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Studies have shown that microRNAs (miRNAs) are closely associated with many
human diseases, but we have not yet fully understand the role and potential molecular
mechanisms of miRNAs in the process of disease development. However, ordinary
biological experiments often require higher costs, and computational methods can be
used to quickly and effectively predict the potential miRNA-disease association effect
at a lower cost, and can be used as a useful reference for experimental methods. For
miRNA-disease association prediction, we have proposed a new method called Matrix
completion algorithm based on q-kernel information (QIMCMDA). We use fivefold cross-
validation and leave-one-out cross-validation to prove the effectiveness of QIMCMDA.
LOOCV shows that AUC can reach 0.9235, and its performance is significantly better
than other commonly used technologies. In addition, we applied QIMCMDA to case
studies of three human diseases, and the results show that our method performs well
in inferring potential interaction between miRNAs and diseases. It is expected that
QIMCMDA will become an excellent supplement in the field of biomedical research in
the future.

Keywords: microRNA-disease interaction, association prediction, heterogeneous omics data, q-kernel
neighborhood similarity, matrix factorization

INTRODUCTION

MicroRNAs (miRNAs) are a type of single-stranded small non-coding RNA (∼22 nt) that
play an important role in gene regression by interfering with post-transcriptional regulation
(Filipowicz et al., 2008; Bartel, 2009). Lee et al. (1993) discovered the first miRNA lin-4
in Caenorhabditis elegans, and since then, 1000s of currently annotated miRNAs have been
found in various species from plants, animals to viruses (Jopling et al., 2005; Kozomara and
Griffiths-Jones, 2011). More and more evidence have shown that miRNA is an important
component in cells and may play an important role in a variety of biological processes
including cell growth (Ambros, 2003), immune response (Taganov et al., 2006), cell proliferation
and differentiation (Chen et al., 2004, 2006), cell development, cell cycle regulation (Carleton
et al., 2007), inflammation (Urbich et al., 2008), apoptosis (Petrocca et al., 2008), and stress
response (Leung and Sharp, 2010). Many studies have shown that miRNA abnormalities are
associated with various human diseases, such as cancer, Alzheimer’s disease, and diabetes
(Iorio et al., 2005; Nunez-Iglesias et al., 2010; Catto et al., 2011; Guay et al., 2011;
Farazi et al., 2013). For example, there is evidence that MicroRNA-155 regulates colon
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cancer cell proliferation, cell cycle, apoptosis, migration, and
targets CBL (Yu et al., 2017). miR-21 negatively regulates Pdcd4
and inhibits TPA-induced tumor transformation (Asangani et al.,
2008). MicroRNA-494 has become a major epigenetic regulator in
aggressive human hepatocellular carcinoma neoplasms (Chuang
et al., 2005). miR-146a is a tumor suppressor that inhibits NF-
κB activity related to the promotion and inhibition of tumor
growth (Li et al., 2014b). This makes miRNAs increasingly
recognized as key regulators in gene expression (Niu et al.,
2019). Finding the association of miRNA-disease is an important
field of biomedicine. It not only helps humans understand the
mechanism of diseases, but also helps the discovery, prognosis,
diagnosis, treatment, and prevention of human complex diseases
(Calin and Croce, 2006; Tricoli and Jacobson, 2007; Cho, 2010;
Jiang et al., 2010).

However, the identification of miRNA-disease associations
using traditional biological methods is often costly (Chen et al.,
2018). Therefore, the use of mathematical and computational
tools to predict potential miRNA-disease associations based
on various experimentally validated association datasets is a
hot issue. Through the integration and collection of data
from a large number of biological experiments, there are
now multiple databases related to miRNA-disease relationships
such as HMDD and dbDEMC (Lu et al., 2008; Yang et al.,
2010; Li et al., 2014a). In recent years, a large number
of miRNA-disease association prediction methods have been
proposed. For instance, Chen and Yan (2014) proposed
a regularized least squares model (RLSMDA) to predict
miRNA-disease associations. This model is a semi-supervised
model that learns in the miRNA space and disease space
respectively, and then combines to get the final prediction
score. However, it should be pointed out that the parameter
selection of this model is more difficult, and the combined
form of the two spatial scores can be improved in the
end. Xu et al. (2011) proposed a method based on support
vector machine (SVM) to predict the interaction between
miRNA and the disease. However, the current database rarely
provides data for non-cancer miRNAs. Therefore, the main
problem of the model is the lack of negative samples,
which will make the supervised learning model unsuitable
for the prediction of large-scale disease-miRNA interactions.
Obtaining large numbers of negatively associated samples is
still difficult (Guan et al., 2020). Chen et al. (2012) adopted
restart random walk (RWRMDA) to predict the potential
miRNA-disease interaction, which restarted the known miRNA-
disease interaction network, using random walks on miRNA
functional similarity network to predict potential miRNA-disease
interaction. However, this method is not applicable to the
prediction of new diseases that are not related to any miRNA.
Chen (2018) introduced the induction matrix completion
model (IMCMDA) for the prediction of miRNA disease
association based on the known miRNA-disease association
matrix, miRNA functional similarity and disease semantic
similarity matrix. However, this method is too sensitive to
the noise in the data, which affects its performance. Chen
et al. (2016b) introduced the model of Within and Between
Score for MiRNA-Disease Association prediction (WBSMDA)

by a combination of integrated similarity and known miRNA-
disease associations. Chen et al. (2018) introduced the MiRNA-
disease association prediction (TLHNMDA) model based on
three-layer heterogeneous network inference, which integrates
multi-level data about miRNA, disease, lncRNA and their
associated information into three layers heterogeneous network
to determine the relationship between miRNA and disease
Potential biological connection. Zhao et al. (2018) proposed
a novel computational model of Symmetric Non-negative
Matrix Factorization for MiRNA-Disease Association prediction
(SNMFMDA) to reveal the relation of miRNA-disease pairs.
Compared to the direct use of the integrated similarity in
previous computational models, the integrated similarity needs to
be interpolated by symmetric non-negative matrix factorization
(SymNMF) before application in SNMFMDA. Jihwan Ha et al.
(2020) present IMIPMF, a novel method for predicting miRNA–
disease associations using probabilistic matrix factorization
(PMF), which is a machine learning technique that is widely
used in recommender systems. Zhu et al. (2020) proposed a
new computational model based on biased heat conduction for
MiRNA-Disease Association prediction (BHCMDA),which can
achieve the AUC of 0.8890 in LOOCV.

We hope to use a simple and effective method for prediction.
Here, we proposed a new matrix completion algorithm based on
the q-kernel function to predict new miRNA disease associations
(QIMCMDA). This model used miRNA q-kernel similarity,
disease q-kernel similarity, known miRNA disease associations,
and miRNA functional similarity. A matrix decomposition
algorithm based on KL divergence was used to complement
missing miRNA-disease associations. Here we used the receiver
operating characteristic (ROC) curve as an evaluation index to
evaluate the effectiveness of QIMCMDA. For known miRNA-
disease associations downloaded from HMDD V2.0, the relevant
data was cross-validated using the method of leave-one-out
cross-validation (LOOCV) and fivefold cross-validation, and
compared with the four previous classic methods (TLHNMDA,
WBSMDA, RLSMDA, and IMCMDA). In addition, case studies
were conducted on three common human diseases (Breast
Neoplasms, Carcinoma Hepatocellular, Colon Neoplasms). All
candidate miRNAs for these three diseases were ranked according
to the predicted scores of QIMCMDA. Then the top 50
predicted miRNAs of these three diseases were verified in
dbDEMC and HMDD 3.2 respectively. As a result, 46, 45,
and 48 of the top 50 potentially relevant miRNAs for the
three diseases were confirmed. These results indicated the
effectiveness of QIMCMDA in predicting potential miRNA-
disease associations.

