
fgene-11-595242 December 18, 2020 Time: 19:58 # 1

ORIGINAL RESEARCH
published: 23 December 2020

doi: 10.3389/fgene.2020.595242

Edited by:
Bhabatosh Das,

Translational Health Science
and Technology Institute (THSTI),

India

Reviewed by:
Somsubhra Nath,

Saroj Gupta Cancer Centre
and Research Institute, Kolkata, India

Kalyan C. Vinnakota,
Gilbert Family Foundation,

United States
Lu Xie,

Shanghai Center For Bioinformation
Technology, China

*Correspondence:
Yongyong Shi

shiyongyong@gmail.com
Zhuo Wang

zhuowang@sjtu.edu.cn

Specialty section:
This article was submitted to

Systems Biology,
a section of the journal

Frontiers in Genetics

Received: 15 August 2020
Accepted: 30 November 2020
Published: 23 December 2020

Citation:
Sun R, Xu Y, Zhang H, Yang Q,

Wang K, Shi Y and Wang Z (2020)
Mechanistic Modeling of Gene

Regulation and Metabolism Identifies
Potential Targets for Hepatocellular

Carcinoma. Front. Genet. 11:595242.
doi: 10.3389/fgene.2020.595242

Mechanistic Modeling of Gene
Regulation and Metabolism Identifies
Potential Targets for Hepatocellular
Carcinoma
Renliang Sun, Yizhou Xu, Hang Zhang, Qiangzhen Yang, Ke Wang, Yongyong Shi* and
Zhuo Wang*

Bio-X Institutes, Key Laboratory for the Genetics of Developmental Neuropsychiatric Disorders (Ministry of Education),
Shanghai Jiao Tong University, Shanghai, China

Hepatocellular carcinoma (HCC) is the predominant form of liver cancer and has
long been among the top three cancers that cause the most deaths worldwide.
Therapeutic options for HCC are limited due to the pronounced tumor heterogeneity.
Thus, there is a critical need to study HCC from a systems point of view to
discover effective therapeutic targets, such as through the systematic study of
disease perturbation in both regulation and metabolism using a unified model. Such
integration makes sense for cancers as it links one of the dominant physiological
features of cancers (growth, which is driven by metabolic networks) with the primary
available omics data source, transcriptomics (which is systematically integrated with
metabolism through the regulatory-metabolic network model). Here, we developed an
integrated transcriptional regulatory-metabolic model for HCC molecular stratification
and the prediction of potential therapeutic targets. To predict transcription factors
(TFs) and target genes affecting tumorigenesis, we used two algorithms to reconstruct
the genome-scale transcriptional regulatory networks for HCC and normal liver
tissue. which were then integrated with corresponding constraint-based metabolic
models. Five key TFs affecting cancer cell growth were identified. They included the
regulator CREB3L3, which has been associated with poor prognosis. Comprehensive
personalized metabolic analysis based on models generated from data of liver HCC in
The Cancer Genome Atlas revealed 18 genes essential for tumorigenesis in all three
subtypes of patients stratified based on the non-negative matrix factorization method
and two other genes (ACADSB and CMPK1) that have been strongly correlated with
lower overall survival subtype. Among these 20 genes, 11 are targeted by approved
drugs for cancers or cancer-related diseases, and six other genes have corresponding
drugs being evaluated experimentally or investigationally. The remaining three genes
represent potential targets. We also validated the stratification and prognosis results
by an independent dataset of HCC cohort samples (LIRI-JP) from the International
Cancer Genome Consortium database. In addition, microRNAs targeting key TFs and
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genes were also involved in established cancer-related pathways. Taken together,
the multi-scale regulatory-metabolic model provided a new approach to assess key
mechanisms of HCC cell proliferation in the context of systems and suggested
potential targets.

