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Gilthead sea bream (Sparus aurata) belongs to a group of teleost which has high
importance in Mediterranean aquaculture industry. However, industrial production is
increasingly compromised by an elevated outbreak of diseases in sea cages, especially
a disease caused by monogeneans parasite Sparicotyle chrysophrii. This parasite
mainly colonizes gill tissues of host and causes considerable economical losses with
mortality and reduction in growth. The aim of current study was to explore the genetics
of host resistance against S. chrysophrii and investigate the potential for genomic
selection to possibly accelerate genetic progress. To achieve the desired goals, a test
population derived from the breeding nucleus of Andromeda Group was produced.
This experimental population was established by crossing of parents mated in partial
factorial crosses of ∼8 × 8 using 58 sires and 62 dams. The progeny obtained from
this mating design was challenged with S. chrysophrii using a controllable cohabitation
infection model. At the end of the challenge, fish were recorded for parasite count,
and all the recorded fish were tissue sampled for genotyping by sequencing using 2b-
RAD methodology. The initial (before challenge test) and the final body weight (after
challenge test) of the fish were also recorded. The results obtained through the analysis
of phenotypic records (n = 615) and the genotypic data (n = 841, 724 offspring and 117
parents) revealed that the resistance against this parasite is lowly heritable (h2 = 0.147
with pedigree and 0.137 with genomic information). We observed moderately favorable
genetic correlation (Rg = −0.549 to −0.807) between production traits (i.e., body weight
and specific growth rate) and parasite count, which signals a possibility of indirect
selection. A locus at linkage group 17 was identified that surpassed chromosome-wide
Bonferroni threshold which explained 22.68% of the total genetic variance, and might
be playing role in producing genetic variation. The accuracy of prediction was improved
by 8% with genomic information compared to pedigree.

Keywords: single nucleotide polymorphisms, genomic selection, genome-wide association analysis, genetic
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INTRODUCTION

Gilthead sea bream (Sparus aurata) is an economically important
farmed fish species, specifically to the Mediterranean aquaculture
industry with an annual production of ∼ 160,563 metric tons
(FEAP Secretariat, 2017). The enhanced production and the
demand of gilthead sea bream is also accompanied by production
challenges with an increase of disease outbreaks (viral, bacterial,
and parasitic) in sea cages (Food and Agriculture Organization
of the United Nations [FAO], 2014), especially those which
are caused by monogeneans parasites (Sitjà-Bobadilla, 2004;
Nowak, 2007) with direct life cycles on the host. Sparicotyle
chrysophrii (S. chrysophrii), is a common monogeneans parasite
which infests both wild and cultured gilthead seabream and
instigates lethal epizootics in sea cages and is considered
as one of the main diseases which threatens Mediterranean
aquaculture. This parasite mainly colonizes gill tissues of the
host and causes considerable economical losses with mortality
ranging from 10 to 30% (Athanassopoulou et al., 2005; Muniesa
et al., 2020), and, more importantly by reduction in growth
of the farmed stocks triggered by emaciation and anemic
state of the survivors (Sitjà-Bobadilla and Alvarez-Pellitero,
2009). Treatment of farmed fish against S. chrysophrii is very
expensive, labor intensive, and requires resource demanding bath
applications using anthelmintics which are also associated with
environmental impacts (Basurco and Rogers, 2009; Rigos et al.,
2013). Moreover, bath treatments may cause handling stress to
the fish which may further increase losses.

Selection for genetic resistance against parasitic diseases is
a highly valuable tool to help prevent or diminish disease
outbreaks, especially where effective therapeutic agents or
vaccines are limited or lacking (Bishop and Woolliams, 2014).
The selection response is dependent on several factors including
heritability, weight given to a trait, accuracy of selection and the
generation interval. The pace of genetic progress can be increased
through selective breeding (Ødegård et al., 2011) given that the
trait is of moderate to high heritability (Odegård et al., 2014).
Breeding programs in gilthead sea bream primarily included
growth rate, and parasite/pathogen resistance with emphasis on
minimizing productions costs (Chavanne et al., 2016; Janssen
et al., 2017). Increasing the number of traits in the breeding
goal could be complex and may impact selection response due
to a reduced weight per trait and possible unfavorable genetic
correlations among traits (Haffray et al., 2012; Yáñez et al., 2016).

The discovery of molecular markers [e.g., single nucleotide
polymorphisms (SNPs)] and their associations with the traits
of economic importance could prove very helpful to overcome
unfavorable correlations among traits. Moreover, selection
response in animal breeding programs especially for the traits
which are difficult to improve (e.g., lowly heritable traits, meat
quality traits, sex limited traits, etc.) by traditional selection
can benefit from genome-wide distributed genetic markers and

Abbreviations: LPC, log transformed parasite count; h2, heritability; SGR,
specific growth rate; BW, body weight; GS, genomic selection; QTL, quantitative
trait locus; SNPs, single nucleotide polymorphisms; RAD-Seq, restriction-site
associated DNA sequencing; GWAS, genome wide association studies; QC, quality
controls; LG, linkage groups; cM, centiMorgans.

the knowledge about genetic markers linked to genes affecting
quantitative traits (Meuwissen and Goddard, 1996; Pyasatian
et al., 2007). The genetic markers have revealed significant
associations with the quantitative traits of economic importance
in Atlantic salmon (Everett and Seeb, 2014; Gonen et al., 2015;
Moen et al., 2015).