MATERIALS AND METHODS

Human MiRNA-Disease Associations
In this study, we used human disease-miRNA associations in
the HMDD v2.0 database, the dataset contains 383 diseases, 495
miRNAs, and 5430 high-quality experimentally verified human
miRNA-diseases associations (Chen et al., 2018). We defined the

Frontiers in Genetics | www.frontiersin.org 2 October 2020 | Volume 11 | Article 594796

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-594796 October 17, 2020 Time: 20:9 # 3

Wang et al. q-Kernel Information and Matrix Completion

adjacency matrix A ∈ Rnd∗nm as follows:
A
(
d (i) , m

(
j
))

=

{
1 diseased (i) has association with miRNA m(j)
0 diseased (i) has no association with miRNA m(j)

(1)

MiRNA Functional Similarity
MiRNA functional similarity score was calculated by Wang
et al. (2010) based on the hypothesis that similarly functional
miRNAs tend to be associated with diseases with similar
phenotypes. Thanks to their work, we obtained from
http://www.cuilab.cn/files/images/cuilab/misim.zip downloaded
the data. We constructed a matrix FS, where the matrix
FS(m(i), m(j)) represents the functional similarity between
miRNAsm(i)and m(j).

Disease Semantic Similarity
Disease Semantic Similarity 1
A Directed Acyclic Graph (DAG) was constructed to describe
a disease based on the MeSH descriptors downloaded from the
National Library of Medicine (Lipscomb, 2000). The DAG of
disease D included not only the ancestor nodes of D and D itself
but also the direct edges from parent nodes to child nodes. The
semantic score of disease D could be defined by the following
equation:

DV1(D) =
∑

d∈T(D)

D1D(d) (2)

we defined the contribution score of disease d in DAG(D) to the
disease D by:{

D1D(d) = 1 if d = D
D1D(d) = max

{
4
∗D1D(d′)|d′ ∈ children of d

}
if d 6= D

(3)

1 is the semantic contribution factor. The contribution score of
disease is decreased as the distance between D and other diseases
increases. Based on the assumption that two diseases with larger
shared area of their DAGs may have greater similarity score, the
semantic similarity score between disease d(i) and disease d(j)
could be defined by the following equation:

SS1(d(i), d(j)) =

∑
t∈T(d(i))∩T(d(j))(D1(d(i))(t)+ D1d(j)(t))

DV1(d(i))+ DV1(d(j))
(4)

Disease Semantic Similarity 2
From above formula (3), it is easy to see that the diseases in the
same layer of DAG(D) will make the same contribution to the
semantic value of D. Moreover, for diseases in the same layer of
DAG(D), it is reasonable to assume that the diseases appeared in
fewer DAGs will be more specific than those diseases appeared in
more DAGs. Hence, to protrude the contribution of these more
specific diseases, the contribution of the node d in T(D) to the
semantic value of the disease D could be obtained according to
the following formula as well (Chen, 2018):

D2D(d) = − log
[

the number of DAGs containing d
the number of diseases

]
(5)

Based on the above formula, the semantic value of the disease D
could be obtained according to the following formula as well:

DV2(D) =
∑

d∈T(D)

D2D(d) (6)

Hence, the semantic similarity between two diseases di and dj
could be obtained according to the following formula as well:

SS1(d(i), d(j)) =

∑
t∈T(d(i))∩T(d(j))(D2(d(i))(t)+ D2d(j)(t))

DV2(d(i))+ DV2(d(j))
(7)

q-Kernel Similarity
Many contributions indicate that the performance of kernel-
based learning algorithms largely depends on the choice of kernel
(Chapelle et al., 2002; Lanckriet et al., 2002; Nogayama et al.,
2003). Boughorbel also proved through experiments that in some
applications, kernels with only positive conditions may be better
than most classical kernels (Boujemaa et al., 2005). Based on
this theory, Zhang et al. (2019) designed a variety of q-Kernel
Functions, such as Non-Linear q-Kernel, Gaussian q-Kernel,
Laplacian q-Kernel, Rational Quadratic q-Kernel, Multiquadric
q-Kernel, Inverse Multiquadric q-Kernel, Wave q-Kernel, and so
on. A q-analog is a mathematical expression parameterized by a
quantity q that generalizes a known expression and reduces to the
known expression. Therefore, after a long period of trial, we have
chosen the inverse quadratic square q kernel function as the main
method for calculating similarity.

Here we introduce a q-Kernel function (inverse multiquadric
q-Kernel) and construct a q-Kernel similarity. Based on the
assumption that similar miRNAs are more likely to exhibit
interactions with similar diseases and vice versa. The q-Kernel
similarity is used to calculate the kernel similarity of miRNA
and disease, respectively, based on known miRNA- diseases. The
value range of the two parameters c and q of the function is
between 0 and 1.

Hq(x, y) =
1

1− q
(q−

1
c − q

−
1√

||x−y||2+c2
) (8)

Similarity Calculation of miRNA Based
on q-Kernel
In previous work, we obtained a similarity network between two
miRNAs. But the integrity of this network is only 0.2058, and
too many missing values make it impossible for us to use this
network directly. Here, the q-kernel function is used to complete
the matrix. First, the obtained q-kernel distance needs to be
normalized and scaled to [0,1], because the similarity network
value of the previous miRNA is between [0,1]. Then we used
the 1-Hq to convert the kernel distance into the similarity and a
q-kernel similarity network of miRNA is obtained, which is called
QM. The similarity of MiRNA is constructed as follows:

Sm
(
m (i) , m

(
j
))


ωFS
(
m (i) , m

(
j
))
+ (1− ω)QM(m(i),

m(j))m (i) and m
(
j
)

(9)

has similarity
QM

(
m (i) , m

(
j
))

otherwise
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The ω is a weighting parameter defined as limiting the effect of FS and
QM on miRNA similarity. Set ω to 0.01 through training. The greater
similarity between miRNAs, the more similar the miRNAs are.

Network Similarity Calculation for
Diseases Based on q-Kernel
We used the same method as the miRNA similarity network to build
the disease similarity network QD. Then integrated QD with disease
semantic similarities SS1 and SS2:

Sd
(
d (i) , d

(
j
))
=


ωSS(d(i), d(j))+ (1− ω)QD(d(i), d(j))

d(i)and d(j) (10)

has similarity
QD(d (i) , d(j)) otherwise

SS(d(i), d(j)) =
SS1(d(i), d(j))+ SS2(d(i), d(j))

2
(11)

We set the parameter values of c and q through training, that is,
c = 0.1 and q = 0.6. Finally, we obtained two kernel similarity
matrices, Sm and Sd .

Matrix Completion
After integrated various known data and similarity calculations of
q-kernel, we can obtain human miRNA-disease correlation matrix
A (Matrix density is 0.028), disease similarity matrixSd, miRNA
similarity matrix Sm. Our goal is to deduce undiscovered miRNA-
disease associations based on this known information. Here we
use Sd ∈ Rnd∗nd as the feature matrix of nd diseases, and Sm ∈

Rnm∗nm as the feature matrix for miRNAs. Sd(i)denote the feature
vector of disease d(i), and Sm(j) denote the feature vector of
miRNA m(j). The main idea of QIMCMDA is to complement
the two feature matrices Sd and Sm by the similarity of the
q-kernel, and then supplement the missing elements under the
restriction of the association matrix A to obtain the potential
associations. Finally, the recovery matrix Z is obtained, and the
form of Z is Z = SdWHTSm. where W ∈ Rnd∗r andH ∈ Rr∗nm, r
is the desired rank which is equal tomin(rank(W), rank(H)). The
parameter r mainly affects the convergence speed of the algorithm,
and has little effect on the results. The matrices W and H can
be obtained as a solution to the following optimization problems.

minW·H ∅ =
∑nd

i=1
∑nm

j=1(Aij ln Aij
Sd∗W∗H∗Sm

−Aij + (Sd ∗W∗H∗Sm)ij)

s.t.W ≥ 0, H ≥ 0 (13)

W and H were set to random dense matrices, and then the alternating
gradient descent method is used to update iterations W and H.

