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Ergang Guo, Cheng Wu, Jun Ming, Wei Zhang, Linli Zhang and Guoqing Hu*

Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei,
Wuhan

DNA damage repair plays an important role in cancer’s initiation and progression, and
in therapeutic resistance. The prognostic potential of damage repair indicators was
studied in the case of clear cell renal cell carcinoma (ccRCC). Gene expression profiles
of the disease were downloaded from cancer genome databases and gene ontology
was applied to the DNA repair-related genes. Twenty-six differentially expressed DNA
repair genes were identified, and regression analysis was used to identify those with
prognostic potential and to construct a risk model. The model accurately predicted
patient outcomes and distinguished among patients with different expression levels of
immune evasion genes. The data indicate that DNA repair genes can be valuable for
predicting the progression of clear cell renal cell carcinoma and the clinical benefits
of immunotherapy.
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INTRODUCTION

Renal cell carcinoma (RCC) is a lethal cancer of the urinary system, accounting for 2-3% of
all malignant cancers in adults (Siegel et al., 2019). Although surgical and systemic therapies
for clear cell renal cell carcinoma (ccRCC), the most common subtype of renal carcinoma,
have improved survival, the outcome in patients with advanced, metastatic disease is still poor
(Garje et al,, 2020). Risk-stratifying the patients based on their clinical characteristics and then
individualizing treatment according to the risk level could be helpful to improve the outcome.
However, the current tumor stage system is insufficient to predict ccRCC prognosis effectively
(Suh et al., 2020). Therefore, it is necessary to explore new biomarkers for prognostic prediction
in patients with ccRCC.

The advances in genomics and bioinformatics in recent years have enabled the discovery of
novel targets and biomarkers. Many biomarkers including IncRNA, miRNA, and mRNA have been
identified for making diagnosis and predicting prognosis as well as guiding treatment choices
(Wang et al., 2016; Carril-Ajuria et al., 2019). For instance, some immune-associated signatures
have been employed to evaluate the tumor microenvironment (TME) infiltration characterization,
revealing a linkage between the TME and clinical features (Zeng et al., 2019). Moreover, the

Abbreviations: DDR, DNA damage repair; ccRCC, clear cell renal cell carcinoma; TCGA, The Cancer Genome Atlas; GEO,
Gene Expression Omnibus; ICGC, International Cancer Genome Consortium; FC, fold change; FDR, false discovery rate;
DEGs, differentially expressed genes; ROC, receiver operating characteristics; DRRGs, DNA repair-related genes; GO, gene
ontology; TANs, tumor-associated neutrophils; PARP, poly ADP-ribose polymerase.
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signatures such as hypoxia, N6-methyladenosine (m6A) mRNA
modification, autophagy and metabolism have been used for
prognosis prediction (Feng et al., 2020; Hu et al, 2020;
Jiang p. et al., 2020; Liu et al., 2020).

The role of DNA damage repair (DDR) in neoplasia and
tumor progression has been extensively studied (Mauri et al.,
2020). Defective DDR can lead to accumulated DNA lesions
and genome instability, which contribute to tumorigenesis. It
has been reported that germline mutations in exonuclease 5
can impair DNA repair ability and cause androgen-related
prostate cancer (Ali et al, 2020). However, during cancer
progression, DNA repair may be related to sensitivity to
anticancer drugs such as poly ADP-ribose polymerase (PARP)
inhibitors or to radiation. MAP kinase-ERK kinase5 (MEKS5)
can promote the phosphorylation of DNA-PK in response to
ionizing radiation (Broustas et al., 2020). High TTK protein
kinase (TTK) expression in breast cancer is associated with
efficient repair through homologous recombination and low
radiation sensitivity (Chandler et al., 2020). These earlier studies
point to the importance of exploring the different roles of DNA
repair genes in cancer.

As an aggressive tumor, RCC is characterized by high genomic
mutation levels (Alexandrov et al., 2013; Cancer Genome Atlas
Research Network, 2013; Ged et al., 2020). Many studies reported
the prognostic and biological significance of the cancer-driven
genetic alterations including von Hippel-Lindau, TP53 as well as
PTEN mutations in RCC (Chen et al., 2019; Huang et al., 2020).
However, the role of DNA repair genes in maintaining genome
stability in RCC is rarely reported.

