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The coexistence of coronary artery disease (CAD) and chronic kidney disease (CKD)
implies overlapped genetic foundation. However, the common genetic determination
between the two diseases remains largely unknown. Relying on summary statistics
publicly available from large scale genome-wide association studies (n = 184,305 for
CAD and n = 567,460 for CKD), we observed significant positive genetic correlation
between CAD and CKD (rg = 0.173, p = 0.024) via the linkage disequilibrium score
regression. Next, we implemented gene-based association analysis for each disease
through MAGMA (Multi-marker Analysis of GenoMic Annotation) and detected 763
and 827 genes associated with CAD or CKD (FDR < 0.05). Among those 72 genes
were shared between the two diseases. Furthermore, by integrating the overlapped
genetic information between CAD and CKD, we implemented two pleiotropy-informed
informatics approaches including cFDR (conditional false discovery rate) and GPA
(Genetic analysis incorporating Pleiotropy and Annotation), and identified 169 and 504
shared genes (FDR < 0.05), of which 121 genes were simultaneously discovered
by cFDR and GPA. Importantly, we found 11 potentially new pleiotropic genes
related to both CAD and CKD (i.e., ARHGEF19, RSG1, NDST2, CAMK2G, VCL,
LRP10, RBM23, USP10, WNT9B, GOSR2, and RPRML). Five of the newly identified
pleiotropic genes were further repeated via an additional dataset CAD available from
UK Biobank. Our functional enrichment analysis showed that those pleiotropic genes
were enriched in diverse relevant pathway processes including quaternary ammonium
group transmembrane transporter, dopamine transport. Overall, this study identifies
common genetic architectures overlapped between CAD and CKD and will help to
advance understanding of the molecular mechanisms underlying the comorbidity of the
two diseases.

Keywords: coronary artery disease, chronic kidney disease, pleiotropy-informed integrative analysis, gene-based
association analysis, pleiotropic gene, genome-wide association study
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INTRODUCTION

Both coronary artery disease (CAD) and chronic kidney disease
(CKD) are the leading causes of death and disability worldwide,
representing serious global public health threats (Kessler et al.,
2013; Inrig et al., 2014; Ene-Iordache et al., 2016; Levin et al.,
2017; Musunuru and Kathiresan, 2019). In practice, it is often
observed that CKD patients encounter an increased risk of
CAD and CAD is in turn a major cause of death for CKD
patients (Tonelli et al., 2012). Pathologically, the endothelial
dysfunction is closely related to cardiovascular diseases and
plays an important role in all stages of atherosclerosis (Ross,
1999). On the other hand, the role of CAD in CKD is also
widely studied; for example, the endothelial dysfunction in the
development of CKD was also well documented (Moody et al.,
2012). As originally proposed by Lindner et al. (1974), CKD
patients with an estimated glomerular filtration rate (eGFR)
<60 ml/min per 1.73 m2 have 2∼16 times higher risk of major
adverse cardiovascular events (MACE) compared to those with
an eGFR > 60 ml/min per 1.73 m2 (Go et al., 2004). Moreover,
for CKD patients not yet requiring renal replacement therapy, the
probability of developing MACE is much higher than reaching
end-stage renal disease (ESRD) and requiring renal replacement
therapy (Foley et al., 2005).

All those empirical observations suggest that there exist a
common susceptible mechanism underlying these two complex
diseases. As part of efforts to understand their genetic foundation,
in the past few years many large scale genome-wide association
studies (GWASs) have been implemented for CAD (Nikpay
et al., 2015) and CKD (Wuttke et al., 2019). It is found that
a lot of genes and single nucleotide polymorphisms (SNPs)
exhibit pleiotropic effects and are associated with both the two
diseases (Solovieff et al., 2013; Supplementary Table 1). This
genetic overlap partly contributes to the co-existence of CAD
and CKD. The understanding of common genetic determinants
has significant implication for identifying important biomarkers
and developing novel therapeutic strategies for joint prediction,
prevention, and intervention of CAD and CKD.