Single nucleotide polymorphisms are popular molecular
genetic markers widely used in aquaculture and livestock research
(Gray et al., 2000; Aslam et al., 2012). Restriction-site associated
DNA based sequencing (RAD-Seq) is a reduced representation
high-throughput sequencing technique for the simultaneous
detection and genotyping of individuals for the detected SNPs
(Baird et al., 2008). The technique has been elaborated and
used in several studies, briefly it employs (i) fragmentation
of genomic DNA using restriction enzyme(s), (ii) selection of
fragment size(s) from the digested DNA, unique individual
specific nucleotide based barcoding and library preparation
(iii) pooling the libraries from multiple samples, and high
throughput sequencing. RAD-Seq technique has contributed
in the development of genomic resources and studies on
aquaculture species, i.e., discovery of SNPs, construction of
high-density linkage maps (Kakioka et al., 2013; Palaiokostas
et al., 2013a,b, 2015; Gonen et al., 2014) and genome wide
association studies (GWAS) in a cost-efficient manner (Campbell
et al., 2014; Palti et al., 2015; Tsai et al., 2016). A simplified
version of RAD-Seq is known as 2b-RAD which requires type
IIB restriction enzymes to digest genomic DNA from both
ends (up and downstream) to the enzyme recognition site
(Wang et al., 2012). The fragment size obtained with type
IIB restriction enzymes are of uniform length (∼36 bp tags),
and thus avoids the sampling error because size selection is
not needed, which is required in RAD-Seq during the size
selection step (Puritz et al., 2014). 2b-RAD approach has also
been used and assessed by researchers for exploring genetic
basis of traits in gilthead sea bream and other fish species
(Fu et al., 2016; Palaiokostas et al., 2016; Pecoraro et al.,
2016).

Moreover, there have been recent developments in genomic
resources and tools for gilthead sea bream including the
availability of a reference genome assembly (Pauletto et al.,
2018; Pérez-Sánchez et al., 2019) and SNPs based genotyping
array (Lozano, 2019). The development of these genomic
resources/tools can also provide opportunities for advanced
selection methods such as genomic selection. Genomic selection
(GS) is an advanced method for predicted breeding values of
candidates which utilizes the effects of genome-wide distributed
markers potentially influencing quantitative traits with an
objective to achieve reliable selection (Meuwissen et al., 2001).
The use of GS becomes highly important for the traits which
are difficult to measure on live selection candidates, e.g.,
carcass and disease resistance traits. The GS contribute through
significant improvement in accuracy for predicting breeding
values compared to accuracies obtained via traditional pedigree-
based approaches (Palaiokostas et al., 2016; Tsai et al., 2016;
Bangera et al., 2017; Vallejo et al., 2017).

The aim of current study was to explore genetic basis
of host resistance to S. chrysophrii by estimating the role
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of genetic variation explaining resistance to this gill parasite,
generate a linkage map, perform a GWAS to detect QTL, and
finally compare accuracies of predictions based on genomic
and pedigree data.

MATERIALS AND METHODS

Resource Population
All the fish used originated from the breeding nucleus of the
Andromeda Group which was developed with a cross of parents
mated in ∼8 × 8 partial factorial crossbreeding design using 58
sires and 62 dams. The brooders of this species are known to be
fluent spawners under natural photoperiod without any need of
hormonal and/or light regimes. Parents were allowed to perform
natural mass spawning events in eight different broodstock
tanks. All the parents were tissue sampled for later parentage
assignment and genomic analysis. The collection of fertilized eggs
was performed in four consecutive days with equal number of
eggs collected in each day from each of the eight tanks. The
collected eggs were pooled each day to avoid any environmental
variances. For this specific experiment, an average of around 250
fingerlings per tank (total N = 2,000) were randomly sampled
from each tank and kept until they reached the average body
weight of 16 g. The descendent fish taken from this mating design
had approximately the same size.

Challenge Test
A challenge test was performed following the controllable
cohabitation infection model developed by Rigos et al. (2015)
using donor fish as a prime source of disease transfer. The
infection model is detailed and discussed in Rigos et al. (2015).
In brief, 2,000 healthy gilthead sea bream weighing 16 ± 4 g
were transferred to the facilities of the Hellenic Centre for Marine
Research (Athens, Greece). Prior to the transfer, the fish were
maintained in land tanks to avoid S. chrysophrii infections. Upon
arrival, 20 fish were randomly examined by a stereoscopical
analysis of their two external gill arches to ascertain the absence
of the parasite. One thousand fish, considered as the recipient
group, were transferred from the hosting tanks into a net cage
(6 m3) located within an inland cement tank (50 m3). The
remaining fish were kept in identical conditions in an adjacent
cement tank and constituted the control group. One week later,
250 gilthead sea bream (50 ± 13 g) naturally infected with
S. chrysophrii (infection confirmed by stereoscopy but level not
counted) were introduced into the cement tank harboring the
recipient fish and were left to swim freely outside of (around
and beneath) the net for the whole experiment’s duration. With
this design, donor fish were not interfering with the feeding
environment of the recipient fish. Fish tanks were continuously
supplied with aerated flow-through sea water. All fish were hand-
fed a commercial diet at a daily rate of 2–2.5% of body weight.
The whole experiment lasted for 10 weeks from the time when
donor fish were introduced in the system until the final recording
of gill parasites. The water temperature during the experimental

http://www.andromedagroup.eu/

period ranged from 27 to 20◦C (summer-fall). At the beginning of
the experiment, fish were weekly monitored (random sample of
10 fish) and subjected to stereoscopical examination until it was
confirmed that the recipient fish had received the parasite. This
sampling ended after 2 weeks at the second sampling event when
the observed prevalence was found to be 100%.

Traits
At the end of the experiment, all surviving recipients (n = 807)
along with the control fish (n = 1,000) were individually
weighed. The weighing of control fish was performed to evaluate
the impact of infection vs. infection free environment on the
growth. All recipient fish were slaughtered and subjected to
stereoscopical examination (described above) for total counting
of adult parasites of their 2 external gill arches. At the end
of challenge test we had recordings on parasite count (PC),
initial and final body weights (BW1 and BW2, weights at the
beginning and at the end of the challenge test, respectively), and
the specific growth rate (SGR) within the window (∼ 68 days)
of the challenge test which was calculated using BW1 and BW2
information. The formula used for the calculations of SGR is
given below.

SGR = (ln BW2− ln BW1)/68

Tissue samples of all the phenotyped fish were collected and
stored in ethanol (100%) for further genomic work.