In this study, we collected and analyzed data from the
International Cancer Gene Consortium, the Gene Expression
Omnibus (GEO) and The Cancer Genome Atlas (TCGA) to
determine which DNA repair genes are prognostic for patients
with ccRCC, developed a prediction model based on the
expression of DDR-associated genes, and explored genes and
pathways associated with the gene signatures.

MATERIALS AND METHODS
Data

In total, 546 DDR-associated genes were analyzed in terms
of gene ontology (GO). The clinical data and RNA sequences
were downloaded from the TCGA portal, which contains 514
tumor and 72 normal samples. Pathological clinical features
for each patient are presented in Table 1. The other three
profiles were collected from the GEO (GSE17818 and GSE53757)
and ICGC databases.

Screening for Differentially Expressed

Genes

The original data were organized and analyzed with the help
of R software (4.0.1). Genes that showed a log, fold change
>1 and a false discovery rate <0.01 between tumor and
normal tissues were considered to be differentially expressed.
Venn diagrams were used to determine the interaction of the
differentially expressed genes (DEGs) of the four datasets. The

TABLE 1 | Clinical characteristics of the ccRCC patients.

E High risk group (251) Low risk group (263)

Number Percentage Number Percentage Number Percentage

(%) (%) (%)
Age
>60 273 53.1 141 56.2 132 50.2
<60 241 46.9 110 43.8 131 49.8
Gender
Female 178 34.6 80 31.9 98 415
Male 336 65.4 171 68.1 165 58.5
Grade
G1 13 2.5 1 0.4 12 4.6
G2 224 43.6 89 35.5 135 51.3
G3 204 39.7 102 40.7 102 38.8
G4 73 14.2 59 23.4 14 5.3
Stage
| 257 50 96 38.2 161 61.2
Il 53 10.3 22 8.8 31 1.8
1} 122 23.7 70 27.9 52 19.8
\% 82 26 63 25.1 19 7.2

differentially expressed DDR genes between tumor and normal
tissues was identified using the “Linear Models for Microarray
Data (LIMMA)” package with a cut-off criterion of p < 0.05.

Modeling and Assessment of Its

Prognostic Ability

The patients in the TCGA database were allocated randomly
into one of two groups: a training group and a validation
group. The training group was used to construct a clinical
prognostic model, and the validation group was used to evaluate
the model’s stability. First, univariate Cox regression analysis was
used to extract potential DNA repair genes significantly related to
patient prognosis. Last absolute shrinkage and selection operator
(LASSO) regression was then used to prevent overfitting of the
model. Finally, a risk score formula was generated by combining
the gene expression levels weighted by the regression coeflicients
derived from the multivariate Cox regression analysis.

According to the risk scores calculated using the formula, we
set the median risk scores as cut-oft values and allocated the
patients in both training and validation groups into a high-risk
group and a low-risk group. The survival rates of the two groups
were then compared using Kaplan-Meier analysis. The predicting
sensitivity of the selected gene sets was assessed by plotting
the receiver operating characteristics (ROC) curve. An area
under the curve (AUC) >0.60 was taken as indicating moderate
accuracy, and an AUC >0.75 was regarded as highly accurate for
predictions. The prognostic values of the risk scores were assessed
by the univariate and multivariate analysis through R software.

Additionally, the correlation between the risk scores and
clinicopathological features in ccRCC patients were assessed
based on the data from TCGA. Then we integrated our risk scores
into current staging system and evaluated the utility in stratifying
the risk levels.
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Functional and Pathway Enrichment
Analysis

We identified the different genes between high risk and low
risk groups, and conducted GO pathway analysis with the
clusterProfiler R packages to functionally annotate the DEGs in
different groups.

Statistical Analyses

The t-test was used for statistical comparison. Long-rank test was
performed to compare the overall survival rates between different
groups. The statistical analyses were completed using R software,
and results were considered statistically significant when the p
value was <0.05.

RESULTS

Differentially Expressed Genes

A total of 7359 genes in the TCGA data, 2862 in the GEO dataand
4681 in the ICGA data were found to be differentially expressed
between the ccRCC and normal renal samples. There were 951

DEGs common to the gene lists (Figure 1), and 26 of them were
found to be closely related to DDR (Table 2).

