate Cox regression analysis to select survival-related
RBPs (Supplementary Table 4). A total of 18 RBPs met
the inclusion criterion (P < 0.05). These selected RBPs
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FIGURE 2 | Protein—protein interaction (PPI) network for the differentially expressed RNA binding proteins. (A) The upregulated and downregulated genes are shown
in red and green circles, respectively. (B) Key module 1 in the PPI network. (C) Key module 2 in the PPI network.

were used to perform the lasso Cox regression analysis to
select nine prognostic RBPs (Supplementary Figure 1).
The minimum lambda value used in the present study was
0.016. Six RBP genes (EXOI, PABPCIL, REXO2, MSII,
CTUI, and ESRP2) were upregulated, and three RBP genes
(MAEL, MBNL2, and YBX2) were downregulated in the
PCa samples when compared with normal samples. In
addition, the Kaplan-Meier curves further confirmed the
prognostic values of these RBPs, including EXO1, PABPCIL,
REXO2, MBNL2, MSI1, CTUI, MAEL, YBX2, and ESRP2
(Figures 3A-I, respectively).

Validation of the Nine Survival-Related
RBPs

To further evaluate the expression levels of these nine RBPs
in PCa, we obtained their immunohistochemical results from
the HPA database (EXO1, PABPCIL, and MBNL2 were not
tested here). REXO2, MSI1, and ESRP2 had high expression
levels in tumors compared with normal tissues, while CTUI,
MAEL, and YBX2 were undetermined in both tumor and
normal tissues (Figure 4). In addition, we evaluated the
diagnostic values of these RBPs to differentiate tumors from
normal samples and found that all nine RBP genes showed
moderate diagnostic efficiency (Supplementary Figures 2A-1).
The mutation and copy number alterations of the RBP genes
were determined, and 69 out of 489 (14%) PCa samples were
found to be altered (Supplementary Figure 2J); the most
frequent alteration was the deep deletion of the YBX2 gene.

Moreover, the mutation frequencies of these nine RBPs were
low. Further, the associations between the expression levels
of these RBP genes and clinical factors were confirmed in
TCGA dataset. We found high expression levels of EXO1
and REXO2 and low expression levels of YBX2 and ESRP2
in samples with high pathological T staging (Figure 5A);
high expression levels of EXO1, PABPCIL, and REXO2
and low expression levels of YBX2 and ESRP2 in high
pathological grade (Figure 5B); and high expression levels
of EXO1, PABPCIL, REXO2, MSI1, and CTUl and low
expression levels of MBNL2, YBX2, and ESRP2 in high Gleason
score (Figure 5C). The functional enrichment analysis for
these nine RBP genes revealed enrichment in “nucleic acid
binding,” “nucleotide binding,” “regulation of RNA splicing,’
“RNA binding, “mRNA surveillance pathway,” and “poly(A)
RNA binding.”

Identification of Two Clusters Using

Consensus Clustering

To explore the prognostic value of the nine RBPs, we performed
a consensus clustering analysis to select cluster numbers
based on the similarity of these genes. We found that k = 5
seemed to be the most stable value from k = 2 to k = 10 in
TCGA dataset (Figures 6A,B). Then, we performed a PCA
analysis to evaluate the reliability of the consensus clustering.
The results showed high similarity and overlap when the
cluster numbers were three (Supplementary Figures 3C,D),
four  (Supplementary  Figures 3EJF), and five
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FIGURE 3 | Kaplan—Meier curves for the nine RNA binding proteins in prostate cancer from The Cancer Genome Atlas dataset. (A) EXO1; (B) PABPCI1L;
(C) REXQ2; (D) MBNL2; (E) MSI1; (F) CTU1; (G) MAEL; (H) YBX2; (I) ESRP2.
(Supplementary Figures 3G,H). Therefore, we divided the Construction and Validation of a Risk
patients into two clusters (Supplementary Figure 3A), and Score Model
the PCA showed different distributions between these two To effectively guide clinical treatment, we constructed