DNA Isolation, Library Preparation and
Sequencing
The genomic DNA was extracted from the collected tissue
samples of ∼ 20 mg. The genomic DNA extraction method
and library preparation protocol are detailed in Aslam et al.
(2018a). In-short, 935 (120 parents and 815 juveniles) 2b-RAD
libraries were constructed following the protocol reported by
Wang et al. (2012) with minor modifications. The digestion
of genomic DNA (300 ng) was performed using AlfI (Thermo
Fisher Scientific, United States) enzyme. The digestion step was
followed by ligation of library-specific adaptors, sample specific
barcoding, and the enrichment of 2b-RAD fragments using
PCR amplifications. The individual specific libraries were then
pooled using two different multiplexing strategies for parents
(64 libraries per pool) and offspring (128 libraries per pool)
with an objective to have higher depth of sequencing in parents.
The pooled libraries were quality controlled using Agilent 2100
Bioanalyzer, and finally sequencing of pooled libraries was
performed on an Illumina NextSeq500 platform (Illumina, San
Diego, CA, United States) with 50 base single-end sequencing (v2
chemistry, high output kit – 50 cycles).

Genotyping 2b-RAD Loci
The genotyping from the individuals specific raw sequence reads
was performed using following four steps,

(i) Adapter trimming and quality filtering was performed
using custom developed scripts from the 2bRAD pipeline
v2.0 (Wang et al., 2012). Poor quality reads were filtered
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out if mean Phred quality score within a sliding window of
4 bp was less than 15, and after the trimming and filtering,
sequence reads of 36-bp length were kept.

(ii) The development of de novo reference sequence was
performed by clustering of quality sequence reads of
parents, which was accomplished with the use of Perl based
scripts together with CD-HIT program (Fu et al., 2012;
Wang et al., 2012).

(iii) Individual specific quality reads were then aligned to the
developed reference sequence using bwa samse (V = 0.7.13-
r1126; Li and Durbin, 2009) and the ‘mpileup’ function
of SamTools version 1.2 (Li et al., 2009) was used to call
variants and the call option of bcftools (Li et al., 2009) was
used to call the genotype at each variant site for each fish.

(iv) The detection of reliable putative SNPs in the population
was carried out using genotype quality (≥20), read depth
(≥5), minor allele count (≥50) in the population at a
particular site, and finally, minimum of 40 individuals were
required to have genotype calls at the particular locus to
fulfill mentioned criteria.

The SNP that passed the above-mentioned criteria were
considered as a putative SNP for further analyses.

Parentage Assignments
The genotype data was further filtered to obtain a panel of
highly informative markers for parentage assignments. Hence,
the SNP genotype data was pruned for both parents and offspring
using minor allele frequency criteria (MAF ≥ 0.35). The filtering
criteria retained 916 highly informative SNPs which were then
used to construct the pedigree with the likelihood ratio method
implemented in CERVUS version 3.0 (Kalinowski et al., 2007).
The assignments obtained from likelihood ratio method were
verified using the opposite homozygote count method (Hayes,
2011; Ferdosi et al., 2014) with the full set of SNPs.

Genetic Linkage Mapping
The data was further pruned for the genetic linkage analysis, both
at the marker and the individual levels. The filtering of markers
was performed on, locus specific genotyping rate (≥70%),
deviation from expected Mendelian segregation (P < 0.001), and
the Hardy–Weinberg equilibrium exact test (P < 1.0 × 10−7).
Filtering of individuals was performed using individual specific
genotyping rate (≥70%). An additional criterion was used for
building linkage only where individuals or families were removed
if they had less than five full-sibs per family. This criterion was
used to include informative families with sufficient information
on recombination, and to avoid computational problems in
building the map.

Linkage mapping was performed using Lep-Map v2 (Rastas
et al., 2015) with the analysis steps described in Aslam et al.
(2018a). Briefly, the module “SeparateChromosomes” was used
with minimum LOD threshold value of 19 to obtain linkage
groups, “JoinSingles” module was used at LOD score limit
of 5 in combination with LOD score difference of 2, and
finally the module “OrderMarkers” was used to estimate the
order and distance between the markers in centiMorgans (cM).

The linkage maps are reported as sex averaged maps unless
otherwise indicated and map figures were plotted using R package
LinkageMapView (Ouellette et al., 2018).

Statistical Analyses
Descriptive Statistics
A generalized linear model was used in R to test the effects of
recorded traits and to obtain initial evaluation of models. The
growth traits (BW1, BW2, and SGR) did not show any significant
effect on PC and therefore were not used as covariates. The
initial body weight (BW1) showed a significant (P ≤ 0.001) effect
on both SGR and BW2. The BW1 was not used as a covariate
for BW2 to avoid genetic parameter deviations for BW2 due
to potential collinearity between traits (BW1 and BW2) but it
was used as a covariate for SGR, which should adjust for the
same starting weight for all the fish and then obtain genetic
variation for SGR. The raw data for PC presented a positively
skewed distribution. Thus, to normalize this distribution a log
transformation was performed on count values, i.e.,

LPC = loge(PC+ 1)

where LPC is a log transformed parasite count, and PC is the raw
parasite count. The addition of 1 to PC was performed to avoid
taking logarithm of 0 (since some fish had PC = 0).

Variance Components Estimation
The heritabilities and genetic correlations for LPC, SGR, and
BW2 were estimated using ASReml 4.0 (Gilmour et al., 2015) with
genomic and pedigree-based relationship matrices (G-matrix and
A-matrix, respectively) using bivariate (LPC vs. SGR and LPC vs.
BW2) mixed models.

yi = µ + Xb + Zu+ e (1)

where yi is a vector of ‘n’ records on trait i (LPC, SGR, or BW2),
µ, b, and u are overall mean, vector of fixed effects of BW1
applied on SGR only, and the vector of additive genetic effects,
respectively. The vector of breeding values is assumed to follow
either

u ∼ MVN(0, G⊗ G0), or u ∼ MVN(0, A⊗ G0), where

u =
[

u1
u2

]
, G0 =

[
σ2

u11
σ2

u12
σ2

u21
σ2

u22

]
, G = genomic relationship matrix,

A = pedigree relationship matrix, X = incidence matrix for fixed
effects, Z = incidence matrix for additive effects, and e is the
vector of random residuals with e ∼ MVN(0, I ⊗ R0), where

R0 =

[
σ2

e1
0

0 σ2
e2

]
.