However, like many other diseases/traits (Manolio et al., 2009;
Eichler et al., 2010; Gusev et al., 2013; Girirajan, 2017; Kim et al.,
2017; Young, 2019), CAD- or CKD-associated SNPs identified by
GWAS only explain a very small fraction of phenotypic variance
of CKD (Wuttke et al., 2019) and CAD (Nikpay et al., 2015),
implying that a large number of genetic variants with small to
modest effect sizes (but still important) have yet been discovered
and that more pleiotropic genes would be found if increasing
sample sizes (Wang et al., 2005; Altshuler et al., 2008; Tam
et al., 2019). However, the increase of sample sizes is generally
not feasible since the recruiting and genotyping of additional
participants are time consuming and expensive. Therefore, it is
a promising way to leverage genetic computational methods that
can efficiently analyze information contained in the existing pool
of available GWAS summary statistics for identifying loci with
pleiotropic effects.

To achieve this aim, many pleiotropy-informed approaches
have been proposed (Andreassen et al., 2013; Chung et al.,
2014; Zeng et al., 2018). Those previous studies were focused

on individual SNP associations and fine-mapping was further
needed to find causal genes once newly novel genetic variants
were detected (Hormozdiari et al., 2014, 2015; Wen et al.,
2015; Kichaev et al., 2016). In addition, those methods cannot
effectively handle the correlation among genetic variants due
to linkage disequilibrium (LD) (Zeng et al., 2018). As a result,
pruning [e.g., using PLINK (Purcell et al., 2007)] has to be
employed to keep less dependent SNPs in their analysis, which
inevitably leads to the loss of useful information included in
correlated SNPs. Compared with the traditional single SNP
analysis which only considers only one SNP each time and often
suffers from power reduction (Zeng et al., 2015), the gene-based
association study is another popular supplementary analysis,
which examines the joint significance of a group of SNPs and
has the potential to aggregate weak association signals across
multiple genetic variants and is thus more powerful (Zeng et al.,
2014). Moreover, gene-based associations are easily to interpret
because gene is a more meaningfully biological unit compared
with individual genetic variant.

Given the potential pleiotropy between CAD and CKD that
was widely implied in previous work (Go et al., 2004; Liu et al.,
2012; Ene-Iordache et al., 2016), we hypothesize that shared
genes identified by different pleiotropy-informed methods should
have a higher probability to be candidate pleiotropic genes.
To do so, in the present study we first evaluated the overall
genetic correlation between CAD and CKD with summary
statistics available from large scale GWASs through cross-trait
LDSC (linkage disequilibrium score regression) (Bulik-Sullivan
B. et al., 2015). We next conducted a gene-based association
analysis using MAGMA (Multi-marker Analysis of GenoMic
Annotation) (de Leeuw et al., 2015) to integrate association
signals from SNP level into gene level. We thus obtained P-value
for each protein coding gene. Depending on those gene-level
P-values, we detected pleiotropic genes with two pleiotropy-
informed association methods including cFDR (conditional false
discovery rate) (Andreassen et al., 2013; Smeland et al., 2020) and
GPA (Genetic analysis incorporating Pleiotropy and Annotation)
(Chung et al., 2014). We also attempted to validate our results
in another CAD dataset available from the UK Biobank (UKB)
cohort. The framework of our data analysis is demonstrated in
Figure 1.

MATERIALS AND METHODS

GWAS Summary Statistics
We obtained summary statistics (e.g., effect allele, effect
size, and P-values) for CKD from the latest GWAS of the
CKDGen consortium (Wuttke et al., 2019). In this study the
creatinine value obtained with a Jaffé assay before 2009 was
calibrated by multiplying by 0.95, and glomerular filtration
rate (GFR) was estimated with the Chronic Kidney Disease
Epidemiology Collaboration (CKD-EPI) equation for adults
(larger than 18 years age) while using the Schwartz formula for
individuals less than 18 years old and was winsorized at 15–
200 ml min−1 per 1.73 m2. CKD was defined as an eGFR below
60 ml min−1 per 1.73 m2. After stringent quality control, a total
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GWAS summary data for CAD

(CAD: ~9.5 million SNPs)

GWAS summary data for CKD

(CKD: ~9.2 million SNPs)

CKD: 9,094,245 SNPs

non-ambiguous strand mapping

exclude no rs labels of SNPs

CAD: 9,416,879 SNPs

CAD: 5,253,977 SNPs

CKD: 5,269,810 SNPs

CAD: 17,231 genes

CKD: 17,223 genes

shared SNPs with 1000G Project

exclude parts of SNPs in Chr 6/8

LDSC
GPA cFDR

MAGMA

121 pleiotropic genes; among those 11 may be novel genes)