W ←
W∗

[
( Sd∗A

Sd∗W∗H∗Sm
)∗Sm ∗H

′
]

Sd∗ONES∗Sm∗H′
(14)

H←
H∗

[
W
′

∗Sd∗(
A∗Sm

Sd∗W∗H∗Sm
)
]

W ′
∗Sd∗ONES∗Sm

(15)

Through the alternating gradient descent algorithm, W and H
will stabilize and stop the iteration after reaching the maximum
number of iterations. Here, the maximum number of iterations

TABLE 1 | Notations.

Symbol Description

nm number of miRNAs

nd number of diseases

A ∈ Rnd∗nm miRNA-diseases associations matrix

Sm ∈ Rnm∗nm miRNA similarity matrix

Sd ∈ Rnd∗nd disease similarity matrix

W ∈ Rnd∗r alternating iteration matrix in matrix factorization

H ∈ Rr∗nm alternating iteration matrix in matrix factorization

is set to 100. ONES is a matrix, all its elements are 1. It is
used to multiply two matrixes of different ranks. We can use W
and H to calculate the predicted score between disease d(i) and
miRNA m(j) by the following formula (Symbol meaning can refer
to Table 1).

Score(d(i), m(j)) = Sd(i)WHSm(j) (16)

The specific implementation process of QIMCMDA is shown in
Figure 1.

RESULTS

We used 5,430 miRNA-disease associations from HMDD
v2.0 as the gold standard dataset, and we used LOOCV
and fivefold CV to test the effectiveness of QIMCMDA.
In addition, QIMCMDA will be compared with four other
methods IMCMDA (Chen, 2018), RLSMDA (Chen and Yan,
2014), TLHNMDA (Chen et al., 2018), WBSMDA (Chen et al.,
2016b) to evaluate the predictive ability of QIMCMDA (see
Table 2). In the framework of the LOOCV evaluation, 5430
miRNA-disease associations in the data set are considered
as test samples one by one, the other remaining samples are
considered as training samples, and samples with unknown
associations are considered as candidate samples. Through
the calculation of the model, we can obtain the prediction
score, and then rank and record according to the prediction
score. The process of fivefold CV is similar to LOOCV. The
miRNA-disease association of the golden data set was randomly
divided into five groups, one of which was selected as the
test set in turn, and the rest as the training set. Candidate
sample settings are the same as LOOCV. Then rank and
record the predicted scores for each test sample. Figure 2
shows a comparison of the prediction performance based on
the overall AUC value of LOOCV. As a result of LOOCV,
the AUC of QIMCMDA is 0.9235, and the AUC values
obtained by IMCMDA, RLSMDA, TLHNMDA and WBSMDA
are 0.8378, 0.8193, 0.8795, 0.8010, respectively. For fivefold
QIMCMDA, IMCMDA, RLSMDA, TLHNMDA and WBSMDA
10 times were performed, and the average AUC and standard
deviation were recorded as 0.9170 ± 0.0006, 0.8311 ± 0.0006,
0.7814 ± 0.0020, 0.8735 ± 0.0010,0.7980 ± 0.0009, respectively
(see Figure 3).

Parameter Analysis
There are several hyper-parameters in QIMCMDA that need
to be tuned, i.e., c, q, w, k. We use a random search strategy
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FIGURE 1 | Flowchart of QIMCMDA model to infer the potential miRNA-disease associations. ONES is an all-ones matrix of rank nd∗nm.

TABLE 2 | Under the fivefold CV and LOOCV verification framework, the
performance of QIMCMDA and other benchmark methods.

Methods LOOCV Fivefold CV

QIMCMDA 0.9235 0.9170 ± 0.0006

IMCMDA 0.8378 0.8311 ± 0.0006

RLSMDA 0.8193 0.7814 ± 0.0020

TLHNMDA 0.8795 0.8735 ± 0.0010

WBSMDA 0.8010 0.7980 ± 0.0009

to select hyper-parameters from fixed ranges (Zhang et al.,
2020). c and q are parameters for adjusting the q-Kernel
function. In this study, the value of c is selected from
{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1}, and the value of q is selected
from {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}. q can’t be equal to 1.
ω is the weight parameter used to integrate similarity. Here,
ω is selected from {0.01,0.05,0.1,0.15,0.2,0.3,0.4,0.5,0.8,1}.
Next, we show the influence of the these parameters under
the fivefold CV.

The k is a potential feature size. In our test, the
impact of this variable is actually very small, but we
still decided to use PCA to calculate the cumulative
contribution rate to obtain the most appropriate k value.
This method is in the paper by Wang et al. (2017). It
has been well-verified. In this article, the cumulative
contribution rate of 95% is used to select the PC, and the
final k is set 114.

ω is a weight parameter used to integrate the similarity matrix.
Figure 4 shows the effect of changes in ω on AUC when other
parameters are fixed. When ω = 0.01, AUC takes the maximum value.
When c = 0.1, q = 0.6, the model can achieve the best effect
(see Figure 5).

Case Study
In this article, we used case studies to further demonstrate the
effectiveness of QIMCMDA. We performed case studies on three
diseases: Breast Neoplasms, Carcinoma Hepatocellular, and Colon
Neoplasms. These diseases were selected in our case study because
they all have high incidence and insignificant early symptoms.
In addition, they have been considered as case studies in many
previous publications (Guan et al., 2020). Our case study used
HMDD v2.0 as the training database for QIMCMDA. HMDD
3.2 and dbDEMC (Lu et al., 2008; Yang et al., 2010; Li et al.,
2014a) serve as validation databases to confirm the predicted
potential associations. Compared with the previous 2.0 version, the
3.2 version contains more than double the association between
human diseases and miRNAs, the classification of evidence is
more clear, and there is a clear third-party annotation for
each association. The differentially expressed miRNA database
(dbDEMC) in human cancer is a comprehensive database microRNA
(miRNA) designed to store and display differentially expressed
human cancers detected by high-throughput methods. The database
collected a total of 209 newly released data sets from Gene
Expression Omnibus (GEO) and The Cancer Genome Atlas
(TCGA). The current version contains data from 436 biological
experiments, including 2224 differentially expressed miRNAs in
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FIGURE 2 | Performance comparison between QIMCMDA and other benchmark methods (RLSMDA, IMCMDA, TLHNMDA, WBSMDA) on AUC of LOOCV.

FIGURE 3 | Performance comparison between QIMCMDA and other benchmark methods (RLSMDA, IMCMDA, TLHNMDA, WBSMDA) on AUC of fiveflod CV.

36 cancer types. We only perform ranking verification on
candidate miRNAs of interest, so training samples are not in
the final result. In other words, the miRNA disease associations
obtained from the predicted list do not overlap with the known
5430 associations.

Breast Neoplasms is one of the most common malignancies in
women. With more than 2 million new cases worldwide each year,
it ranks second among the world’s major cancer types (Jemal et al.,
2017). More than half of these cases occurred in industrialized
countries (Parkin et al., 2005). It was one of the leading causes
of death among women aged 20–59 (Siegel et al., 2015). With the
development of biological technology, researchers have found more
miRNAs related to Breast Neoplasms. Our results are supported by

third-party annotations in two databases, HMDD3.2 and dbDEMC.
For example, miR-150 and miR-372 can promote the proliferation
and growth of Breast Neoplasms cells by targeting the pro-apoptotic
purinergic P2X7 receptor and LATS2 respectively (Huang et al., 2017;
Cheng et al., 2018). MicroRNA-130a targets RAB5A to inhibit the
proliferation, invasion and migration of Breast Neoplasms cells (Pan
et al., 2015). miR-494 targets CXCR4 through the Wnt/β-catenin
signaling pathway, thereby inhibiting Breast Neoplasms progression
in vitro (Song et al., 2015). The increased miR-451 expression may
negatively regulate Bcl-2 mRNA and protein expression, which in
turn affects caspase 3 protein expression and accelerates Breast
Neoplasms cell apoptosis (Gu et al., 2015). MiR-449a inhibits cell
migration and invasion in Breast Neoplasms by targeting PLAGL2
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FIGURE 4 | Performance of QIMCMDA with different values of ω under fivefold CV.