The genomic relationship matrix was constructed using
VanRaden (VanRaden, 2008) method 1 as PP′

2∗
∑Nsnp

i=1 pi(1−pi)
; where

P, Nsnp, and pi are the matrix of centralized genotypes, total
number of SNP markers, and the allele frequency of the
reference allele, respectively. The narrow sense heritability was
computed as the ratio of additive genetic variance to total
phenotypic variance and genetic correlations were obtained from
the above described bivariate analyses implemented in ASReml
4.0 (Gilmour et al., 2015).
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Genome Wide Association Analysis (GWAS)
A univariate linear mixed model was used to perform genome
wide association analysis for the LPC trait only. Model
components were all the same as in model (1) except that
the marker effects were also computed. The linear mixed
model included random polygenic effects which accounted
for family relationships (covariance between relatives) in the
GWAS analysis. The marker – trait associations were performed
using GCTA program (Yang et al., 2011) with the ‘–mlma-
loco’ function which allows the estimation of a SNP effect by
accounting the additive genetic variance expressed by all the
markers distributed over all the linkage groups other than linkage
group that contains the SNP.

The SNPs were considered as genome wide significant when
they exceed the Bonferroni threshold for multiple testing P-value
of P ≤ 2.29 × 10−06 with –log10(P) = 5.63, and if they surpassed
P-value of P ≤ 5.74 × 10−05 with –log10(P) = 4.24 then they
were graded as chromosome-wide significant. The significant
values (chromosome and/or genome-wide) were computed as
described in Aslam et al. (2020).

Quantile–Quantile (q–q) Plot
The q–q plot with the distribution of the observed –log10(P-
values) for each SNP, and the expected –log10(P-values) from a
theoretical distribution was plotted. The inflation factor (lambda,
λ) was calculated using λ =

meadian (χ2)
0.456 , chi-square statisticsχ2

are obtained from significance-based P-values, and 0.456 is chi-
square expected under the null hypothesis.

Estimation of the SNP(s) Variance
The proportional contribution of the chromosome and/or
genome-wide significant SNP(s) to the total genetic variance was
computed in ASReml 4.0 (Gilmour et al., 2015) as the reduction
in the total genetic variance due to the addition of fixed effect
of the SNP(s) in model (1). However, the G matrix used in this
model was constructed with all other SNPs except the SNP(s)
used as fixed effect in model (1).

Breeding Value Estimation
Breeding values were computed for LPC trait with univariate
model (as described under the genome-wide association study) to
quantify and compare accuracy of predictions obtained through
pedigree (PBLUP) vs. genomic (GBLUP) information based
BLUP models. The genomic relationship matrix was computed
using all the quality markers (n = 21,773) left after filtering in
genotyping process.

Accuracy of Prediction
For the estimation and the comparison of accuracies of
prediction, we used records of individuals which had at-least
one parent assigned and had genotype information along with
the LPC record available. This limitation left us with 549
individuals available, and the accuracy of prediction for LPC was
calculated as following.

A cross validation scheme was designed where ∼18% of
the total 549 individuals were randomly masked. The random
masking retained 449 individuals with information on LPC which

were used as training set, while, randomly masked 100 individuals
with missing phenotype records were used as validation animals.
The breeding values were computed using genomic vs. pedigree
relation matrices (Gvs.P). The mean accuracy of 20 replicates was
computed as correlation (rcorr) of the estimated breeding value
(pedigree/genomic) with the true phenotype, which were scaled
by the square root of the heritability as rcorr =

ρ(G[P]EBV, y)
√

h2 ;
where ρ, G[P]EBV, y, and h2 are correlation coefficient, breeding
values estimated using genomic or pedigree information, partially
masked phenotypes, and genomic or pedigree based heritability
estimates, respectively.

RESULTS

Descriptive Statistics
The data statistics of recorded traits are presented in Table 1,
together with the total number of observations for different traits
(PC, LPC, BW1, BW2, SGR). There are some missing records
due to some uncertain observation/counts. The distribution of
parasite count and the log transformed parasite count is depicted
in Supplementary File 1 (Supplementary Figures S1.1, S1.2).

Genotyping RAD Alleles
Approximately 12 runs of sequencing for RAD libraries using
on NextSeq 500 platform yielded a total of 4.271 billion reads.
The generated total amount of sequence reads were distributed as
1.217 and 3.054 billion across parents and offspring, respectively.
The mean number of raw reads for parents were 10.06 (±2.306)
millions, while the offspring had low average mean raw reads
with a value of 4.22 (±2.464) millions. The trimming and quality
filtering step of raw reads slightly reduced the number with a
loss of 74.5 million (0.17%) reads which resulted in an average
number of 9.864 (±2.458) and 4.215 (±2.301) million quality
reads available for parents and offspring, respectively.

The catalog which was developed from the quality reads of
parents comprised of 269,660 unique loci, that was used as a
reference sequence. The process of SNP calling discovered 33,684
2b-RAD tags which revealed at-least one SNP identified. The
SNP data was further pruned based on MAF (≥0.02) and the
locus specific genotyping rate (≥30%) with the aim of increasing
overall informativeness and decreasing the amount of missing or
erroneous information. This pruning step retained 21,773 quality

TABLE 1 | Descriptive statistics for the recorded growth and parasite count traits.

Traits N Missing values Mean Min Max SD

PC 807 192 5.75 0.00 45 5.88

LPC 807 192 1.57 0.00 3.83 0.85

BW1 807 1 17.19 2.00 60 8.96

BW2 807 192 43.93 11.60 87.8 11.65

SGR 807 192 0.016 −0.0012 0.033 0.0042

N, number of records; min, minimum values; max, maximum values; SD, standard
deviation; PC, parasite count; LPC, log transformed parasite count; BW1, body
weight at the start of challenge test; BW2, at the end of challenge test: SGR,
specific growth rate.
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SNPs for further analyses. Individuals were also filtered out if
the individual specific rate of genotyping was < 30%, which
resulted to a drop of 94 individuals (91 offspring + 3 parents),
and ultimately SNPs based genotype data comprised of 21,773
loci typed on 841 individuals (724 offspring 117 parents).