Validate analysis with another CAD dataset from UK Biobank

FIGURE 1 | Flowchart of data preparation and analysis for CKD and CAD in the present study. CAD, coronary artery disease; CKD, chronic kidney disease;
MAGMA, Multi-marker Analysis of GenoMic Annotation; LDSC, linkage disequilibrium score regression; GPA, Genetic analysis incorporating Pleiotropy and
Annotation; pleiotropy-informed methods, GPA and cFDR; cFDR, conditional false discovery rate; 1000G, 1000 Genomes Project phase III.

of 567,460 (64,164 cases and 502,296 controls; Neff = 227,584)
individuals of European ancestry and ∼9.6 million SNPs for
CKD were left. We yielded summary statistics of CAD from
the CARDIoGRAMplusC4D Consortium (Nikpay et al., 2015),
which included 184,305 (60,801 cases and 123,504 controls;
Neff = 162,972) individuals of European ancestry and ∼9.4
million SNPs after quality control.

We further validated our results using another summary
statistic of CAD obtained from the UKB cohort1. The UKB-
CAD dataset included 405,940 individuals of European ancestry
(23,888 cases and 382,052 controls; Neff = 89,929) and 23,861,747
SNPs after quality control (i.e., INFO scores >0.8, allele count at
least 20 and minor allele count less than 20). The association in
the UKB-CAD dataset was analyzed through the SAIGE method
(Zhou et al., 2018), which implemented the logistic mixed model
with a kinship matrix as random effects and age, sex, age × sex,
age2, age2

× sex as well as the first ten principal components as
fixed-effects covariates.

Estimated Overall Genetic Correlation
With LDSC
We applied the cross-trait LDSC (Bulik-Sullivan B. et al., 2015)
to assess the overall genetic correlation rg between CKD and
CAD using all available SNPs. The software of LDSC (version
v1.0.1) was downloaded at https://github.com/bulik/ldsc and
our analysis was conducted with default settings. Following

1https://pan.ukbb.broadinstitute.org/

prior studies (Bulik-Sullivan B. et al., 2015), we performed
stringent quality control procedures during the LDSC analysis:
(1) excluded non-biallelic SNPs and those with strand-ambiguous
alleles; (2) excluded duplicated SNPs and those having no
rs labels; (3) excluded SNPs that were located within two
genetic regions including major histocompatibility complex
(chr6: 28,500,000–33,500,000) (Bulik-Sullivan B. et al., 2015)
and chr8: 7,250,000–12,500,000 (Price et al., 2008); (4) kept
SNPs that were included in the 1000 Genomes Project phase
III; (5) removed SNPs whose allele did not match that in the
1000 Genomes Project phase III (The 1000 Genomes Project
Consortium, 2015).

The LD scores `j were computed using genotypes of 7,120,251
common SNPs (minor allele frequency >0.01 and the P-value of
Hardy Weinberg equilibrium test >1E-5) with a 10 Mb window
on 503 European individuals in the 1000 Genomes Project phase
III (The 1000 Genomes Project Consortium, 2015); and then
regressed on the product of Z-score statistics of the two diseases

E(z1jz2j) =

√
N1N2`j

M
× rg +

ρNs
√

N1N2
(1)

where N1 and N2 are the sample sizes for CAD and CKD,
respectively; Ns is the number of individuals shared by the
two GWASs, and ρ is the disease correlation among the Ns
overlapping individuals. Theoretically, SNPs with high LD will
have higher χ2 statistics on average than those with low LD
provided that the disease has a polygenic genetic foundation
(Bulik-Sullivan B. K. et al., 2015). In terms of LSDC shown in
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(1), the regression slope provides an unbiased estimate for genetic
correlation rg and is in general not influenced by sample overlap
(Bulik-Sullivan B. et al., 2015).