FIGURE 5 | Performance of QIMCMDA with different values of c and q under fivefold CV.

(Wang et al., 2018). We selected the top 50 in the results and verified
them with two databases, HMDD 3.2 and dbDEMC. It was found
that 10 of the first 10 predictions and 46 miRNAs of the first 50
predictions were verified (see Table 3).

Hepatocellular carcinoma (HCC), one of the most common
malignancies worldwide (Yegin et al., 2016), was also the
main cause of cancer in men under 60 in China (Chen
et al., 2016a). MiRNAs have important roles in the treatment
of HCC and have been corroborated. For example, related
in vitro experiments have further confirmed the anti-tumor
effect of miR-132 in HCC (Liu et al., 2015; Zhang et al., 2016).

The newly identified miR-429-CRKL axis represents a new
potential therapeutic target for HCC therapy (Guo et al., 2018).
MicroRNA-23b inhibits epithelial–mesenchymal transition
(EMT) and metastasis of Hepatocellular Carcinoma by
targeting Pyk2 (Cao et al., 2017). MicroRNA-494 is a major
epigenetic regulator of microRNAs for multiple invasion
inhibitors by targeting 10 11 translocation 1 in aggressive
human Hepatocellular Carcinoma (Chuang et al., 2005).
MicroRNA-340 inhibits the proliferation and invasion of
Hepatocellular Carcinoma cells by targeting JAK1 (Yuan
et al., 2017). Therefore, 10 of the top 10 predicted miRNAs
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TABLE 3 | Prediction results of the top 50 predicted Breast Neoplasms-related
miRNAs based on known associations in HMDD V2.0.

miRNA Evidence miRNA Evidence

hsa-mir-151 HMDD3.2 hsa-mir-663 dbDEMC

hsa-mir-30e HMDD3.2 hsa-mir-382 dbDEMC

hsa-mir-92b HMDD3.2 hsa-mir-494 HMDD3.2

hsa-mir-451 HMDD3.2 hsa-mir-575 HMDD3.2

hsa-mir-130a HMDD3.2 hsa-mir-658 dbDEMC

hsa-mir-192 HMDD3.2 hsa-mir-181d dbDEMC

hsa-mir-98 HMDD3.2 hsa-mir-376a HMDD3.2

hsa-mir-372 HMDD3.2 hsa-mir-211 dbDEMC

hsa-mir-32 HMDD3.2 hsa-mir-484 HMDD3.2

hsa-mir-106a HMDD3.2 hsa-mir-455 Unconfirmed

hsa-mir-130b HMDD3.2 hsa-mir-432 dbDEMC

hsa-mir-99b dbDEMC hsa-mir-381 HMDD3.2

hsa-mir-95 dbDEMC hsa-mir-99a HMDD3.2

hsa-mir-28 dbDEMC hsa-mir-154 dbDEMC

hsa-mir-150 HMDD3.2 hsa-mir-523 dbDEMC

hsa-mir-186 dbDEMC hsa-mir-526b HMDD3.2

hsa-mir-15b HMDD3.2 hsa-mir-507 Unconfirmed

hsa-mir-142 HMDD3.2 hsa-mir-525 Unconfirmed

hsa-mir-449b dbDEMC hsa-mir-660 HMDD3.2

hsa-mir-198 dbDEMC hsa-mir-181c HMDD3.2

hsa-mir-196b HMDD3.2 hsa-mir-300 dbDEMC

hsa-mir-491 HMDD3.2 hsa-mir-297 dbDEMC

hsa-mir-449a HMDD3.2 hsa-mir-136 dbDEMC

hsa-mir-424 HMDD3.2 hsa-mir-331 HMDD3.2

hsa-mir-212 HMDD3.2 hsa-mir-512 Unconfirmed

TABLE 4 | Prediction results of the top 50 predicted Carcinoma
Hepatocellular-related miRNAs based on known associations in HMDD V2.0.

miRNA Evidence miRNA Evidence

hsa-mir-132 HMDD3.2 hsa-mir-516a unconfirmed

hsa-mir-429 HMDD3.2 hsa-mir-663 dbDEMC

hsa-mir-34b HMDD3.2 hsa-mir-340 HMDD3.2

hsa-mir-151 HMDD3.2 hsa-mir-28 dbDEMC

hsa-mir-30e HMDD3.2 hsa-mir-186 HMDD3.2

hsa-mir-367 HMDD3.2 hsa-mir-575 HMDD3.2

hsa-mir-339 dbDEMC hsa-mir-658 dbDEMC

hsa-mir-9 HMDD3.2 hsa-mir-452 HMDD3.2

hsa-mir-215 HMDD3.2 hsa-mir-193b HMDD3.2

hsa-mir-451 HMDD3.2 hsa-mir-196b dbDEMC

hsa-mir-194 HMDD3.2 hsa-mir-494 HMDD3.2

hsa-mir-302a dbDEMC hsa-mir-449a HMDD3.2

hsa-mir-32 HMDD3.2 hsa-mir-424 HMDD3.2

hsa-mir-204 HMDD3.2 hsa-mir-520c HMDD3.2

hsa-mir-135b HMDD3.2 hsa-mir-382 unconfirmed

hsa-mir-95 HMDD3.2 hsa-mir-301b dbDEMC

hsa-mir-488 dbDEMC hsa-mir-510 unconfirmed

hsa-mir-302d HMDD3.2 hsa-mir-376c unconfirmed

hsa-mir-23b HMDD3.2 hsa-mir-455 HMDD3.2

hsa-mir-133a HMDD3.2 hsa-mir-206 HMDD3.2

hsa-mir-299 HMDD3.2 hsa-mir-137 HMDD3.2

hsa-mir-143 HMDD3.2 hsa-mir-211 HMDD3.2

hsa-mir-153 HMDD3.2 hsa-mir-154 HMDD3.2

hsa-mir-516b Unconfirmed hsa-mir-27b HMDD3.2

hsa-mir-383 dbDEMC hsa-mir-523 dbDEMC

TABLE 5 | Prediction results of the top 50 predicted Colon Neoplasms-related
miRNAs based on known associations in HMDD V2.0.