Keywords: regulatory-metabolic integration, metabolic model, molecular stratification, potential therapeutic
target, hepatocellular carcinoma, metabolic reprogramming

INTRODUCTION

Hepatocellular carcinoma (HCC) is the most common type
of primary liver cancer and is the third leading cause of
cancer-related death (Ferlay et al., 2015). Obesity, diabetes,
fatty liver, virus infection, and many other diseases can lead
to HCC. Treatment of HCC largely depends on surgery.
Radiochemotherapy is unsatisfactory in part because of the
current difficulty in early diagnosis. Furthermore, although
drugs like Sorafenib and Lenvatinib had been approved by
the Food and Drug Administration (FDA), the drug–response
rates are relatively low probably due to the pronounced tumor
heterogeneity. For example, in one trial the median survival
was only 2–3 months longer compared to the placebo arm in
Asians and Caucasians (Cheng et al., 2009). More precise patient
stratification and discovery of novel drug targets are necessary to
improve treatment outcomes of HCC.

Several recent studies classified the molecular subtypes of
HCC based on proteomic data. In one study, the classification
of early-stage Chinese HCC samples revealed the mechanism
of early tumor cell development (Jiang et al., 2019). In the
other study, the classification of hepatitis B virus (HBV)-related
HCC samples identified three subgroups with distinct features
in metabolic reprogramming, microenvironment dysregulation,
and cell proliferation (Gao et al., 2019).

Metabolic reprogramming is an important characteristic and
driver of cancer. Genome-scale metabolic models (GEMs) have
been successfully used to characterize cancer metabolism and
to identify drug targets for cancer treatment. GEMs are a
powerful framework to mechanistically represent the relationship
between genotype and phenotype by computationally modeling
the biochemical constraints imposed on the phenotype. The
models are capable of simulating various biological tasks under
given conditions (Mardinoglu and Nielsen, 2012, 2015). This
allows the identification of essential genes or reactions for a
particular objective function. Many disease-related genes and
metabolites have been experimentally validated by comparing the
altered metabolism between normal and tumor tissue models.
Folger et al. (2011) used microarray data to identify key genes for
non-small-cell lung cancer. Mardinoglu et al. (2014) utilized data
from the Human Protein Atlas Database with the INIT algorithm
to successfully construct 69 cell-specific models and 16 cancer-
specific models. More recently, Uhle et al. (2017) employed
RNA-Seq data from The Cancer Genome Atlas (TCGA) database
together with the INIT algorithm to reconstruct 6753 patient-
specific metabolic models for various cancers.

Although many anti-cancer drugs developed by target-based
approaches have been approved by the FDA (Assoun et al., 2017;

Howie et al., 2018), there are still few effective therapeutic
targets for HCC. Bidkhori et al. (2018) recently addressed this
by utilizing metabolic network topology analysis to divide 179
liver HCC (LIHC) samples from the TCGA-LIHC database into
three subtypes and identify potential subtype-specific therapeutic
targets. However, metabolic networks are dramatically affected
by complex transcriptional regulatory networks, while the
changes in transcriptional regulation can lead to changes in
enzyme abundance or activity, which in turn lead to changes
in physiological states (e.g., cancer cell growth). The close
crosstalk between metabolic and regulatory mechanisms during
the complex tumor development necessitates the investigation
of multi-level mechanisms by integrating both regulation and
metabolism. Since the regulatory role of miRNA in liver cancer
remains largely in the work-in-progress phase, it is hard to get
the full spectrum of dysregulated miRNA in HCC (Sartorius
et al., 2019), we focused on the genome-scale transcriptional
regulatory network between TFs and genes, which was then
mechanistically combined with genome-scale liver metabolic
model. Several studies are constructing global transcriptional
regulatory networks for liver tissue or HCC tissue (Zhu et al.,
2012; Chen et al., 2017), but to our knowledge, no computational
studies have integrated regulation and metabolism into a unified
genome-scale model in studying HCC.