Summary Statistics-Based Gene-Level
Association With MAGMA
Many gene-based association approaches with only summary
statistics have been developed recently; among those MAGMA
is a fast and flexible method and widely employed (de Leeuw
et al., 2015). During the implementation of MAGMA, we defined
the set of SNPs that were located within a given gene in terms
of the annotation file provided in VAGIS (Liu et al., 2010). For
numerical stability, we only focused on protein coding genes with
at least ten SNPs (note that, this threshold was to some extent
chosen arbitrarily). The genotypes of 503 European individuals
in the 1000 Genomes Project phase III (The 1000 Genomes
Project Consortium, 2015) were exploited as reference panel
for calculating the LD matrix to incorporate the correlation
structure among SNPs. After the implementation of MAGMA,
the P-value for each gene can be available in the CAD or CKD
GWAS. Depending on those P-values we attempted to discover
significant genes that were related to CAD or CKD as well as
potentially pleiotropic genes that were associated with both the
two types of disease. To detect newly novel association signals,
we ruled out identified genes located within 1 Mb on each side
of previously reported CAD- or CKD associated genes or SNPs
from the GWAS Catalog2 as done similarly in other studies (Bis
et al., 2020). Of note, doing this was a conservative strategy and
might miss potentially important association signals although
false discoveries were well controlled.

Pleiotropy-Informed Association
Methods With Summary Statistics
To further leverage the pleiotropic information shared between
CAD and CKD to identify gene association signals more
efficiently, we employed two novel statistical genetic methods in
the following. First, we utilized the cFDR method (Andreassen
et al., 2013) which extended the unconditional FDR (Benjamini
et al., 2001) from an empirical Bayes perspective. The cFDR
measures the probability of the association of the principal
disease conditioned on the strength of association with the
conditional disease (Andreassen et al., 2013)

cFDR(pi||Pi ≤ pi, Pj ≤ pj) (2)

where pi and pj are the observed P-values of a particular gene of
the principal and conditional diseases, respectively; H(i)

0 denotes
the null hypothesis that there does not exist association between
the gene and the principal disease.

Besides cFDR, we also carried out the GPA analysis (Chung
et al., 2014), which was constructed as

π00 = Prob(Zj00 = 1) : (Pj1|Zj00 = 1) ∼

U[0, 1], (Pj2|Zj00 = 1) ∼ U[0, 1]

2www.ebi.ac.uk

π10 = Prob(Zj10 = 1) : (Pj1|Zj10 = 1) ∼

Beta(α1, 1), (Pj2|Zj10 = 1) ∼ U[0, 1]

π01 = Prob(Zj01 = 1) : (Pj1|Zj01 = 1) ∼

U[0, 1], (Pj2|Zj01 = 1) ∼ Beta(α2, 1)

π11 = Prob(Zj11 = 1) : (Pj1|Zj11 = 1) ∼

Beta(α1, 1), (Pj2|Zj11 = 1) ∼ Beta(α2, 1) (3)

where the latent variables Zj = (Zj00, Zj10, Zj01, Zj11) indicates the
association between the j-th gene and the two diseases: Zj00 = 1
denotes the j-th gene is associated with neither of them (with
probability π00), Zj10 = 1 denotes the j-th gene is only associated
with the first one (with probability π10), Zj01 = 1 denotes the
j-th gene is only associated with the second one (with probability
π01), and Zj11 = 1 denotes the j-th gene is associated with both the
diseases (with probability π11), indicating the extent of common
biological pathways to which the two diseases may share (Chung
et al., 2014). In addition, α1 and α2 (0 < αk < 1, k = 1, 2) are
unknown shape parameters of the Beta distribution.

Functional Analysis
To explore functional features of newly discovered pleiotropic
genes, we performed functional enrichment analysis [e.g., Gene
Ontology (GO) and KEGG pathway analysis] with DAVID 6.83

(Huang da et al., 2009). Enrichment analysis allows us to validate
our findings by determining functional annotations for those
genes with pleiotropic effects. We also conducted the protein–
protein interaction analysis to detect interaction and association
in terms of the Search Tool for the Retrieval of Interacting
Genes/Proteins (STRING 11.0 at https://string-db.org/) database
(Szklarczyk et al., 2019). We implemented the signaling pathways
of these significant genes by Cytoscape software and visualized
them by CluePedia (Bindea et al., 2009).

RESULTS

Estimated Overall Genetic Correlation
Between CAD and CKD
After quality control, a total of 5,253,977 and 5,269,810 genetic
variants are reserved for CAD or CKD, respectively. The genome-
wide SNP-based heritability is estimated to be 4.69% (SE = 0.35%)
for CAD and 0.53% (SE = 0.12%) for CKD with LDSC. The
genomic inflation factor (i.e., the ratio of the observed median
χ2 statistic to the expected median) is 1.015 for CAD and
1.143 for CKD, which, together the LDSC intercept [i.e., 0.903
(SE = 0.005) for CAD and 1.134 (SE = 0.007) for CKD], suggests
that the weak inflation of the χ2 statistic of CKD is primarily due
to polygenicity rather than population stratification or cryptic

3https://david.ncifcrf.gov/
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relatedness. In terms of those results, the adjustment of genomic
control is also not necessary.