clusters (Supplementary Figure 3B). The Kaplan-Meier curves
showed different prognoses between the two clusters as cluster
2 showed poorer prognosis when compared with cluster 1
(Figure 6C). Finally, the GSEA of these two clusters highlighted
several oncogenic pathways significantly enriched in cluster 2
(Figure 6D), including E2F targets [normalized enrichment score
(NES) = 3.582, size = 187], G2M checkpoints (NES = 3.006,

a risk score model to stratify patients with PCa based
on these nine RBP genes. The risk score for each PCa
patient was calculated using the gene expressions levels
multiplied by their coefficients from the multivariate Cox
regression analysis. The detailed formula is as follows: Risk
score = (0.31297 x EXO1I) 4 (0.26564 x PABPCIL) 4 (0.32104 x
REX02) + (—0.05792 x MBNL2) + (0.15083 x MSI1) + (0.10192

size = 184), protein secretion (NES = 1.709, size = 95), and x CTUI) + (—0.07827 x MAEL) + (—0.09089 x YBX2) +
mTORCI signaling (NES = 1.526, size = 192). (—0.52454 x ESRP2). The patients were divided into high-
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High

and low-risk groups based on the median value of the risk
score. The high-risk patients tended to have a worse prognosis
compared with the low-risk patients (Figure 7A). Furthermore,
the ROC curves showed a good performance of the model
(Figure 7B); the AUC was 0.786 at 1 year, 0.758 at 3 years, 0.768
at 3 years, and 0.752 at 5 years. The model was further validated
in GSE54460 (Figures 7C,D), GSE70768 (Figures 7E,F), and
GSE70769 (Figures 7G,H). The high-risk patients in GSE70769
showed worse prognosis compared with the low-risk patients

(P-value <0.05). Moreover, high-risk patients in GSE54460 and
GSE70768 (Figures 7C,E, respectively) had a trend of worse
prognosis compared with the low-risk patients despite a P-value
>0.05. These results show the reliability and stability of the
model in stratifying the patients. Moreover, the ROC curves
showed a good performance in GSE54460 (Figure 7D) and
GSE70769 (Figure 7H) with all AUCs larger than 0.6. The AUC
for GSE70768 was 0.763 at 1 year, showing good performance.
However, AUCs for time larger than 2 years were relatively low.
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Associations Between the Model and

Clinicopathological Factors of PCa
The heat map shows the expression levels of the nine RBPs and
the distributions of the clinicopathological factors between the

high- and low-risk patients (Figure 8A). The results showed that
the high-risk patients had higher proportions of high Gleason
score (P < 0.0001), lymph node metastasis (P < 0.0001), high
pathological T staging (P < 0.0001), advanced age (P < 0.05),
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and recurrence rate (P < 0.0001). The detailed distribution of

the clinicopathological data across patient subgroups were shown
in Table 1. The univariate Cox regression analysis showed that

the risk score model was a risk factor for disease-free survival
in PCa patients (Figure 8B), and the multiple Cox regression
analysis revealed that the risk score model was an independent
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P < 0.0001.

risk factor for disease-free survival after integration with age, between different clinical subgroups and found that patients
pathological T staging, lymph node status, Gleason score, and  with advanced age (Figure 8D), high pathological T staging
PSA level (Figure 8C). In addition, we compared the risk scores  (Figure 8E), lymph node metastasis (Figure 8F), high Gleason
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TABLE 1 | Association between the risk score model and patients’ clinical
characteristics.

Variables TCGA cohort Risk score P value
(n = 491),
n (%)

Low risk High risk
Age (mean + SD, 61.0+6.8 60.2 +7.0 61.7 £ 6.6 0.013
years)
<60 years 221 (45.0) 126 (51.2) 95 (38.8) 0.007
>60 years 270 (55.0) 120 (48.8) 150 (61.2)
Pathological T <0.001
stage
T2 185 (37.7) 128 (52.1) 57 (23.3)
T3 290 (59.1) 110 (44.7) 180 (73.4)
T4 10 (2.0) 4(1.6) 6 (2.5
Tx 6(1.2) 4(1.6) 2(0.8)
Nodal stage <0.001
NO 341 (69.4) 179 (72.8) 162 (66.1)
N1 78 (15.9) 20 (8.1) 58 (23.7)
Nx 72 (14.7) 47 (19.1) 25(10.2)
Gleason score <0.001
6 45(9.2) 35 (14.2) 10 (4.1)
7 245 (49.9) 153 (62.2) 92 (37.5)
8 64 (13.0) 21(8.6) 43 (17.6)
9 134 (27.3) 36 (14.6) 98 (40.0)
10 3(0.6) 1(0.4) 2(0.8)
PSA at initial 0.004
diagnosis (ng/ml)
<4 58 (11.8) 29 (11.8) 29 (11.8)
(4,10] 268 (54.6) 153 (62.2) 115 (46.9)
(10,20] 98 (19.9) 41 (16.7) 57 (23.9)
>20 53 (10.8) 17 (6.9) 36 (14.7)
Unknown 14 (2.9) 6 (2.4) 8(3.3)