Prognosis-Related Genes

Univariate analysis showed that the expression of 14 DNA
repair-related genes (DRRGs) was significantly related to ccRCC
patient prognosis (p < 0.05). LASSO regression analysis then
confirmed acceptable lack of collinearity among the variables
(Figures 2A,B). Subsequently, multivariate Cox regression
identified 6 DRRGs as potentially powerful prognostic factors
(Table 3). ISG15, RAD51AP1, secreted frizzled-related protein 2
(SFRP2), and SLEN11 were considered as high-risk genes (hazard
ratio >1), while SPATA18 and VAV3 were regarded as low-risk
(hazard ratio <1).

The Kaplan-Meier survival analysis showed that patients with
high risk scores exhibited worse overall survival rates than those
with low risk scores (Figures 3A,B). The ROC analysis generated
an AUC of 0.791 for the training group and 0.773 for the test
group, indicating good prediction performance (Figures 3C,D).
The distributions of risk scores and survival statuses of the
patients in the two groups are shown in Figures 4A-D.

ICGC(4681)

GSE17818(1979)

FIGURE 1 | Venn diagram of genes differentially expressed between ccRCC and normal tissues.

TCGA(7359)

GSE53757(3274)

695 /
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TABLE 2 | Univariate analysis of 26 DNA damage repair genes in
patients with ccRCC.

Gene name HR HR.95L HR.95H p value
BCL2A1 1.054477 1.023117 1.086798 0.000574
CCND1 0.997448 0.99525 0.999651 0.023176
DDB2 0.959523 0.906267 1.015908 0.15612
DDIT4 1.001353 0.999452 1.003257 0.163094
DTL 1.318731 1.062495 1.636762 0.012077
EGLN3 0.996964 0.992156 1.001796 0.217695
GINS2 1.268419 1.04468 1.540076 0.016331
HMOX1 0.998082 0.994866 1.001309 0.243801
IFI16 1.043266 1.021694 1.065293 0.0000709
ISG15 1.010463 1.005042 1.015914 0.000149
MACROD1 1.009071 0.972349 1.047181 0.633044
MNDA 1.015882 0.975147 1.058317 0.450462
MYC 1.00205 0.994208 1.009954 0.609446
NUDT1 1.176014 1.071893 1.29025 0.000609
NUPR1 1.001684 0.99866 1.004717 0.275476
E 1.021634 1.003497 1.0401 0.019187
PLK2 0.998984 0.983324 1.014894 0.899689
PYCARD 1.033763 1.012919 1.055037 0.001398
RAD51AP1 1.46565 1.23834 1.734685 0.00000874
SFRP2 1.004603 1.00157 1.007644 0.002907
SLFN11 1.063327 1.020337 1.108128 0.003544
SPATA18 0.929987 0.892106 0.969477 0.000624
STK33 1.034072 0.722815 1.479363 0.854503
TNFRSF1B 1.012184 0.991965 1.032815 0.239466
UBE2L6 1.002813 0.992091 1.013652 0.608502
VAV3 0.944322 0.904244 0.986177 0.009625

HR abbreviates hazard ratio.

Risk Scores and Clinical Characteristics
The expression of prognostic genes in the two groups is presented
in Figure 5A. On average, the risk scores of patients differently
classified by pathological stage and WHO grade were significantly
different (Figures 5A,B). The ROC curve showed that the
proposed model’s predictions of overall survival were similar to
those using pathological stage (Figures 5C,D). The patients in
high risk group had a significantly worse prognosis than those
in low risk group even though they had similar clinicopathologic
characteristics, in similar stage (Figure 5E) or grade (Figure 5F).

Univariate analyses identified age, pathological stage, grade
and risk score as significant predictors of OS in both the training
and test groups (Figures 6A,B). Multivariate analysis confirmed
that only risk score and pathological stage were related to OS
independently (Figures 6C,D). Moreover, the hazard ratio of
the risk is higher than other clinicopathologic characteristics,
which indicating that the prognostic value of risk score based
on the DDR associated genes might be better than clinical
stages and grades.

Risk Score and Immune Evasion

A link between DDR and immune escape has been reported
(Sato et al., 2019), so immunity-related gene expression was
evaluated in patients with different risk scores. Patients in the
high-risk group had higher expression of PD-1, LAG-3, CTLA-
4, and TIGIT than those in the low-risk group (Figures 7A-H),

indicating that patients with high risk scores might benefit from
the use of combination therapies that integrate immunotherapy
with chemotherapy, radiotherapy, and targeted therapy.