Next, based on all overlapped genetic variants (i.e., 5,117,020
SNPs), using LDSC we observe there exists a positive genetic
correlation between the two types of diseases [r̂g = 0.173, 95%
confidence interval (CI) 0.023 ∼ 0.332, P = 0.024], providing
empirical evidence that the two diseases share common genetic
components. We further quantify genetic correlation between
CAD and CKD separately in six functional categories (Gusev
et al., 2014), including coding, UTR (untranslated region),
promoter, DHS (DNaseI hypersensitivity sites), intronic and
intergenic. It is found that all the estimates of rg in those
categories are positive, again supporting the statement that CAD
and CKD have overlapped genetic foundation. In particular, there
exists a significantly positive genetic correlation in the regions
of DHS (r̂g = 0.197, 95% CI 0.074 ∼ 0.319, P = 1.60E-3) and
intergenic (r̂g = 0.264, 95% CI 0.153 ∼ 0.375, P = 3.03E-6)
(Supplementary Table S2 and Figure 2).

Overall, through genetic correlation analysis we reveal that
CAD and CKD are genetically similar and share moderate
overlap in genetic etiology, especially at some certain
regions. Therefore, it is worthy of additional investigation
into shared genetic mechanisms through pleiotropy-informed
statistical tools.

Associated Genes Identified With
MAGMA, cFDR, and GPA
In our gene-based association analysis, we assign a set of genetic
variants to predefined genes and obtain a total of 17,231 and
17,223 protein coding genes for CAD or CKD, respectively. Using
MAGMA, we identify 763 CAD-associated genes and 827 CKD-
associated genes (FDR < 0.05) (Supplementary Tables 3, 4 and
Supplementary Figure 1). Importantly, 25.8% (=197/763) CAD-
associated genes (e.g., ACER2, ACSS2, ARHGEF19, and BBS10)
and 60.7% (=503/827) CKD-associated genes (e.g., BAG6, BAK1,
BTNL2, and C4BPB) are likely novel genes because those genes
are not nearby (within 1 Mb upstream and downstream) any
previous GWAS index SNPs or associated genes in terms of the
GWAS catalog (McMahon et al., 2019).

In our cFDR analysis the Q–Q plot of CAD conditional on the
nominal P-value of CKD illustrates the existence of enrichment
at different significance thresholds of CKD (Supplementary
Figure 2A). The presence of leftward shift suggests that the
proportion of true associations for a given CKD P-value would
increase when the analysis is limited to include more significant
SNPs. On the other hand, in terms of the Q–Q plot of CKD
conditional on the nominal P-value of CAD (Supplementary
Figure 2B), we observe a more pronounced separation in
different curves, implying that there exists a stronger enrichment
for CKD given CAD than that for CAD given CKD. We further
formally analyze the two diseases jointly using cFDR and show
the results in Supplementary Tables 5, 6 and Supplementary
Figure 3. Briefly, with cFDR we identify 875 CAD-associated
genes and 1,062 CKD-associated genes (cFDR < 0.05). Among
those genes, 243 CAD-associated and 639 CKD-associated genes
are possibly novel (Supplementary Tables 5, 6). More interesting,

all CAD-associated genes identified by MAGMA are replicated
and 111 additional genes are discovered (Supplementary
Figure 4); and all CKD-associated genes identified by MAGMA
are also verified and 234 more genes are newly discovered
(Supplementary Figure 5).

We next employ GPA to implement another integrative
analysis for the two diseases. In terms of the GPA result we
discover 504 and 1395 significant genes that are related to CAD or
CKD (Supplementary Tables 7, S8 and Supplementary Figure
6). Among those, 17.3% (=87/504) novel CAD-associated
genes (e.g., ACVR2A, AP3M1, ARHGEF19, and BACH1) and
61.2% (=854/1395) CKD-associated genes (e.g., ABCA4, ABCC2,
ABCF3, and ACOX1) may be newly novel genes because they
are not nearby (within 1 Mb upstream and downstream) any
previous GWAS index SNPs or associated genes in terms of
the GWAS catalog (McMahon et al., 2019). Furthermore, we
find 504 CAD-associated and 770 CKD-associated genes that are
identified simultaneously by GPA and MAGMA (Supplementary
Figures 7, 8).