score (Figure 8G), high PSA (Figure 8H), and recurrence status
(Figure 8I) tended to have higher risk scores. These results
demonstrated that our risk score model was closely correlated
with the clinicopathological factors of PCa.

To better predict patients prognosis and guide clinical
practice, we integrated the risk score model and clinical factors
of PCa to construct a nomogram (Figure 9A). The clinical
factors included were risk factors for disease-free survival
of PCa patients. Calibration plots were used to evaluate
the performance of nomogram (Figure 9B) and showed
good performance for predicting 1-, 3-, and 5-year disease-
free survival probabilities. Moreover, we calculated Harrell’s
concordance index (C-index) to evaluate the powers of selected
factors (Table 2). As the results showed, the risk score
model had a relative higher C-index [0.659; 95% confidence
interval (CI): 0.610-0.708]. Further, the combination of the
risk score model with clinical factors has a higher C-index
(0.741; 95% CI: 0.684-0.798) than the risk score model or
clinical factors alone, suggesting that combining the risk score
model with clinical factors could improve prognostic accuracy
for PCa patients.

DISCUSSION

PCa is the second most common cancer in men and poses
a growing burden on healthcare systems worldwide (Mistry
et al., 2011). It was estimated that almost 1.3 million new
cases of PCa were diagnosed and that 359,000 associated deaths
occurred worldwide in 2018 (Bray et al., 2018). Currently,
the conventional treatment modalities for PCa include surgical
resection, hormone therapy, radiotherapy, and chemotherapy
(Abou et al., 2020). Moreover, the dichotomy of overtreatment
and tumor progression of PCa poses a new challenge for
modern medicine, owing to the substantial heterogeneity of
PCa. Therefore, the exploration of molecular biomarkers and
construction of an excellent risk stratification model for PCa
patients will be useful for predicting the degree of malignancy
and prognosis and guiding clinical treatments. Further, high-
throughput sequencing and bioinformatics technologies provide
convenient and effective tools to identify pivotal biomarkers
for PCa and uncover their molecular functions (Bass et al,
2014). Prior studies have revealed that RBPs play vital roles in
tumorigenesis and progression of PCa by regulating multiple
fundamental biological processes through posttranscriptional
events (Gerstberger et al., 2014b; Harvey et al.,, 2017). As the
molecular functions of most RBPs in PCa remain unclear,
we systematically investigated them in our present study.
We obtained 59 differentially expressed RBPs, comprising 28
upregulated and 31 downregulated RBPs; subsequently, we
explored the potential functional pathways and constructed a PPI
network for the differentially expressed RBPs. The expression
levels, genomic mutations, and prognostic and diagnostic values
of the key RBPs were comprehensively assessed. Moreover, we
implemented consensus clustering to determine the overall roles
of these genes in PCa. Finally, we constructed a risk score model
based on nine survival-related RBPs to predict the prognosis of
the PCa patients and validated the efficiency of the model in three
external datasets.