Parentage Assignments
The analysis of parentage assignments revealed 154 full-sib
families with 1–22 sibs per family (Supplementary File 1
and Supplementary Figure S1.2). Out of the 724 offspring,
659 got both parents assigned, 62 got assignment of a single
parent (sire or dam), while 3 offspring did not get any
assignment. The validation of parentage assignment results using
likelihood vs. opposite homozygotes count methods revealed 95%
concordance. Out of the total 154 full-sib families, 45 families
were used for the construction of linkage mapping which had a
minimum of five sibs per family.

Linkage Map
The process of linkage mapping using 21,773 SNP markers
in total, generated a linkage map comprised of 15,184 SNPs
which were grouped into 24 linkage groups (SA01-SA24). The
remaining 6,589 SNP markers did not get assignments to any
group. The obtained total sex average map length was 1406.02 cM
(Table 2, Supplementary Figure S1.3, and Supplementary File
2). The highest number of markers was found in linkage group

SA02 with 754 markers, while the lowest number of markers were
found in linkage group SA24 with 496 markers. The number of
SNPs and the corresponding chromosome map length showed
an average (for 24 linkage groups) correlation of 0.412. The sex
specific maps (male vs. female) showed that the female genetic
map length is larger than the males with total map length of
1,598.19 and 1,236.35 cM, respectively.

The loci of assigned linkage groups were examined for
their corresponding positions and order on physical map using
alignment of tags to the genome assembly, Saurata_v1 (Pauletto
et al., 2018). The results revealed more than 90% concordance
in order of marker with coverage of each chromosome shown in
Table 2. Moreover, linkage disequilibrium (LD) across markers
from each linkage group were plotted using genotype data for
parents only to present the distribution of markers along with
the pattern of LD decay with increasing marker distances. The
pattern showed decreasing trend of LD with increasing marker
distances and the distribution of markers display the coverage
of each chromosome (Table 2, Supplementary File 1, and
Supplementary Figure S1.4).

Estimates of Variance Components and
GWAS
The heritability estimates of LPC, SGR, and BW2 were
very similar across the models (univariate vs. bivariate) and
information sources (genomic vs. pedigree). The analysis

TABLE 2 | The genetic map of gilthead sea bream, Sparus aurata (SA) with sex specific and average map information.

Linkage groups Number of markers Male map length (cM) Female map length (cM) Average map length (cM) CHR Physical map length (Mb)

SA01 710 55.44 62.71 57.75 CHR02 25.58

SA02 754 65.70 74.91 70.83 CHR03 23.15

SA03 639 59.83 60.82 59.69 CHR05 23.49

SA04 681 33.89 68.39 51.03 CHR06 25.96

SA05 744 48.74 73.79 61.12 CHR01 24.95

SA06 642 53.30 67.07 60.39 CHR23 20.46

SA07 715 81.19 81.97 80.97 CHR13 22.66

SA08 661 32.68 55.03 43.37 CHR04 25.32

SA09 649 73.21 75.09 72.78 CHR21 20.82

SA10 630 44.21 67.02 54.22 CHR17 24.40

SA11 649 58.26 80.85 69.20 CHR11 23.14

SA12 594 52.79 61.15 54.54 CHR08 24.21

SA13 619 26.17 60.60 43.13 CHR07 25.41

SA14 603 62.05 64.88 63.86 CHR12 20.78

SA15 701 61.72 67.14 63.71 CHR10 17.45

SA16 614 23.80 57.72 40.02 CHR09 23.07

SA17 622 53.92 71.62 62.98 CHR15 22.26

SA18 613 54.90 55.97 54.32 CHR19 20.54

SA19 575 49.93 63.26 56.61 CHR20 20.43

SA20 581 57.17 67.12 61.83 CHR22 20.22

SA21 580 58.93 61.93 60.56 CHR14 19.05

SA22 600 53.69 69.42 61.09 CHR16 20.49

SA23 512 22.84 77.52 50.14 CHR18 21.73

SA24 496 52.00 52.21 51.87 CHR24 15.90

Unknown 6,589 – – – – –

Total 21,773 1,236.35 1,598.19 1,406.02 – 531.47

CHR, The corresponding chromosome in the genome (Saurata_v1) to the linkage map; cM, linkage map length in centiMorgans; Mb, Physical map length in million bases
covered by linkage map, the length (Mb) from the first to the last marker of linkage map.
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TABLE 3 | Estimates of variance components for PC and SGR using model 1 with
pedigree vs. genomic information.

LPC vs. (SGR and BW2)

Components Pedigree Genomic

LPC
(
σ2

u
)

0.102 (0.050) 0.097 (0.045)

LPC (h2 ) 0.147 (0.069) 0.137 (0.061)

SGR
(
σ2

u
)

1.14e−06
(5.3e−07)

6.0e−06 (1.0e−06)

SGR (h2 ) 0.155 (0.068) 0.229 (0.077)

Genetic correlation
(Rg(LPC,SGR) )

−0.807 (0.2418) −0.769 (0.224)

BW2
(
σ2

u
)

23.730 (10.54) 32.076 (11.479)

BW2 (h2 ) 0.169 (0.072) 0.226 (0.074)

Genetic correlation
(Rg(LPC,BW2) )

−0.549 (0.269) −0.701 (0.208)

LPC, log transformed parasite count; SGR, Specific growth rate; BW2, body weight
at the end of challenge test; σ2

u , additive genetic variance; σ2
p, phenotypic variance;

h2, heritability; Rg, genetic correlation.

using pedigree information resulted in heritability estimates
of 0.147 ± 0.069, 0.155 ± 0.068, and 0.169 ± 0.072, for LPC,
SGR, and BW2, respectively. Heritability estimates obtained
with genomic information were 0.137 ± 0.061, 0.229 ± 0.077,
0.226 ± 0.074 for LPC, SGR, and BW2, respectively. The LPC
trait showed a strong favorable negative genetic correlation
of −0.807 ± 0.242 and −0.769 ± 0.224 (pedigree and
genomic, respectively) with the SGR while −0.549 ± 0.269
and −0.701 ± 0.208 (pedigree and genomic, respectively) with
BW2 (Table 3).