Identified Pleiotropic Gene With Both
cFDR and GPA
According to the result of MAGMA, 72 genes are related to both
CAD and CKD (Supplementary Table 9 and Figure 3A). Based
on the two integrative analyses, 169 genes are shared between
CAD and CKD when using cFDR (Supplementary Table 10 and
Figure 3B) and 504 genes are shared between CAD and CKD
when using GPA (Supplementary Table 11 and Figure 3C). In
addition, through GPA we observe that a substantial fraction of
genes that are simultaneously related to CAD and CKD, with π11
estimated to be 8.2% (SE = 0.1%), offering additional statistical
evidence supporting the existence of pleiotropy between CAD
and CKD [the statistic of the likelihood ratio test is 225.6 and
P = 5.35E-51 (Chung et al., 2014)].

Due to the difference of power in identifying pleiotropic
genes via cFDR or GPA, we expect that a gene would be more
likely to have pleiotropic effect if it is discovered by cFDR
and GPA simultaneously. Relying on this principle we define a
set of 121 genes that are associated with CAD and CKD and
are jointly detected by cFDR and GPA to be pleiotropic genes
(Supplementary Table 12 and Figure 3D), among which five
(i.e., IGF2R, LPA, BCAS3, SLC22A2, and ATXN2) were identified
in previous studies (Supplementary Table 1). Furthermore,
after ruling out genes located within 1 Mb on each side of
previously reported genes or SNPs, we ultimately discover 11
newly novel pleiotropic genes associated with both CAD and
CKD (i.e., RHGEF19, RSG1, NDST2, CAMK2G, VCL, LRP10,
RBM23, USP10, WNT9B, GOSR2, and RPRML) (Table 1 and
Supplementary Figures 9–13).

Validation the Results in a Latest GWAS
From the UK Biobank
We further validate the main results using the UKB-CAD
summary statistics and show the results in Supplementary
Tables 13–16. The genome-wide SNP-based heritability is
estimated to be 2.42% (SE = 0.20%) for UKB-CAD with LDSC.
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FIGURE 2 | Genetic correlation between CAD and CKD in six functional categories, including coding, UTR, promoter, DHS, intronic, and intergenic. Error bars show
1.96 × SE. Besides DHS and intergenic, the genetic correlation is r̂g = 0.053 (SE = 0.122, P = 6.64E-1) for coding, r̂g = 0.127 (SE = 0.125, P = 3.10E-1) for UTR,
r̂g = 0.161 (SE = 0.089, P = 7.00E-2) for promoter, r̂g = 0.089 (SE = 0.075, P = 2.55E-1) for intronic.

FIGURE 3 | (A) A total of 72 associated genes shared by CAD and CKD using MAGMA; (B) 169 associated genes shared by CAD and CKD using cFDR; (C) a total
of 504 genes shared by CAD and CKD using GPA; (D) a total of 121 pleiotropic genes of CAD and CKD simultaneously discovered by cFDR and GPA. CAD,
coronary artery disease; CKD, chronic kidney disease; MAGMA, Multi-marker Analysis of GenoMic Annotation; GPA, Genetic analysis incorporating Pleiotropy and
Annotation; cFDR, conditional false discovery rate.
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TABLE 1 | Pleiotropic genes associated with CAD and CKD identified by cFDR and GPA jointly.