Studies have indicated that RNA splicing widely participates
in posttranscriptional gene regulation and plays vital roles in
the tumorigenesis and progression of cancer (De Maio et al.,
2018). Further, RBPs are a critical factor and major component
of the splicing machinery (Han et al, 2013); for example,
HNRNPL drives the progression of PCa by directly regulating the
targeted RNA alternative splicing (Fei et al., 2017). Meanwhile,
RBPs also maintain the stability of various target RNAs to
inhibit tumorigenesis and metastasis of multiple tumors, such as
hepatocellular carcinoma (Han et al., 2019), breast cancer (Cheng
et al., 2017), and glioblastoma (Vo et al., 2012). Moreover, the
RBPs regulate biological processes at the posttranscriptional level
and can function as activators or suppressors to affect tumor
development and progression (Hopkins et al., 2016; Han et al,,
2019; Iino et al., 2020) through multiple biological pathways. For
example, NELFE could promote the progression of hepatocellular
carcinoma by regulating MYC signaling (Dang et al., 2017),
and TTP could inhibit cell proliferation and accelerate cell
death in lung cancer through the autophagy pathway (Dong
et al., 2018). However, the biological functions of most RBPs
remain unexplored. In our study, the GO enriched terms showed
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that the differentially expressed RBPs were mainly enriched in
translation, rRNA processing, mRNA processing, RNA splicing,
nucleolus, cytosolic large ribosomal subunit, cytoplasm, RNA
binding, poly(A) RNA binding, nucleic acid binding, and
nucleotide binding, while the KEGG pathway analysis indicated
that the upregulated RBPs in PCa could influence the occurrence
and progression of cancer by regulating various pathways of
ribosome, mRNA surveillance, RNA degradation, and RNA
transport. Moreover, the key module identified from the PPI
network revealed that the biological functions of module 1
were mainly involved in cytosolic large ribosomal subunits
and polysomal ribosomes. As the differentially expressed RBPs
were involved in multiple functional pathways and biological
processes, it indicates their pivotal role in the occurrence and
development of PCa.

In the present study, we identified nine survival-related RBPs:
EXO1, PABPCIL, REXO2, MBNL2, MSI1, CTU1, MAEL, YBX2,
and ESRP2. The Kaplan-Meier curves further confirmed their
prognostic values; moreover, the associations with pathological

T staging, pathological grade, and Gleason score of these
nine RBPs were comprehensively evaluated. We found high
expression levels of EXO1 and REXO2 and low expression
levels of YBX2 and ESRP2 in samples with high pathological
T staging, high pathological grade, and high Gleason score.
Among these nine RBPs, the expression level of EXO1 was
significantly correlated with clinical progression and prognosis
of PCa. Patients with a high expression level of EXO1 showed
poor prognosis and a high risk of lymph node metastasis (Luo
et al., 2019). Moreover, ESRP2 is also overexpressed in PCa
and is involved in AR-mediated splicing patterns (Munkley
et al., 2019). However, the roles of other RBPs have not been
reported in PCa but have been implicated in other cancers. For
instance, PABPCIL is highly expressed in colorectal cancer and
is significantly correlated with its clinical stage and prognosis
(Wu et al., 2019). REXO2 has a 3'-to-5" exonuclease activity, and
its dysregulation leads to tumorigenesis of pheochromocytoma
by disturbing the DNA replication, recombination, and repair
processes (Laitman et al., 2020). MBNL2 possesses antitumor
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TABLE 2 | Comparison of the predictive powers of multiple factors
in TCGA dataset.

Factors Disease free survival
C-index 95% ClI
Age 0.579 0.522-0.636
Pathological T stage 0.614 0.565-0.663
Nodal stage 0.540 0.491-0.589
Gleason score 0.699 0.642-0.756
PSA 0.558 0.491-0.625
Risk level 0.659 0.610-0.708
Risk level + Age + Pathological T 0.741 0.684-0.798

stage + Nodal stage + Gleason score + PSA

Abbreviations: C—index, Harrell's concordance index; Cl, confidence interval.

activity in lung and breast cancers and can inhibit cancer
cell metastasis via the pAKT/EMT signaling pathway (Zhang
et al, 2019). MSI1 regulates the Wnt and Notch signaling
pathways; small molecule inhibitors targeting MSI1 have been
investigated as blockers of cancer cell growth (Lan et al,
2015). CTU1 is crucial for maintaining genome stabilization
and integrity, and its dysregulation can result in defects
in the translation processes (Dewez et al., 2008). Finally,
MAEL plays a key oncogenic role in bladder cancer by
downregulating MTSS1 (Li et al,, 2016). In the present study,
these nine RBP genes showed a moderate diagnostic efficiency
in differentiating PCa from normal samples. Hence, these RBP
genes may be used as diagnostic and prognostic biomarkers for
PCa in the future.