The genome-wide association analysis revealed a single SNP
at linkage group SA17 which crossed the Bonferroni-corrected
chromosome-wide significance threshold with a P-value of
4.02 × 10−5 and allele substitution effect α of −0.374 for LPC
(Figure 1 and Table 4). The allele substitution effects, and the

TABLE 4 | The statistics of the top 5 significantly associated SNPs with effect
sizes.

SA Locus ID Pos (cM) Allele1 Allele2 MAF α ± se P-value

17 116287_33 37.45 A B 0.136 −0.374 ± 0.091 4.02e−05

19 19368_20 31.65 B A 0.081 0.382 ± 0.098 9.94e−05

Un 39140_5 0 B A 0.059 0.459 ± 0.121 1.39e−04

Un 70234_2 0 B A 0.063 0.429 ± 0.112 1.87e−04

17 97289_18 38.91 B A 0.054 −0.435 ± 0.123 4.31e−04

SA, linkage group number for the gilthead seabream (Sparus aurata, SA), and the
markers which did not group into any linkage group are represented by Un; Pos
(cM), genetic map position of SNP; Allele1 and Allele2, minor and major alleles,
respectively; MAF, minor allele frequency; α ± se, allele substitution effect with
standard errors; P, significance value.

minor allele frequencies for the top 5 SNPs are presented in
Table 4. The proportion of the total genetic variance explained
by the highest significant SNP was 22.68% estimated using the
top SNP as fixed effect in the model.

Quantile–Quantile Plot
Quantile–quantile plot with the distribution of observed vs.
expected P-values is depicted in Figure 2. The genomic inflation
factor (lambda, λ) is a genomic control to get an estimate on false
positives. The obtained λ-value from the fitted GWAS model
with all markers was 1.023 (Figure 2). The observed P-values did
not seem elevated in the q-q plot, which suggest that the GWAS
analysis was not suffering from some unknown structure in the
data, and thus also not from spurious associations. This is also
confirmed by the value of λ= 1.023, which is close to 1.

Accuracy of Prediction
Prediction accuracies obtained using genomic information was
0.55± 0.165 which was higher than the accuracies obtained using
pedigree information with estimates of 0.51± 0.147.

FIGURE 1 | Manhattan plot for distribution of P-values across different linkage groups. The unmapped markers are annotated as “UN” group in the plot. The red
solid line represents the genome-wide while the blue dashed line displays the chromosome-wide significant Bonferroni thresholds. The SNP that crossed
chromosome-wide Bonferroni threshold is highlighted green, and genes within ± 100Kb region of the top significant SNP are highlighted with arrows.
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FIGURE 2 | QQ-Plot of P-values – Log Parasite Count.

DISCUSSION

Sparicotyle chrysophrii, a monogeneans gill parasite is one of the
most severe threats for sea-cage production of gilthead sea bream
in the Mediterranean. The infestation by S. chrysophrii affects
all age groups in the sea which not only cause poor growth of
fish but also mortalities that can go as high as 30% (Muniesa
et al., 2020). The mortality at later stages when the fish is at the
market size is likely to cause much more economic loss to the
farmers. The treatment against this parasite includes chemicals
such as formalin, hydrogen peroxide, and praziquantel which
are very effective but are considered environment unfriendly
and unsafe. Moreover, these applied available treatments affect
consumer’s perception on product quality, ethics of production
especially when there are increasing demands toward ecological
products. The treatment cost against S. chrysophrii can go
substantially high (€∼0.3 per kg fish produced) and the stocks
may require multiple treatments in a production cycle. The cost
of treatment for amoebic gill disease, which is caused by amoebic
parasite, Paramoeba perurans accounts for 10–20% of the
production cost in Australian farmed A. salmon (Nowak, 2012).
Hence, treatments are not long-term remedy toward sustainable
production. However, genetic improvement of commercial
bream populations for resistance against S. chrysophrii (defined as

low parasite count) using advanced selection methods may prove
to be very useful, effective and preferred strategy especially when
the trait is lowly heritable. Upgrading the overall robustness or
resistance level against pathogens and/or parasites would avoid
treatments using hazardous chemicals which should ultimately
reduce environmental risks and promote sustainable production.

In the current study, we found significant difference in average
weight (BW2) of challenged vs. control fish which was 43.93 g
(SD = 11) and 58.01g (SD = 12), respectively, which suggests
that the S. chrysophrii leads to a poor welfare of fish with effects
on growth. Limited information is available for genetic variation
of host resistance against S. chrysophrii parasite. However, there
are several studies on genetic variation for resistance against
different ectoparasites in Atlantic salmon and livestock species.
In Atlantic salmon, resistance against amoebic gill disease where
amoebic parasite colonizes the gill tissues and causes distress
for the host is also reported to have a moderate heritability
(Taylor et al., 2007; Kube et al., 2012; Robledo et al., 2018;
Lillehammer et al., 2019). Similar estimates were obtained for
host resistance to sea lice; ∼0.2 to 0.3 for the North Atlantic
sea louse (Gjerde et al., 2011; Tsai et al., 2016), and 0.1–0.3
for the Pacific sea louse (Yáñez et al., 2014; Correa et al.,
2017). Likewise, heritability estimates reported for resistance to
common ticks in cattle were moderate (Shyma et al., 2015).
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Heritability estimates for resistance against S. chrysophrii gill
parasite, i.e., LPC obtained in our study were low (0.147 and
0.137 with pedigree vs. genomic information, respectively) but
significant, suggesting that the selection for improved resistance
could be affective.