In this study, schematically summarized in Figure 1, we
used integrated regulatory-metabolic modeling to investigate the
possible mechanism of HCC using all TCGA-LIHC samples. We
have previously developed the Integrated Deduced Regulation
And Metabolism (IDREAM) algorithm (Wang Z. et al., 2017),
which uses a bootstrapping linear regression model on large-
scale gene expression datasets (e.g., 2,929 microarray for
Saccharomyces cerevisiae) to predict TF regulation on enzyme-
encoding genes, followed by a probabilistic regulation of
metabolism approach to apply regulatory constraints to the
metabolic network. The integrated model can predict the
influence of each TF knockout on certain objective functions,
such as cell growth. The model has been successfully applied in
S. cerevisiae to effectively predict the influence of transcriptional
regulation on the metabolic phenotype. It also can reveal novel
synthetic lethal pairs of TFs and metabolic genes with an
important interaction mechanism. But IDREAM requires a large-
scale expression dataset to infer regulatory network, which is
limited for HCC, so we modified it extensively for the application
in liver cancer study herein. We inferred the tumor/normal
regulatory networks using two independent algorithms, MERLIN
and CMIP. Then The regulatory relationships deduced by
both algorithms were regarded as “high confidence” regulations
and were tagged in the transcriptional regulatory networks

Frontiers in Genetics | www.frontiersin.org 2 December 2020 | Volume 11 | Article 595242

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-595242 December 18, 2020 Time: 19:58 # 3

Sun et al. Regulatory-Metabolic Integration for HCC Targets

for further integration with the metabolic model. Using the
integrated model, we classified HCC patients into different
subgroups by expression data of transcription factors (TFs) and
genes in the integrated network. The classification results were
evaluated by overall survival (OS) outcomes. The integrated
regulatory-metabolic model allows the identification of the
mechanisms of HCC tumor cell progression, the genes associated
with poor prognosis, and potential therapeutic targets. In
addition, microRNAs (miRNAs) regulating the influential TFs
and metabolic genes were incorporated to validate whether
the genes identified by the integrated model were important
for HCC tumorigenesis and their value as targets for clinical
treatment. The results were consistent with previous in-silico and
experimental studies.

MATERIALS AND METHODS

HCC Gene Expression Data
RNA-Seq expression data were obtained from 315 HCC samples
with clinical outcomes from the TCGA-LIHC Project, 232
HCC samples with clinical outcomes from the International
Cancer Genome Consortium-Liver Cancer RIKEN (ICGC-LIRI)
Project, and 50 HCC paired tumor-normal samples from the
Gene Expression Omnibus (GEO) database (GSE77314) (Liu
G. et al., 2016). The three gene expression datasets were,
respectively, employed to construct the integrated regulatory-
metabolic network model. The GSE77314 dataset was also used
to infer tumor and normal liver regulatory networks.

Metabolic Network Models
The genome-scale metabolic model of liver tissue used for
integration was retrieved from the Human metabolic Atlas
(HMA) Database (the1). It was built based on the combination
of the HMR2 model with RNA-Seq data of liver tissue to provide
an approach to explore metabolic and proteomic functions in
cancer (Uhlén et al., 2015). The patient-specific GEMs of HCC
used for metabolic analyses were retrieved from the BioModels
Database2. Uhle et al. (2017) utilized the tINIT algorithm to
perform the reconstruction. The characteristics of the metabolic
pathways in each model were determined by the protein-coding
genes expression level detected from individual patient RNA-
Seq data in the TCGA-LIHC Project. Biomass representing cell
growth (whose formula was also obtained from Uhle et al., 2017)
was set to be the objective function. We selected 315 of 338 HCC
individual models with clear clinical stage information (excluding
“not reported”) for metabolic reprogramming analysis.