Two PCa subgroups (clusters 1 and 2) were identified
after a consensus clustering analysis. Then, PCA confirmed
the reliability of the two subgroups, and Kaplan-Meier curves
showed significantly different prognoses between them. The
patients in cluster 2 tended to have a worse prognosis and
were associated with several oncogenic pathways involving
E2F targets, G2M checkpoint, protein secretion, and mTORC1
signaling. These pathways are involved in the occurrence and
progression of tumors; for instance, many cancer cells have
defective G1 checkpoint mechanisms and thus depend upon the
G2M checkpoint more than normal cells (Schmidt et al., 2017).
Further, it is well known that mTORC1 signaling is necessary
for cellular growth and metabolism and that its dysregulation
is closely related to various human diseases, including cancers
(Thomas et al., 2016; Ben-Sahra and Manning, 2017; Hare and
Harvey, 2017). Therefore, a systematic exploration of the roles
of these oncogenic pathways in PCa and their relationships
with RBPs might provide novel insights for the treatment of
PCa in the future.

Along with the advent of precision cancer medicine, more
specific and effective risk stratification models are urgently
needed to guide clinical practice and further improve the
prognosis of PCa patients. In recent years, a variety of
stratification models for PCa have been proposed; for example,
Brockman et al. (2015) validated a model to predict the
long-term risk of death of PCa patients with biochemical
recurrence after undergoing surgical resection. Further, Van

Neste et al. (2016) developed a multimodal risk model to identify
high-grade PCa based on urinary molecular biomarkers and
clinical risk factors, thus decreasing overtreatment. Mehralivand
et al. (2018) constructed a risk model based on magnetic
resonance imaging and clinical parameters to improve the
predictive accuracy of PCa. In addition, Thurtle et al. (2019)
introduced an individual multivariable predictive model that
allowed the evaluation of potential treatment benefits for the PCa
patients. Although these models showed good performance in
predicting the therapeutic response or prognosis of PCa, some
defects still exist as PCa is associated with complicated and
polyfactorial tumors. Therefore, a single biomarker might have
a limited effect on PCa prognosis (Jadvar, 2011). Hence, after
considering the critical role of RBPs in the oncogenesis and
progression of PCa, we constructed a risk score model based
on nine survival-related RBPs for the prognostic stratification
of the PCa patients. To our knowledge, this is the first
PCa risk score model based on multi-RBPs and could be
used to improve the evaluation of PCa patient prognosis.
Our model showed significantly different prognoses for the
high- and low-risk patients. Additionally, the model was
validated using three external datasets (GSE54460, GSE70768,
and GSE70769), and all three external datasets showed worse
prognosis in the high-risk patients. We also investigated
the correlations between the model and clinical factors. The
results revealed that the high-risk PCa patients tended to
have advanced stage, high Gleason score, high ratio of lymph
node metastasis and recurrence, and poor prognosis, suggesting
that our model was closely associated with traditional clinical
variables. In addition, we found that this model was an
independent risk factor for predicting disease-free survival in
PCa patients. In general, our risk model shows great clinical
applicability in distinguishing high-risk PCa patients and may
be beneficial for early interventions to improve the clinical
therapeutic effect.

Inevitably, our risk score model also has several limitations.
All data used in the present study were obtained from public
databases. Hence, a prospective study to further validate the
efficacy of our model is needed. Moreover, the detailed functions
and potential mechanisms of these nine RBP genes in PCa need
to be further explored.

CONCLUSION

Our study systematically explored the potential roles of RBPs in
PCa and identified nine survival-related differentially expressed
RBP genes. The expression levels of these RBPs were validated
in the HPA database, and their associations with clinical traits
were evaluated. All nine RBPs showed good diagnostic and
prognostic values for PCa. Moreover, the risk score model
based on these nine RBP genes could stratify PCa patients
into two subgroups with different prognoses and malignant
phenotypes and showed high associations with the clinical traits
of PCa. Thus, we believe that our risk score model could
improve the evaluation of treatment response and prognosis
in PCa patients.
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