miRNA Evidence miRNA Evidence

hsa-mir-143 HMDD3.2 hsa-mir-200b HMDD3.2

hsa-mir-106b HMDD3.2 hsa-mir-24 HMDD3.2

hsa-mir-21 HMDD3.2 hsa-mir-1 HMDD3.2

hsa-mir-128 HMDD3.2 hsa-mir-205 HMDD3.2

hsa-mir-18a HMDD3.2 hsa-mir-29b HMDD3.2

hsa-mir-9 dbDEMC hsa-let-7b HMDD3.2

hsa-mir-155 HMDD3.2 hsa-mir-31 HMDD3.2

hsa-mir-181a HMDD3.2 hsa-mir-223 HMDD3.2

hsa-mir-494 unconfirmed hsa-let-7c HMDD3.2

hsa-mir-483 HMDD3.2 hsa-mir-15a HMDD3.2

hsa-let-7a HMDD3.2 hsa-mir-200c HMDD3.2

hsa-mir-125b HMDD3.2 hsa-mir-222 HMDD3.2

hsa-mir-146a HMDD3.2 hsa-mir-199a HMDD3.2

hsa-mir-34a HMDD3.2 hsa-mir-30b HMDD3.2

hsa-mir-210 HMDD3.2 hsa-mir-141 HMDD3.2

hsa-mir-16 HMDD3.2 hsa-mir-200a HMDD3.2

hsa-mir-146b dbDEMC hsa-let-7e HMDD3.2

hsa-mir-221 HMDD3.2 hsa-mir-196a HMDD3.2

hsa-mir-93 HMDD3.2 hsa-mir-142 HMDD3.2

hsa-mir-92a HMDD3.2 hsa-let-7f HMDD3.2

hsa-mir-20b dbDEMC hsa-mir-34c Unconfirmed

hsa-mir-19a HMDD3.2 hsa-let-7i HMDD3.2

hsa-mir-29a HMDD3.2 hsa-let-7d HMDD3.2

hsa-mir-18b HMDD3.2 hsa-let-7g HMDD3.2

and 45 of the top 50 predicted miRNAs were confirmed by
experimental literature from the dbDEMC and HMDD3.2
(see Table 4).

Colon Neoplasms are the most common type of gastrointestinal
cancer (Jemal et al., 2011; Ogata-Kawata et al., 2014). Siegel et al.
(2018), there were 97,220 new cases in the United States alone,
and approximately 50,630 patients died. A variety of miRNAs
have been experimentally confirmed to be associated with colon
neoplasms. For example, MicroRNA-155 regulates Colon Neoplasms
cell proliferation, cell cycle, apoptosis, migration and targets CBL (Yu
et al., 2017). MicroRNA-21 induces stem cells by down-regulating
transforming growth factor beta receptor 2 (TGFbetaR2) in Colon
Neoplasms cells (Yu et al., 2012). Let-7 is also involved in the
development of Colon Neoplasms (Williams, 2008). MicroRNA-
221 promotes Colon Neoplasms cell proliferation in vitro (Sun
et al., 2011). MicroRNA-34a inhibits the migration and invasion
of Colon Neoplasms cells by targeting Fra-1 (Wu et al., 2012).
Verification of dbDEMC and HMDD3.2 confirmed 10 of the
first 10 predictions and 48 miRNAs of the first 50 predictions
(see Table 5).

DISCUSSION

Research on the potential prediction of miRNA-disease associations
will help us to understand the pathogenesis and treatment of the
disease more deeply. Especially for cancer, targeted therapy by
regulating miRNA may be a breakthrough point for future treatment.
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In this paper, we developed an algorithm for miRNA-disease
association prediction (QIMCMDA), which mainly introduced
the q-kernel function to complete the similarity information
required. The QIMCMDA model is based on the known miRNA
disease association and miRNA functional similarity network. First,
calculated and completed the miRNA similarity network and the
disease similarity network using the q-kernel function. Then used
the matrix decomposition method to calculate the prediction score
for each sample, and finally sort the scores. The AUC of QIMCMDA
based on LOOCV is 0.9235, showing better performance than
previous methods. In addition, experimental literature has confirmed
the validity of potential miRNA-disease association predictions
for three major human diseases: Breast Neoplasms, Carcinoma
Hepatocellular, Colon Neoplasms).

The reasons for the reliable performance of QIMCMDA are
as follows: the key advantage of QIMCMDA is that it utilizes
the functional similarity of known miRNAs in combination with
q-kernel similarity as features of diseases and miRNAs to complete
the association of missing miRNAs and diseases. And the use of
alternating gradient descent algorithm to search for the optimal
solution can ensure the reliability of disease feature vectors and
miRNA feature vectors. In addition, the overall complexity of our
method from the construction of the network to the final prediction
score calculation is low, and the operation is simple and easy to
reproduce. QIMCMDA has a short running time and is suitable
for large-scale data research. It is a simple and effective method.
Finally, QIMCMDA is a semi-supervised model that does not require
negative samples, reducing the difficulty of model construction.
Compared with methods that require a large number of negative
samples, our method has some advantages. However, QIMCMDA
currently has some limitations. First of all, there are inevitable noises
and outliers in the known materials we use. Second, QIMCMDA
used the KL divergence as an error function, which is unstable

due to noise and outliers. With the development of the times,
database construction will become more and more perfect. As the
number of associated data increases, our predictions will become
more accurate. In addition, for miRNA or disease without any
known associations, our method may be less effective, because the
calculation of q-kernel is mainly based on known associations. In
the future, we can use a large amount of biological data to further
increase the reliability and practicability of the model prediction.
And our method can be practiced in other fields such as the
interaction between microorganisms and diseases or the interaction
between drugs and targets.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
article/supplementary material.

AUTHOR CONTRIBUTIONS

LW and YZ conceived the study. LW, YZ, and YC developed the
prediction method and designed the experiments. LW analyzed
the result and wrote the manuscript. NZ and WC optimized the
flow chart and manuscript structure. All authors reviewed and
improved the manuscript.

FUNDING

This work has been supported by the National Natural
Science Foundation of China (under Grant Nos. 61877064,
U1806202, and 61533011).

REFERENCES
Ambros, V. (2003). MicroRNA pathways in flies and worms: growth, death, fat,

stress, and timing. Cell 113, 673–676. doi: 10.1016/S0092-8674(03)00428-8
Asangani, I. A., Rasheed, S. A. K., Nikolova, D. A., Leupold, J. H., Colburn,

N. H., Post, S., et al. (2008). MicroRNA-21 (miR-21) post-transcriptionally
downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation
and metastasis in colorectal cancer. Oncogene 27, 2128–2136. doi: 10.1038/sj.
onc.1210856

Bartel, D. P. (2009). MicroRNAs: target recognition and regulatory functions. Cell
136, 215–233. doi: 10.1016/j.cell.2009.01.002

Boujemaa, N., Tarel, J., and Boughorbel, S. (2005). “Conditionally positive definite
kernels for svm based image recognition,” in IEEE International Conference on
Multimedia and Expo(ICME), Amsterdam, 113–116. doi: 10.1109/ICME.2005.
1521373

Calin, G. A., and Croce, C. M. (2006). MicroRNA signatures in human cancers.
Nat. Rev. Cancer. 6, 857–866. doi: 10.1038/nrc1997

Cao, J., Liu, J. K., Long, J. Y., Fu, J., Huang, L., Li, J., et al. (2017). MicroRNA-
23b suppresses epithelial-mesenchymal transition (EMT) and metastasis in
hepatocellular carcinoma via targeting Pyk2. Biomed. Pharmacother. 17:30 doi:
10.1016/j.biopha.2017.02.030

Carleton, M., Cleary, M. A., and Linsley, P. S. (2007). MicroRNAs and cell cycle
regulation. Cell Cycle. 6, 2127–2132. doi: 10.4161/cc.6.17.4641

Catto, J. W. F., Alcaraz, A., Bjartell, A. S., White, R. D. V., Evans, C. P.,
Fussel, S., et al. (2011). MicroRNA in prostate, bladder, and kidney Cancer:
a systematic review. Eur. Urol. 59, 671–681. doi: 10.1016/j.eururo.2011.
01.044

Chapelle, O., Vapnik, V., Bousquet, O., and Mukherjee, S. (2002). Choosing
multiple parameters for support vector machines. Mach. Learn. 46, 131–159.
doi: 10.1023/A:1012450327387

Chen, C. Z., Li, L., Lodish, H. F., and Bartel, D. P. (2004). MicroRNAs modulate
hematopoietic lineage differentiation. Science 303:903. doi: 10.1126/science.
1091903