Construction of Regulatory Networks
Two independent algorithms—the modular regulatory network
learning with per-gene information (MERLIN) (Roy et al.,
2013) and conditional mutual information measurement using
a parallel computing framework CMIP (Zheng et al., 2016)—
were used to construct the tumor/normal regulatory networks

1https://metabolicatlas.org/gems/repository
2https://www.ebi.ac.uk/biomodels/

from the expression data (GSE77314), which were implemented
using the Part 1 script in Supplementary File 1. MERLIN
combines the per-gene method and per-module concept based
on a probabilistic graphical model to infer regulatory network.
Thus, MERLIN cannot include only memberships deduced from
individual genes. The algorithm must also take the similarity
within a group of genes into consideration. The algorithm
is effective in predicting transcriptional changes in human
differentiation neural progenitor cells (Roy et al., 2013). In
addition, MERLIN outperforms several other state-of-the-art
algorithms. We used default settings, except for the use of five-
fold cross-validation.

The CMIP algorithm quantifies the interactions between genes
on the basis of conditional mutual information measurement to
avoid neglecting subtle relations under certain conditions. For
example, if both A and B are strongly connected to C, then the
actual relationship between A and B may be confusing because
of the interference of C. The performance was evaluated by the
average Area Under Curve (AUC) of 10 benchmark datasets
provided by the DREAM3 algorithm. CMIP performed better
than the other algorithms. Additionally, parallelized computation
enabled it to handle genome-scale datasets and to complete tasks
within a relatively short time compared to other popular methods
presented in DREAM3 Projects (Marbach et al., 2009). CMIP was
run using default parameters to let the algorithm automatically
decide the threshold of the dynamic removal of gene-pairs.

The regulatory relationships deduced by both algorithms
were regarded as “high confidence” regulations and were tagged
in the regulatory networks for further integration with the
metabolic model.

Metabolic Analysis
The COBRA Toolbox incorporated in MATLAB was used for
the metabolic analysis (Heirendt et al., 2019). Flux Balance
Analysis predicts feasible phenotypic states by setting appropriate
constraints gained from prior knowledge or assigned conditions.
By identifying the metabolic task to be studied, the flux
distribution of all reactions in the model can be calculated and
solved as follows:

maximum : Cell growth
subject to : S · v = 0

aj ≤ v ≤ bj

where v is a flux vector representing a particular flux
configuration, S is the stoichiometric matrix, and aj and bj are the
minimum and maximum fluxes, respectively, through reaction j.

We mainly used the “SingleGeneDeletion” function to find
metabolic genes whose knockout led to decreased cell growth.
The “OptimizeCbModel” function was used to calculate the
optimal growth rate and corresponding flux distribution.

Integration of Regulatory Network and
Metabolic Model for HCC
Modeling the regulatory networks of HCC and normal liver
tissue required the determination of TFs functioning in liver
tissue. To do this, we used liver regulatory network information
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FIGURE 1 | The schema of the integrated model for stratification and key targets discovery.

from RegulatoryCircuits (Daniel et al., 2016)3, which was inferred
based on the interactions of TFs-promoters, TFs-enhancers,
promoters-genes, and enhancers-genes. The data were validated
by introducing ChIP-Seq, expression quantitative trait loci
(eQTL), and RNA-Seq data. We also used the human regulatory
network from the RegNetwork (Zhi-Ping et al., 2015)4, which
was constructed by considering prior knowledge of TF binding
sites and post-transcriptional regulation by miRNAs. In addition,
convincing published results were also included.

The union of these two public human regulatory networks
yielded 1,366 TFs. We used these 1,366 TFs along with the
2,456 metabolic genes contained in the liver tissue model in
the HMA database together with GSE77314 RNA-Seq expression
data to determine the regulatory associations in the HCC and
normal liver metabolic models. Different from the bootstrapping
linear regression model used for regulatory associations inference
in IDREAM, here we applied two independent algorithms,
MERLIN and CMIP to calculate the interactions. The union
of the results predicted by the two methods represented the
regulatory network. The overlapping interactions represented
‘high confidence’ interactions. Then we used the probabilistic
regulation of metabolism approach to build the integrated
regulatory-metabolic model and predicted TFs affecting cell
growth in tumor and normal liver. We first calculated the

3http://regulatorycircuits.org/
4http://www.regnetworkweb.org/

probability of a target gene being ON when TF was OFF,
designated as Prob(Gene = ON| Factor = OFF). The constraints
on the corresponding reaction flux were Vmax × Prob, where
Vmax was derived by flux variability analyses. We then
simulated the changes in cell growth and each reaction flux. The
implementation of the integrated model construction code by
MATLAB is provided in Part 2 of Supplementary File 1.