Gene CHR Position cFDR GPA

CAD CKD CAD CKD

ARHGEF19 1 16,424,598–16,639,104 2.55E-03 4.16E-02 1.19E-02 1.76E-03

RSG1 1 16,458,181–16,663,659 2.83E-03 3.38E-02 1.28E-02 1.47E-03

NDST2 10 75,461,668–75,671,589 1.09E-02 4.13E-03 4.69E-02 8.63E-04

CAMK2G 10 75,472,258–75,734,349 5.06E-03 3.02E-03 2.51E-02 4.13E-04

VCL 10 75,657,871–75,979,914 6.07E-03 1.52E-02 2.75E-02 1.58E-03

LRP10 14 23,240,959–23,447,291 8.22E-03 2.21E-02 3.35E-02 2.42E-03

RBM23 14 23,269,853–23,488,396 7.62E-03 2.80E-02 3.13E-02 2.78E-03

USP10 16 84,633,554–84,913,527 6.48E-03 2.63E-04 4.08E-02 1.01E-04

WNT9B 17 44,828,967–45,054,437 4.20E-04 3.37E-02 1.84E-03 2.47E-04

GOSR2 17 44,900,485–45,118,733 8.13E-04 3.22E-02 4.08E-03 5.39E-04

RPRML 17 44,955,521–45,156,614 1.90E-03 2.16E-02 8.30E-03 6.50E-04

We also do not observe a substantial inflation in the UKB-
CAD summary statistics [the estimated λ = 1.178 with the
intercept = 1.057 (SE = 0.005)].

According to the result of MAGMA, 184 genes are related
to both UKB-CAD and CKD (Supplementary Table 13 and
Supplementary Figure 14). Based on the two pleiotropy-
informed integrative analyses, 373 genes are shared between
UKB-CAD and CKD using cFDR (Supplementary Table 14 and
Supplementary Figure 15) and 371 genes are shared between
UKB-CAD and CKD using GPA (Supplementary Table 15 and
Supplementary Figure 16). All the 11 pleiotropic genes described
above are also analyzed here and five (i.e., RSG1, LRP10, RBM23,
WNT9B, and GOSR2) are replicated (Supplementary Table 16).

Functional Analyses for Pleiotropic
Genes
We now undertake functional analyses for the 121 pleiotropic
genes. Among these, most are located within chr 17
(20.7% = 25/121), followed by chr 1 (15.7% = 19/121) and
chr 11 (12.4% = 15/121) (Supplementary Figure 17). In
terms of the DAVID analysis, these genes are enriched
in 34 GO terms (Supplementary Table 17). The top five
candidate pathways include “dopamine transmembrane
transporter activity” (P = 2.28E-04), “quaternary ammonium
group transport” (P = 3.54E-04), “quaternary ammonium
group transmembrane transporter activity” (P = 3.79E-04),
“dopamine transport” (P = 7.38E-04), and “organic cation
transmembrane transporter activity” (P = 7.89E-04). There
pathways offer part of evidence supporting common genetic
foundations between CAD and CKD. For instance, it has
been shown that CKD patients had higher levels for some
quaternary ammonium salts (e.g., choline) (Rennick et al.,
1976), which were also risk factors for CAD (Guo et al.,
2020). In our PPI analysis (Supplementary Figure 18), strong
interactions are found among pleiotropic genes, such as
NDST2, CAMK2G, RASGRF1, IGF2R, SORT1, and TRIB1.
These genes were reported to be associated with organic cation
transmembrane transporter, such as organic anion transporters
oat1 and oat3, and organic cation transporters oct1 and oct2,

which was also altered with chronic kidney failure in rats
(Komazawa et al., 2013).

DISCUSSION

It has been widely observed that CAD and CKD share common
pathological and clinical feature (Go et al., 2004; Liu et al., 2012;
Tonelli et al., 2012; Ene-Iordache et al., 2016). However, the
underlying genetic overlap between the two diseases remains
unclear and a large proportion of genes related to CAD and
CKD are yet discovered (Manolio et al., 2009). Large-scale
GWASs undertaken for CAD and CKD offer an unprecedented
opportunity to answer this question. In the present study a
positive genetic correlation was found between CAD and CKD,
implying genetic variants that were associated with the risk of
CKD would be also related to the risk of CAD. This finding also
partly explained the observed comorbidity of the two diseases
(Go et al., 2004; Ene-Iordache et al., 2016).

Using existing well-established statistical approaches, we
ultimately identified 11 novel pleiotropic genes shared by CAD
and CKD, including ARHGEF19, RSG1, NDST2, CAMK2G, VCL,
LRP10, RBM23, USP10, WNT9B, GOSR2, and RPRML, some
of which were previously reported to play important roles in
the pathogenesis of CAD or CKD (Agosti, 2002; Sivapalaratnam
et al., 2012; Zanders, 2015). Furthermore, we also validated
our main finding in an independent UKB-CAD dataset and
replicated five genes.