Chen, J. F., Mandel, E. M., Thomson, J. M., Wu, Q., and Wang, D. Z. (2006). The
role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and
differentiation. Nature 38:1725. doi: 10.1038/ng1725

Chen, W., Zheng, R., Baade, P. D., Zhang, S., Zeng, H., Bray, F., et al. (2016a).
Cancer statistics in China, 2015. CA Cancer J. Clin. 66, 115–132. doi: 10.3322/
caac.21338

Chen, X. (2018). IMCMDA: predicting miRNA-disease association based on
inductive matrix completion. Bioinformatics 34, 4256–4265. doi: 10.1093/
bioinformatics/bty503

Chen, X., Liu, M., and Yan, G. (2012). RWRMDA: predicting novel human
microRNA– disease associations. Mol. BioSyst. 8, 2792–2798. doi: 10.1039/
c2mb25180a

Chen, X., Qu, J., and Yin, J. (2018). TLHNMDA: triple layer heterogeneous
network based inference for MiRNA-Disease association prediction. Front.
Genet. 18:234. doi: 10.3389/fgene.2018.00234

Chen, X., Yan, C. C., Zhang, X., You, Z. H., Deng, L. X., Liu, Y., et al.
(2016b). WBSMDA: within and between score for MiRNA-disease association
prediction. Sci. Rep. 6:21106. doi: 10.1038/srep21106

Chen, X., and Yan, G. Y. (2014). Semi−supervised learning for potentialhuman
microRNA−disease associations inference. Sci. Rep. 4:5501. doi: 10.1038/
srep05501

Frontiers in Genetics | www.frontiersin.org 9 October 2020 | Volume 11 | Article 594796

https://doi.org/10.1016/S0092-8674(03)00428-8
https://doi.org/10.1038/sj.onc.1210856
https://doi.org/10.1038/sj.onc.1210856
https://doi.org/10.1016/j.cell.2009.01.002
https://doi.org/10.1109/ICME.2005.1521373
https://doi.org/10.1109/ICME.2005.1521373
https://doi.org/10.1038/nrc1997
https://doi.org/10.1016/j.biopha.2017.02.030
https://doi.org/10.1016/j.biopha.2017.02.030
https://doi.org/10.4161/cc.6.17.4641
https://doi.org/10.1016/j.eururo.2011.01.044
https://doi.org/10.1016/j.eururo.2011.01.044
https://doi.org/10.1023/A:1012450327387
https://doi.org/10.1126/science.1091903
https://doi.org/10.1126/science.1091903
https://doi.org/10.1038/ng1725
https://doi.org/10.3322/caac.21338
https://doi.org/10.3322/caac.21338
https://doi.org/10.1093/bioinformatics/bty503
https://doi.org/10.1093/bioinformatics/bty503
https://doi.org/10.1039/c2mb25180a
https://doi.org/10.1039/c2mb25180a
https://doi.org/10.3389/fgene.2018.00234
https://doi.org/10.1038/srep21106
https://doi.org/10.1038/srep05501
https://doi.org/10.1038/srep05501
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-594796 October 17, 2020 Time: 20:9 # 10

Wang et al. q-Kernel Information and Matrix Completion

Cheng, X. Y., Chen, J. Q., and Huang, Z. (2018). MiR-372 promotes breast cancer
cell proliferation by directly targeting LATS2. Exp. Therap. Med. 15:5761. doi:
10.3892/etm.2018.5761

Cho, W. C. (2010). MicroRNAs: potential biomarkers for cancer diagnosis,
prognosis and targets for therapy. Int. J. Biochem. Cell Biol. 42, 1273–1281.
doi: 10.1016/j.biocel.2009.12.014

Chuang, K. H., Whitney-Miller, C. L., Chu, C.-Y., Zhou, Z., Dokus, K. M., Schmit,
S., et al. (2005). MicroRNA-494 is a master epigenetic regulator of multiple
invasion-suppressor microRNAs by targeting ten eleven translocation 1 in
invasive human hepatocellular carcinoma neoplasms. Hepatology 62:27816. doi:
10.1002/hep.27816

Farazi, T. A., Hoell, J. I., Morozov, P., and Tuschl, T. (2013). MicroRNAs in human
cancer. Adv. Exp. Med. Biol. 774, 1–20. doi: 10.1007/978-94-007-5590-1_1

Filipowicz, W., Bhattacharyya, S. N., and Sonenberg, N. (2008). Mechanisms of
posttranscriptional regulation by microRNAs: are the answers in sight? Nat.
Rev. Genet. 9, 102–114. doi: 10.1038/nrg2290

Gu, X., Li, J. Y., Guo, J., Li, P. S., and Zhang, W. H. (2015). Influence of MiR-451 on
drug resistances of paclitaxel-resistant breast cancer cell line. Med. Sci. Monit.
21:894475. doi: 10.12659/MSM.894475

Guan, N. N., Wang, C. C., Zhang, L., Huang, L., Li, J. Q., and Piao, X.
(2020). In silico prediction of potential miRNA−disease association using an
integrative bioinformatics approach based on kernel fusion. J. Cell Mol. Med.
24, 573–587. doi: 10.1111/jcmm.14765

Guay, C., Roggli, E., Nesca, V., Jacovetti, C., and Regazzi, R. (2011). Diabetes
mellitus, a microRNA-related disease? Transl. Res. 157, 253–264. doi: 10.1016/j.
trsl.2011.01.009

Guo, C. M., Zhao, D. T., Zhang, Q. L., Liu, S. Q., and Sun, M. S. (2018). MiR-429
suppresses tumor migration and invasion by targeting CRKL in hepatocellular
carcinoma via inhibiting Raf/MEK/ERK pathway and epithelial-mesenchymal
transition. Sci. Rep. 18:8 doi: 10.1038/s41598-018-20258-8

Ha, J., Park, C. H., Park, C. Y., and Park, S. (2020). IMIPMF: inferring miRNA-
disease interactions using probabilistic matrix factorization. J. Biomed. Inform.
102:103358. doi: 10.1016/j.jbi.2019.103358

Huang, S. Y., Chen, Y. S., Wu, W., Ouyang, N. Y., Chen, J. N., Li, H. Y., et al. (2017).
MiR-150 promotes human breast cancer growth and malignant behavior by
targeting the pro-apoptotic purinergic P2X7 receptor. PLoS One 8:707. doi:
10.1371/journal.pone.0080707

Iorio, M. V., Ferracin, M., Liu, C. G., Veronese, A., Spizzo, R., Sabbioni, S.,
et al. (2005). MicroRNA gene expression deregulation in human breast cancer.
Cancer Res. 65:70657070. doi: 10.1158/0008-5472.CAN-05-1783

Jemal, A., Bray, F., Center, M. M., Ferlay, J., Wardm, E., Forman, D., et al. (2011).
Global cancer statistics. CA Cancer J. Clin. 61, 69–90. doi: 10.3322/caac.20107

Jemal, A., Ward, E. M., Johnson, C. J., Cronin, K. A., Ma, J., Ryerson, B., et al.
(2017). Annual report to the nation on the status of cancer, 1975-2014, featuring
survival. J. Natl. Cancer Inst. 17:30. doi: 10.1093/jnci/djx030

Jiang, Q. H., Hao, Y. Y., Wang, G., Juan, L. R., Zhang, T. J., Teng, M. X.,
et al. (2010). Prioritization of disease microRNAs through a human phenome-
microRNAome network. BioMed. Central 4:S2. doi: 10.1186/1752-0509-4-S1-
S2

Jopling, C. L., Yi, M., Lancaster, A. M., Lemon, S. M., and Sarnow, P. (2005).
Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA.
Science 309, 1577–1581. doi: 10.1126/science.1113329

Kozomara, A., and Griffiths-Jones, S. (2011). miRbase: integrating microRNA
annotation and deep-sequencing data. Nucleic Acids Res. 39, D152–D157. doi:
10.1093/nar/gkq1027