Enrichment in Patients With Different

Risk Scores

To identify a mechanism potentially contributing to tumor
progression, 4190 genes differentially expressed between the
high-risk and low-risk groups (Figure 8A) were studied. GO
enrichment analysis showed that the DEGs are mainly related to
immune processes such as neutrophil degranulation, neutrophil-
mediated immunity, neutrophil activation, and in metastasis
pathways including cell adhesion molecule binding, cell-substrate
adherent junctions, and focal adhesion (Figure 8B). Those
relate the prognostic model mechanistically to tumor progression
in ccRCC patients.

DISCUSSION

Clear cell renal cell carcinoma is highly heterogeneous,
and its prognosis can vary widely even for patients with
similar clinicopathologic characteristics and treatment options,
suggesting that current classifications are insufficient for
assessing outcomes and risk stratification. Hence, more research
is needed to identify novel biomarkers and risk factors in patients
with ccRCC. The current study was performed as a pilot trial
not only to identify the potential biomarkers associated with
prognosis but also to explore new hypotheses for further studies.

Prediction models have for years been explored to guide
individual treatment. It has been reported that models based
on the expression of tumor genes would allow prediction of
patients’ response to fluorouracil and gemcitabine (Clayton
et al, 2020). Jiang et al. (2019; Jiang Y. Z. et al, 2020)
classified triple-negative breast cancers into different subtypes
on the basis of genomic features and evaluating the clinical
benefit of subtyping-based targeted therapy for triple-negative
breast cancers. But the individual treatment based on molecular
subtyping in ccRCC is rare.

The DDR-associated pathway is associated with the
carcinogenesis of ccRCC, and the expression of some DNA
repair factors is correlated with patient prognosis (Na et al.,
2019). This study was designed to determine the impact of DNA
repair genes on the progression of ccRCC and patient prognosis.
Twenty-six DNA repair genes were identified and 14 of them
were considered as related to the overall survival of ccRCC
patients, and risk scoring based on those genes was shown to be
a useful independent prognostic technique. Patients identified as
high-risk through the scoring tended to have late stage disease
and high tumor grades.

RAD51-associated protein 1 (RAD51AP1) interacts with
RAD51, which plays an important role in RAD5I-related
homologous recombination (Wang et al., 2019). A recent study
found that RAD51API1 is highly expressed in non-small cell
lung cancer patients and facilitates invasion and metastasis
by inducing epithelial-mesenchymal transitions (Wu et al,
2019). ISG15 is related to chemosensitivity in pancreatic cancer
(Inaetal, 2010). As a known regulator of the WNT pathway,
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FIGURE 2 | (A) Partial likelihood deviance versus log (») was performed through LASSO regression. (B) Coefficients of selected features are shown by lambda

parameter.
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SFRP2 can activate or suppress canonical and non-canonical
WNT pathways in different tissues. Sun reports that DNA
damage can induce the production of SFRP2, which enhances
WNTI16B and B-catenin activity to result in therapy resistance
(Sun Y. et al., 2016). Recent studies have found that Schlafen
1 (SLFN1) produces cells that are highly sensitive to DNA-
damaging drugs by suppressing checkpoint maintenance and
repair through homologous recombination (Mu et al., 2016).
Small cell lung cancer patients with high SLFN1 expression might
benefit from PARP inhibition (Murai et al., 2016; Lok et al., 2017).

The immunotherapy blocking the interaction between PD-1
and PD-L1 in ccRCC patients has seen advances in recent
years, which provides a new treatment option (Motzer et al.,
2015). However, the benefit from this therapy is highly variable
(Motzer et al, 2020). Although there are some markers
developed to predict immunotherapy response, their specificity
remains controversial.

DNA damage repair is associated with immune activation in
different cancers. Chatzinikolaou et al. (2014) has reviewed the
direct links between innate immune signaling and DNA damage.
And recent work has revealed that pharmacological inhibition of
the DNA damage response proteins CHK1 and PARP increases

TABLE 3 | Multivariate Cox regression of 6 DNA damage repair genes and overall
survival among the ccRCC patients.