Specifically, prior studies showed that ARHGEF19 (Klarin
et al., 2018) and LRP10 (Sugiyama et al., 2000) were associated
with total cholesterol and low-density lipoprotein (LDL)
cholesterol, which were in turn related to CAD (Nissen et al.,
2005) and CKD (Baigent et al., 2011). RSG1 is involved in targeted
membrane trafficking, and further involved in cilium biogenesis
by regulating the transportation of cargo proteins to the basal
body and apical tips of cilia with its protein (Agbu et al., 2018).
Mice and humans with abnormal primary cilia can exhibit defects
in cardiac morphogenesis, and also can cause kidney disease
(Agbu et al., 2018).
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NDST2 encodes a member of the N-deacetylase/N-
sulfotransferase subfamily, which has dual functions
(N-deacetylation and N-sulfation) in processing heparin
polymers (Humphries et al., 1998). Inactivation of NDST2
may impact the atherosclerosis by altering the structure of
monocytes/macrophages heparan sulfate (HS) (Gordts et al.,
2014), while also alter the glomerular HS to impact the primary
kidney diseases (Goode et al., 1995). CAMK2G belongs to the
Ca2+/calmodulin-dependent protein kinase subfamily (Moyers
et al., 1997). Vascular calcification correlates with the vessel
stiffening and hypertension, and further increases the risk of
atherosclerosis and myocardial infarction. It also exhibits a
hugely elevated risk of cardiovascular mortality in CKD patients
(Shanahan Catherine et al., 2011).

Vinculin (VCL) is a membrane-cytoskeletal protein, which
associated with the linkage of integrin adhesion molecules to the
actin cytoskeleton (Burridge and Feramisco, 1980), and the cell–
cell and cell-matrix junctions, where it is thought to function in
anchoring F-actin to the membrane (Geiger, 1979). Endothelial
dysfunction caused by F-actin cytoskeleton disorder is a well-
recognized instigator of cardiovascular diseases and CKD (Ding
et al., 2016). USP10 encodes a member of the ubiquitin-specific
protease family of cysteine proteases (Wang et al., 2015; Lim
et al., 2019). Inactivation of USP10 can diminish Notch-induced
target gene expression in endothelial cells. Importantly, tight
quantitative and temporal control of Notch activity is essential
for vascular development (Wang et al., 2015; Lim et al., 2019).

WNT9B, encodes the secreted signaling proteins (Garriock
et al., 2007), is significantly associated with systolic blood
pressure (Hoffmann et al., 2017), which is further related
to the risk of CAD (Turner et al., 1998) and CKD (Jafar
et al., 2003). GOSR2 encodes a trafficking membrane protein
which transports proteins among the medial- and trans-Golgi
compartments (Bui et al., 1999). Due to its chromosomal location
and trafficking function, GOSR2 may be involved in familial
essential hypertension (Boissé Lomax et al., 2013), and also was
reported to be relevant to systolic blood pressure (Ehret et al.,
2011) and CAD (van der Harst and Verweij, 2018).

The major strength of our work is that multiple pleiotropy-
informed methods were implemented to detect pleiotropic
genes by combining existing GWASs summary results without
requiring individual-level datasets. Unlike previous studies
(Andreassen et al., 2013; Chung et al., 2014; Zeng et al., 2018), we
perform MAGMA methods to enrich a group of SNPs which may
be likely associated with CAD or CKD but cannot reach genome-
wide significance because of modest effects if using single marker
analysis. Moreover, to minimize possible false discovery, we only
reported pleiotropic genes that were simultaneously discovered
by GPA and cFDR and thus were more likely to be related to both
CAD and CKD. Therefore, our findings are robust.

Nevertheless, there are some limitations needed to state. First,
we cannot replicate all these genes via in vivo and in vitro
experiments. Second, the individuals involved in our study are
of European ancestry, it is not clear whether the finding can
be generalized to other populations because of ethnic diversity
in genetics. Third, although empirical evidence shown above
indicates that the newly identified pleiotropic genes may underlie

certain aspects of the pathogenesis of CAD and CKD in a direct
or indirect way, the causally biological mechanisms of those genes
are still largely unclear; therefore, further studies are needed to
completely delineate their functions on CAD and CKD.

CONCLUSION

This study identifies common genetic architectures overlapped
between CAD and CKD and will help to advance understanding
of the molecular mechanisms underlying the comorbidity of
the two diseases.
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