The analysis of genetic correlations showed favorable
associations of LPC with both growth traits, i.e., SGR and BW2
(−0.549 to −0.807, respectively), depicting the decreasing trend
of parasite counts toward heavier and fast growing families.
Favorable relations among the traits should allow selection
for growth and resistance to be performed simultaneously.
Moreover, selection for growth should help to get correlated
response for increasing resistance against S. chrysophrii. A similar
favorable genetic correlation (–0.88) has been described for the
severity gill disease due to Paramoeba perurans (gill parasite) and
the body weight in Atlantic salmon (Gjerde et al., 2019). The
reported genetic correlations for lice counts and growth traits
have also been either close to zero or slightly favorable in Atlantic
salmon (Tsai et al., 2016).

The current study produced a medium-density linkage
map comprising 15,184 SNP markers distributed over 24
linkage groups. The generated numbers of linkage groups
are consistent with the number of chromosomes/karyotype
of gilthead seabream (Cataudella et al., 1980; Pauletto et al.,
2018). The linkage map length in our study was 1,406.02 cM,
which is shorter than what was obtained in previous studies by
Tsigenopoulos et al. (2014) and Aslam et al. (2018a), where the
sex-average map length was reported to be 1,970.29 and 3,899
cM, respectively. The difference in map lengths could also be
explained by the difference in genome coverage, map resolution
and population differences. However, the linkage map length
reported by Palaiokostas et al. (2016) was∼2.77 times longer than
the map length obtained in the current study, which could be due
to differences in adopted parameters and methods. Conversely,
it was also observed that the high recombination rates involving
false recombination detected due to data issues (e.g., genotyping
errors, null alleles and nonrandom missing genotypes) may also
cause the inflated genetic lengths (Jorgenson et al., 2005; Ronin
et al., 2012).

Sex biased recombination has been observed in many fish
species including Atlantic salmon, rainbow trout, zebrafish, etc.,
with significant reduction in recombination rate in heterogametic
sex (Sakamoto et al., 2000; Singer et al., 2002; Moen et al.,
2008). Mammal species, e.g., human, dog, pigs, etc. have also
shown similar trend (Broman et al., 1998; Wong et al., 2010;
Tortereau et al., 2012) where heterogametic male expressed
lower recombination rates than the female. However, gilthead sea
bream is a sequential protandrous hermaphrodite with majority
of fish being able to produce either kind of gamete (sperm or
ova) at different stages of their life. The S. aurata individuals
in their first reproductive cycle mature as males (at the age of
2 years), though ovaries start differentiating in the larval stage
but are replaced by the testes (Mylonas et al., 2011) as fish
matures at 2 years of age, and then in the subsequent cycles,
the testes regress and functional ovary develops in some males.
Regardless of the hermaphrodite nature, we observed sex biased
recombination in S. aurata with female-to-male recombination

rates of 1.29:1.0 (Table 2) and the total female-specific map
was 361.84 cM longer than the male specific map. The results
obtained from our study on heterochiasmy were concordant with
other studies (Franch et al., 2006; Tsigenopoulos et al., 2014;
Aslam et al., 2018a). However, Palaiokostas et al. (2016) did
not observe much difference in male vs. female recombination
(1:1.05, female-to-male recombination rate) with a male specific
map (4,010 cM) being slightly longer than the female map
(3,822 cM). This discordance could be due to population specific
differences, and/or different methods used for constructing the
linkage maps. There are several other reports on the existence
of heterochiasmy in hermaphroditic animals where females have
shown a higher recombination rate than males (Theodosiou et al.,
2016). The phenomenon of heterochiasmy in hermaphroditic
species has been argued to be an effect of the female meiotic
drive, which is considered as a mechanism in the evolution of
neo-sex chromosomes (Yoshida and Kitano, 2012; Theodosiou
et al., 2016; Abbott et al., 2017).

Our genome wide association analysis revealed no major QTL
region(s) that reached the genome-wide significance threshold
for LPC (Figure 1). However, there was a signal for a suggestive
QTL with one SNP detected on linkage group 17 (SA17) that
crossed the chromosome-wide Bonferroni threshold (Figure 1).
This chromosome-wide significant SNP had a MAF of 0.136 with
an allele substitution effect (α) of -0.374 in favorable direction
(Table 4), which means that the substitution of allele should
have a parasite reducing effect. Though, the second SNP of SA17
(Table 4) had low MAF (0.054) but showed an α value of similar
magnitude to the top significant SNP of SA17 (Table 4). Three
other SNPs, one from SA19 and the two from unknown (Un)
linkage group also showed strong significance P-value but did
not cross the threshold line (Figure 1 and Table 4). These SNPs
and possibly multiple other loci may have crossed the threshold
significance line with increased power (using more individuals
with phenotype information) given that the association of these
SNPs are not merely by random chance. As, these SNPs are
distributed across different linkage groups and have shown some
level of effect on trait, though, only one SNP is crossing suggestive
chromosome-wide level of significance. From these results, one
could argue about polygenic nature of trait with possibility of a
few loci with relatively large and many loci with potentially small
effects. In Atlantic salmon, resistance against parasitic diseases
such as amoebic gill disease and sea lice resistance have also been
reported to be very polygenic in nature (Tsai et al., 2016; Robledo
et al., 2018). We detected a slight LD of 0.15 between the two
markers of linkage group SA17 (Supplementary Figure S1.5).
However, markers of unknown groups in Table 4 expressed
relatively higher LD of 0.33 with each other but showed close to
zero LD with markers of SA17 and SA19. The LD information
among markers of different groups of Table 4 further strengthens
the hypothesis of a polygenic nature of LPC, as close to zero LD
for the markers of different linkage groups exempts the chance of
misplacement of these markers during linkage mapping.

The λ value obtained from the P-values of SNPs from GWAS
analysis/model was 1.023 (Figure 1), which was close to 1.0
indicating that the P-values are not inflated by any population
stratification. Hence, no adjustments to the model was required
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when lambda is less than or equal to 1.0, as explained by
Hinrichs et al. (2009).