Gene Coefficient HR HR.95L HR.95H p value

ISG15 0.007674 1.007703  1.001845 1.013596  0.009895
RAD51AP1 0.323186 1.381522  1.141907  1.671418  0.000883
SFRP2 0.004232 1.004241  1.000589  1.007905  0.022789
SLFN11 0.056129 1.057734 1.011561 1.106014 0.013712
SPATA18 —0.04544 0.955578  0.910287  1.003123 0.06664

VAV3 —0.03492 0.965683  0.922456  1.010936  0.135047

HR abbreviates hazard ratio.

the levels of tumor-infiltrating T-lymphocytes. With anti-PD-
L1 therapy it has been shown to work synergistically in modes
of small cell lung carcinoma through the STING/TBK1/IRF3
innate immune pathway (Sen et al, 2019). A group led by
Sato has shown that genotoxic stress such as irradiation or
PARP inhibition can upregulate the expression of PD-L1 through
the ATM-ATR/CHKI1 pathway (Sato et al,, 2017). Jiao et al
(2017) found that PARP inhibitors can upregulate PD-L1 and
promote immune suppression. Garsed et al. (2018) reported
that DDR pathway mutations are associated with immune
cell infiltration and activation. The association of mutations
in DNA repair genes and immune regulatory genes with
bladder cancer has also been documented (Vidotto et al., 2019).
Moreover, it has been reported that alterations in DDR genes
which cause loss of function are frequent in metastatic ccRCC,
which may certainly affect the effectiveness of immunotherapy
(Ged et al., 2020). We therefore performed this bioinformatics
analysis to explore the potential relationship between DDR
and immune evasion. Our study found that ccRCC patients
with greater risk had high expression of immune evasion
genes. As it has been reported that antibodies against immune
evasion genes could restore responses of tumor-associated T
cells to tumor related antigens (Dong et al., 2002), and higher
PD-L1 expression on tumor cells and/or immune cells was
shown to be associated with better efficacy of anti-PD1/PD-
L1 immunotherapies (Dong et al., 2002; Topalian et al., 2012),
we speculated that patients with high risk might benefit
from immunotherapy.

The GO of the DDR genes identified many immunity-
and metastasis-related pathways. As the major portion of
the leukocytes in peripheral blood, neutrophils have been
associated with carcinogenesis and cancer development
(Galdiero et al., 2018; Mollinedo, 2019). Many studies
have shown that neutrophils in the TME are related
with poor prognosis (Shen et al, 2014; Zhou et al, 2016;
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Jungnickel et al., 2017). Moreover, the neutrophil-to-lymphocyte
ratio has been identified as a risk factor with different tumors
(Templeton et al., 2014; Sun W. et al., 2016; Barker et al., 2020).
Neutrophils in the TME release many inflammatory factors
that contribute to tumor proliferation, metastasis and immune
suppression. A group led by Coffelt found that tumor-associated
neutrophils (TANs) induced by IL-17 can inactivate cytotoxic
T lymphocytes and promote metastasis (Coffelt et al., 2015).
A previous study found that the interaction between TANs
and tumor cells led to tumor shedding, which promoted tumor
spreading (Wislez et al., 2007). Moreover, TANs recruit several
immunoregulatory cells which inhibit anti-tumor immunity
and induce T cell apoptosis by releasing TNF-a (Tecchio et al.,
2013; Powell and Huttenlocher, 2016; Michaeli et al., 2017).
MMP2, MMP9, VEGE, arginase, and elastase from neutrophil
degranulation can also contribute to tumor progression (Caruso
et al., 2010; Mishalian et al., 2013; Deryugina et al., 2014).
This study has revealed that DNA repair genes are involved in
immune and metastasis signaling, uncovering their effects on the
initiation and development of ccRCC.

Many prognostic models have been proposed based on
immunity, autophagy and glycolysis genes, and their prognostic
value in different types of cancer has been evaluated (An et al,,
2018; Wan et al, 2019a,b; Zhang et al., 2019). However, the
prognostic utility of DNA damage genes in cancer remains
controversial. This study has shown that DDR-associated
signatures correlate with poor prognosis among ccRCC patients,
and the ROC curves show the model’s potential utility in
predicting the survival of ccRCC patients. Moreover, integrating
our risk scores into current staging system lead to a more
precise predictive model to further stratify patients with distinct
prognosis, as shown by the survival curves plotted in this study.

It should be noted that there are also some shortcomings
in our study. First, only a few Asians were included in

the data used, which may lead to selection bias. Secondly,
this is a bioinformatics analysis based on public databases,
and experimental as well as clinical studies are required to
validate these findings.

In summary, our study identified DDR signatures that could
predict prognosis in ccRCC patients. The current findings show
that risk scores from our model can further improve the current
clinical staging system and provide more accurate prediction on
outcomes. In addition, our model can predict the expression of
immune evasion proteins in ccRCC patients, which might predict
their response to immunotherapy. Further studies are required to
validate our findings.
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