Lanckriet, G. R. G., Christianini, N., Bartlett, P. L., Ghaoui, L. E., and Jordan,
M. I. (2002). “Learning the kernel matrix with semi-definite programming,”
in Nineteenth International Conference on Machine Learning, Sydney, 323–330.
doi: 10.1023/B:JODS.0000012018.62090.a7

Lee, R. C., Feinbaum, R. L., and Ambros, V. (1993). The C. elegans heterochronic
gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell
75:90529. doi: 10.1016/0092-8674(93)90529-Y

Leung, A. K., and Sharp, P. A. (2010). MicroRNA functions in stress responses.
Mol. Cell. 40, 205–215. doi: 10.1016/j.molcel.2010.09.027

Li, Y., Qiu, C., Tu, J., Geng, B., Yang, J., Jiang, T., et al. (2014a). HMDD
v2.0: a database for experimentally supported human microRNA and disease
associations. Nucleic Acids Res. 42, D1070–D1074. doi: 10.1093/nar/gkt
1023

Li, Y., Zhang, Z., Mao, Y., Jin, M., Jing, F., Ye, Z., et al. (2014b). A genetic variant
in MiR146a modifies digestive system Cancer risk: a meta-analysis. Asian Pac.
J. Cancer Prev. 15, 145–150. doi: 10.7314/APJCP.2014.15.1.145

Lipscomb, C. E. (2000). Medical subject headings (MeSH). Bull. Med. Libr. Assoc.
88, 265–266. doi: 10.0000/PMID10928714

Liu, K., Li, X. L., Cao, Y. C., Ge, Y. Y., Wang, J. M., and Shi, B. (2015). MiR-132
inhibits cell proliferation, invasion and migration of hepatocellular carcinoma
by targeting PIK3R3. Int. J. Oncol. 15:3112 doi: 10.3892/ijo.2015.3112

Lu, M., Zhang, Q. P., Deng, M., Miao, J., Guo, Y. H., Gao, W., et al. (2008).
An analysis of human MicroRNA and disease associations. PLoS One 3:3420.
doi: 10.1371/journal.pone.0003420

Niu, Y. W., Wang, G. H., Yan, G. Y., and Chen, X. (2019). Integrating random
walk and binary regression to identify novel miRNA-disease association. BMC
Bioinformatics 20:59. doi: 10.1186/s12859-019-2640-9

Nogayama, T., Takahashi, H., and Muramatsu, M. (2003). Generalization of kernel
pca and automatic parameter tuning. Techn. Report Ieice Prmu 103, 43–48.

Nunez-Iglesias, J., Liu, C. C., Morgan, T. E., Finch, C. E., and Zhou, X. J. (2010).
Joint genome-wide profiling of miRNA and mRNA expression in Alzheimer’s
disease cortex reveals altered miRNA regulation. PLoS One 5:8898. doi: 10.1371/
journal.pone.0008898

Ogata-Kawata, H., Izumiya, M., Kurioka, D., Honma, Y., Yamada, Y., Furuta, K.,
et al. (2014). Circulating exosomal microRNAs as biomarkers of colon cancer.
PLoS One 14:921. doi: 10.1371/journal.pone.0092921

Pan, Y. Q., Wang, R. J., Zhang, F. W., Chen, Y. L., Lv, Q. F., Long, G., et al. (2015).
MicroRNA-130a inhibits cell proliferation, invasion and migration in human
breast cancer by targeting the RAB5A. Int. J. Clin. Exp. Pathol. 8, 384–393.

Parkin, D. M., Bray, F., Ferlay, J., and Pisani, P. (2005). Global cancer statistics,
2002. CA Cancer J. Clin. 55, 74–108. doi: 10.3322/canjclin.55.2.74

Petrocca, F., Visone, R., Onelli, M. R., Shah, M. H., Nicoloso, M. S., Martino, I. D.,
et al. (2008). E2F1-regulated microRNAs impair TGFb-dependent cell-cycle
arrest and apoptosis in gastric cancer. Cancer Cell 13, 272–286. doi: 10.1016/
j.ccr.2008.02.013

Siegel, R. L., Kimberly D M., and Jemal, A.. (2018). Cancer statistics, 2018. CA
Cancer J. Clin. 68, 7–30. doi: 10.3322/caac.21442

Siegel, R. L., Miller, K. D., and Jemal, A. (2015). Cancer statistics, 2015. CA Cancer
J. Clin. 65, 5–29. doi: 10.3322/caac.21208

Song, L. Q., Liu, D., Wang, B. F., He, J. J., Zhang, Q. Q., Dai, Z. J., et al. (2015).
MiR-494 suppresses the progression of breast cancer in vitro by targeting
CXCR4 through the Wnt/β-catenin signaling pathway. Oncol. Rep. 34:3965.
doi: 10.3892/or.2015.3965

Sun, K., Wang, W., Lei, S. T., Wu, C. T., and Li, G. X. (2011). MicroRNA-
221 promotes colon carcinoma cell proliferation in vitro by inhibiting
CDKN1C/p57 expression. J. South. Med. Univ. 11:2011. doi: 10.1038/cmi.2011.
4

Taganov, K. D., Boldin, M. P., Chang, K. J., and Baltimore, D. (2006). NF-jB-
dependent induction of microRNA miR-146, an inhibitor targeted to signaling
proteins of innate immune responses. Proc. Natl. Acad. Sci. U.S.A. 103, 12481–
12486. doi: 10.1073/pnas.0605298103

Tricoli, J. V., and Jacobson, J. W. (2007). MicroRNA: potential for Cancer
detection, diagnosis, and prognosis. Cancer Res. 67, 4553–4555. doi: 10.1158/
0008-5472.CAN-07-0563

Urbich, C., Kuehbacher, A., and Dimmeler, S. (2008). Role of microRNAs in
vascular diseases, inflammation, and angiogenesis. Cardiovasc Res. 79, 581–588.
doi: 10.1093/cvr/cvn156

Wang, D., Wang, J., Lu, M., and Song, F. (2010). Qinghua cui. inferring the human
microRNA functional similarity and functional network based on microRNA-
associated diseases. Bioinformatics 26:241. doi: 10.1093/bioinformatics/btq241

Wang, H. L., Xiao, Y., Wu, L., and Ma, D. C. (2018). Comprehensive circular RNA
profiling reveals the regulatory role of the circRNA-000911/miR-449a pathway
in breast carcinogenesis. Int. J. Oncol. 18:4265. doi: 10.3892/ijo.2018.4265

Wang, W. J., Chen, X., Jiao, P. F., and Jin, D. (2017). Similarity-based regularized
latent feature model for link prediction in bipartite networks. Sci. Rep. 7:9.
doi: 10.1038/s41598-017-17157-9

Williams, A. E. (2008). Functional aspects of animal microRNAs. Cell. Mol. Life Sci.
8:9. doi: 10.1007/s00018-007-7355-9

Wu, J. M., Wu, G., Lv, L., Ren, Y. F., Zhang, X. J., Xue, Y. F., et al. (2012).
MicroRNA-34a inhibits migration and invasion of colon cancer cells via
targeting to Fra-1. Carcinogenesis 12:304. doi: 10.1093/carcin/bgr304