The observed reduction in genetic variance was 0.022
(0.097–0.075) when an additional fixed effect of chromosome-
wide significant SNP (Locus ID: 116287_33) was used in model
1. Hence, the proportion of genetic variance explained by the
SNP was 22.68% which seems quite high compared to the
QTL signal in the Manhattan plot (Figure 1). The tagged SNP
(116287_33) might be highlighting an important QTL region
explaining variation either directly or through LD with the true
QTL. However, a seemingly inflated high proportion of genetic
variation explained by the SNP could be a result of the Winner’s
curse (Nakaoka and Inoue, 2010). We had only 549 recorded
individuals with genotypes available for this complex parasite
resistance trait and the top significant SNP (116287_33) did
not pass the genome-wide threshold and therefore a validation
of this QTL in an independent population is needed. The
concordance of the results from validation study would signify
the importance of the discovered QTL region and improve
confidence for possibly performing efficient and economical QTL
based selection for the industry. Moreover, the top 5 SNP markers
of the current study that presented large effect sizes had relatively
low MAF, which signifies the importance of rare mutations as
explained in studies from Dickson et al. (2010) and Eichler et al.
(2010) on synthetic associations and missing heritability due
to rare mutations.

Cellular and molecular mechanisms underlying the host
response to S. chrysophrii infection remain largely unknown
(Sitjà-Bobadilla and Alvarez-Pellitero, 2009; Henry et al., 2015).
Long-term infection apparently induces severe anemia, lower
humoral response and impaired innate immune response (higher
respiratory burst, but lower antimicrobial activities). The tag
sequence (36 bp) of the highest significantly associated tag/SNP
(116287_33) was aligned to the sea bream genome assembly,
Saurata_v1 (Pauletto et al., 2018) to potentially obtain molecular
insight which might help to understand possible causes in
trait variation. The tag sequence aligned to chromosome 15
with a significant e-value = 4.00 × 10−9. The region of
approximately ± 100 Kb surrounding the highest significant
SNP “116287_33” was searched for the underlying candidate
genes which resulted in five genes (RFN122, XPO1, NFkB, SRF,
and FAM160B1) encompassed in the candidate genomic region
that have been reported to be involved in immune response
in other species. RFN122 suppresses antiviral type I interferon
(Wang et al., 2016) in virus-infected cells. Its potential role in
the infection of an ectoparasite, however, needs to be determined.
Exportin-1 (XPO1 or CRM1) is a nuclear export receptor involved
in the transport of specific mRNAs. Inhibition of XPO1 was
reported to down-regulated dendritic cell (DC) maturation
(Chemnitz et al., 2010). As DCs are the most potent antigen-
presenting cells, XPO1 differential expression/activity due to
genetic variants might have broad effects on immune response.
More generally, XPO1 has been shown to be involved in the
regulation of NFkB, a key transcription factor in cell survival
and immunity. Neurixn-1a is a single-pass type I membrane
protein that is mainly expressed in the nervous system and there
is no evidence so far of its involvement in immune function.

Alternatively, serum response factor (SRF) is involved in many
aspects of the immune system. Particularly relevant is SRF’s role
in hematopoiesis and neutrophil migration during inflammation
(Taylor and Halene, 2015), considering that in sea bream
exposed to S. chrysophrii, increased activity of myeloperoxidase
(MPO) was observed (Henry et al., 2015). Activity of MPO
generally correlates well with levels of inflammatory responses
sustained by neutrophilic granulocytes. Therefore, it might
be possible that individual variation in SFR function has an
effect on host-response to the parasite. Finally, FAM160B1 is
a poorly characterized protein with no known involvement in
immune response.

The accuracy of prediction obtained for LPC trait was fairly
high with accuracy of 0.51 with pedigree and 0.55 using genomic
information. Comparison of accuracies of predicting breeding
values using PBLUP vs. GBLUP clearly shows that the genomic
information based predictions are more accurate. Overall, we
observed an∼8% increase in accuracy with genomic information
reflecting an expected advantage in genetic gain with genomic
information. The complicated parasite resistance traits (e.g., lice
and amoebic gill disease) in Atlantic salmon have also shown a
similar trend with advantages of genomic over pedigree based
predictions (Tsai et al., 2016; Robledo et al., 2018). The advantage
of GBLUP over PBLUP is due to the fact that realized genomic-
based relatedness between animals deviates from pedigree-
based relationship coefficients. In addition, genomic breeding
values are not affected by pedigree errors, though they can be
affected by genotyping errors or introduction of mistakes during
sample identifications. The current study had only rather shallow
pedigree data available which might also have been a slight
disadvantage for PBLUP.

The GS becomes even more beneficial compared to PBLUP
when the trait is complex, difficult to record, lowly heritable
and not recorded on the selection candidates. Additionally, GS
can improve genetic gains through improving the accuracy of
breeding values, and better use of variation within family (García-
Ruiz et al., 2016; Zenger et al., 2019). Hence, in current era of
genomics, the application of genomic selection is unavoidable
in order to stay in industrial competition, to produce efficiently,
and to follow market demand. The increase in accuracy of
predictions (∼8%) for parasite count using genomics seem
marginal with respect to the potential expenses on genotyping
costs. However, the trait specific expected economic gain is
very much dependent on the amount of production, production
environment, given weight to the trait, and adopted strategy to
develop production stock.

CONCLUSION

The current study shows that the 2b-RAD approach for the
detection of SNPs and for the genotyping of a sea bream
population is an effective method which resulted quality genotype
data for ∼21K SNPs. The analysis reveals that the resistance
against S. chrysophrii is significantly heritable (0.147± 0.069) and
therefore genetic improvement is a valuable tool to reduce the
prevalence of S. chrysophrii in farmed gilthead sea bream. The
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genetic architecture for host resistance to S. chrysophrii appears
to be polygenic with one suggestive QTL detected at linkage
group 17 which explains a large proportion (22.68%) of genetic
variance. Since this SNP did not pass the genome-wide threshold,
a validation of this QTL in an independent population is
needed. The accuracy of predicting breeding values with genomic
information was substantially higher (∼8%) than predictions
using pedigree information. S. chrysophrii is a significant and
increasing threat for Mediterranean sea bream production, and
implementation of genomic selection in breeding programs may
prove an efficient methodology to genetically improve host
resistance to this parasite.
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