Frontiers in Genetics | www.frontiersin.org 10 October 2020 | Volume 11 | Article 594796

https://doi.org/10.3892/etm.2018.5761
https://doi.org/10.3892/etm.2018.5761
https://doi.org/10.1016/j.biocel.2009.12.014
https://doi.org/10.1002/hep.27816
https://doi.org/10.1002/hep.27816
https://doi.org/10.1007/978-94-007-5590-1_1
https://doi.org/10.1038/nrg2290
https://doi.org/10.12659/MSM.894475
https://doi.org/10.1111/jcmm.14765
https://doi.org/10.1016/j.trsl.2011.01.009
https://doi.org/10.1016/j.trsl.2011.01.009
https://doi.org/10.1038/s41598-018-20258-8
https://doi.org/10.1016/j.jbi.2019.103358
https://doi.org/10.1371/journal.pone.0080707
https://doi.org/10.1371/journal.pone.0080707
https://doi.org/10.1158/0008-5472.CAN-05-1783
https://doi.org/10.3322/caac.20107
https://doi.org/10.1093/jnci/djx030
https://doi.org/10.1186/1752-0509-4-S1-S2
https://doi.org/10.1186/1752-0509-4-S1-S2
https://doi.org/10.1126/science.1113329
https://doi.org/10.1093/nar/gkq1027
https://doi.org/10.1093/nar/gkq1027
https://doi.org/10.1023/B:JODS.0000012018.62090.a7
https://doi.org/10.1016/0092-8674(93)90529-Y
https://doi.org/10.1016/j.molcel.2010.09.027
https://doi.org/10.1093/nar/gkt1023
https://doi.org/10.1093/nar/gkt1023
https://doi.org/10.7314/APJCP.2014.15.1.145
https://doi.org/10.0000/PMID10928714
https://doi.org/10.3892/ijo.2015.3112
https://doi.org/10.1371/journal.pone.0003420
https://doi.org/10.1186/s12859-019-2640-9
https://doi.org/10.1371/journal.pone.0008898
https://doi.org/10.1371/journal.pone.0008898
https://doi.org/10.1371/journal.pone.0092921
https://doi.org/10.3322/canjclin.55.2.74
https://doi.org/10.1016/j.ccr.2008.02.013
https://doi.org/10.1016/j.ccr.2008.02.013
https://doi.org/10.3322/caac.21442
https://doi.org/10.3322/caac.21208
https://doi.org/10.3892/or.2015.3965
https://doi.org/10.1038/cmi.2011.4
https://doi.org/10.1038/cmi.2011.4
https://doi.org/10.1073/pnas.0605298103
https://doi.org/10.1158/0008-5472.CAN-07-0563
https://doi.org/10.1158/0008-5472.CAN-07-0563
https://doi.org/10.1093/cvr/cvn156
https://doi.org/10.1093/bioinformatics/btq241
https://doi.org/10.3892/ijo.2018.4265
https://doi.org/10.1038/s41598-017-17157-9
https://doi.org/10.1007/s00018-007-7355-9
https://doi.org/10.1093/carcin/bgr304
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-594796 October 17, 2020 Time: 20:9 # 11

Wang et al. q-Kernel Information and Matrix Completion

Xu, J., Li, C. X., Lv, J. Y., Li, Y. S., Huan, R., Xiao, Y., et al. (2011). Prioritizing
candidate disease miRNAs by topological features in the miRNA target-
dysregulated network: case study of prostate cancer. Mol. Cancer Therap. 10:55.
doi: 10.1158/1535-7163.MCT-11-0055

Yang, Z., Ren, F., Liu, C., He, S., Sun, G., Gao, Q., et al. (2010). dbDEMC: a database
of differentially expressed miRNAs in human cancers. BMC Genomic 10:S5.
doi: 10.1186/1471-2164-11-S4-S5

Yegin, E. G., Oymaci, E., Karatay, E., and Coker, A. (2016). Progress in surgical and
nonsurgical approaches for hepatocellular carcinoma treatment. Hepatobiliary
Pancreat Dis. Int. 15, 234–256. doi: 10.1016/S1499-3872(16)60097-8

Yu, H., Xu, W. L., Gong, F. C., Chi, B. R., Chen, J. Y., and Zhou, L. (2017).
MicroRNA-155 regulates the proliferation, cell cycle, apoptosis and migration
of colon cancer cells and targets CBL. Exp. Therap. Med. 14:5085. doi: 10.3892/
etm.2017.5085

Yu, Y. J., Kanwar, S. S., Patel, B., Ohta, P. S., Nautiyal, J., Sarkar, F. H., et al. (2012).
MicroRNA-21 induces stemness by downregulating transforming growth factor
beta receptor 2 (TGFβR2) in colon cancer cells. Carcinogenesis 12:246. doi:
10.1093/carcin/bgr246

Yuan, J. Y., Ji, H. X., Xiao, F., Lin, Z. P., Zhao, X.J., Wang, Z. C., et al.
(2017). MicroRNA-340 inhibits the proliferation and invasion of hepatocellular
carcinoma cells by targeting JAK1. Biochem. Biophys. Res. Commun. 17:102.
doi: 10.1016/j.bbrc.2016.12.102

Zhang, X., Tang, W., Chen, G., Ren, F. H., Liang, H. W., Dang,
Y. W., et al. (2016). An encapsulation of gene signatures for
hepatocellular carcinoma, MicroRNA-132 predicted target genes and the
corresponding overlaps. PLoS One 16:e0159498 doi: 10.1371/journal.pone.
0159498

Zhang, Y. S., Pang, D. L., Wang, J. H., and Zhang, J. L. (2019). qkerntool: Q-Kernel-
Based and Conditionally Negative Definite Kernel-Based Machine Learning
Tools. Available online at: https://cran.r-project.org/package=qkerntool
(accessed April 13, 2019).

Zhang, Z. C., Zhang, X. F., Wu, M., Ou-Yang, L., Zhao, X. M., and Li, X. L. (2020). A
graph regularized generalized matrix factorization model for predicting links in
biomedical bipartite networks. Bioinformatics (Oxf Engl) 36:157. doi: 10.1093/
bioinformatics/btaa157

Zhao, Y., Chen, X., and Yin, J. (2018). A Novel computational method for the
identification of potential miRNA-disease association based on symmetric non-
negative matrix factorization and kronecker regularized least square. Front.
Genet. 9:324. doi: 10.3389/fgene.2018.00324

Zhu, X., Wang, X., Zhao, H., Pei, T., Kuang, L., and Wang, L. (2020).
BHCMDA: a new biased heat conduction based method for potential MiRNA-
disease association prediction. Front. Genet. 11:384. doi: 10.3389/fgene.2020.
00384

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Wang, Chen, Zhang, Chen, Zhang and Gao. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 11 October 2020 | Volume 11 | Article 594796

https://doi.org/10.1158/1535-7163.MCT-11-0055
https://doi.org/10.1186/1471-2164-11-S4-S5
https://doi.org/10.1016/S1499-3872(16)60097-8
https://doi.org/10.3892/etm.2017.5085
https://doi.org/10.3892/etm.2017.5085
https://doi.org/10.1093/carcin/bgr246
https://doi.org/10.1093/carcin/bgr246
https://doi.org/10.1016/j.bbrc.2016.12.102
https://doi.org/10.1371/journal.pone.0159498
https://doi.org/10.1371/journal.pone.0159498
https://cran.r-project.org/package=qkerntool
https://doi.org/10.1093/bioinformatics/btaa157
https://doi.org/10.1093/bioinformatics/btaa157
https://doi.org/10.3389/fgene.2018.00324
https://doi.org/10.3389/fgene.2020.00384
https://doi.org/10.3389/fgene.2020.00384
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

	QIMCMDA: MiRNA-Disease Association Prediction by q-Kernel Information and Matrix Completion
	Introduction
	Materials and Methods
	Human MiRNA-Disease Associations
	MiRNA Functional Similarity
	Disease Semantic Similarity
	Disease Semantic Similarity 1
	Disease Semantic Similarity 2

	q-Kernel Similarity
	Similarity Calculation of miRNA Based on q-Kernel
	Network Similarity Calculation for Diseases Based on q-Kernel
	Matrix Completion

	Results
	Parameter Analysis
	Case Study

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	References