Stratification, Survival, and Analysis of
Differentially Expressed Genes (DEGs)
In total, there are 3,492 expressed genes in the integrated
regulatory-metabolic network (1,366 TFs and 2,456 metabolic
genes), excluding overlapping genes and those with no expression
data. The expression data of these 3,492 genes were used to
stratify 315 TCGA-LIHC samples using the non-negative matrix
factorization (NMF) consensus clustering method from the
“NMF” R package (Attila and Mattias, 2008). This machine-
learning algorithm aims to distinguish different molecular
patterns in high-throughput genomic data. We used 200
iterations to determine the best clustering number between two
and 10? and selected the three best-value clusters according to the
cophenetic correlation coefficient and average silhouette width.

Clinical outcomes of the TCGA samples were used to
evaluate the clustering results. The Kaplan-Meier survival curve
implemented in the “survival” R package was applied to assess
the OS rate. The NMF clustering subtypes showed significant
differences in survival outcomes.
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For the analysis of DEGs, we used a linear model and
moderated t-statistics based algorithm implemented in the
“Limma” package, with absolute value log2(fold change) ≥1 and
P≤ 0.05. We compared the three clusters in pairs and selected the
intersection of DEGs between Class2:Class1 and Class2:Class3 as
the significantly upregulated/downregulated genes of the subtype
with the worst prognosis.

Functional enrichment analyses of the Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways were performed
using Database for Annotation, Visualization, and Integrated
Discovery (DAVID;5). Adjusted P ≤ 0.05 indicated
significant enrichment.

Network Topology Analysis
Cytoscape software was used for topology explorations (Su
et al., 2014). The “Tools”–“Merge”–“networks” function with the
optional parameter “difference” was used to detect differences
between tumor and normal liver networks. The principle was to
remove all identical nodes to identify TFs/metabolic genes that
were present only in HCC or the normal regulatory network. We
highlighted the hub genes being responsible for the abnormity on
the topological structure.

RESULTS

Differences of Regulatory Networks
Between Tumor and Normal Liver Cells
There are many algorithms designed to infer regulatory networks
from transcriptome profiles. The results have been validated in
model organisms that include S. cerevisiae and Escherichia coli.
We used the MERLIN and CMIP algorithms together with paired
RNA-Seq data obtained from the GEO database (GSE77314)
(Wang Z. et al., 2017) to construct the regulatory networks

5https://david.ncifcrf.gov/

of HCC and paired normal tissue, implemented by the Part1
script in Supplementary File 1. There were a total of 15,143
pairs and 29,127 pairs of regulation between TFs and target
genes deduced from tumor and normal samples (Supplementary
Table 1). Of these, 1,654 pairs were the same. Cytoscape was used
to visualize the topology difference between these two networks.
After removing the nodes that had little influence, the core
structure was obtained (Figure 2). In the core structure, NME2
and NFKBIA were the hub TFs that were important in normal
liver models (Figure 2A). These two TFs were absent in the HCC
tumor model (Figure 2B). Nuclear factor κB (NF-κB) affects
multiple biological processes by regulating the immune response
and inflammation. NF-κB is a hallmark in cancer progression
(Fengting et al., 2014). NFKBIA is a member of a cellular protein
family that can mask the nuclear localization signals of NF-
κB and block its binding to DNA. Because of this inhibition
ability, NFKBIA has long been considered as a tumor suppressor
(Laos et al., 2006). NME, which is located on chromosome
17q21, is a gene family associated with the suppression of cancer
metastasis and invasion (Steeg et al., 1988). In particular, the
NME2 product inhibits metastasis of breast cancer and lung
cancer (Hennessy et al., 1991; Krishna et al., 2014). Therefore, the
reconstructed regulatory networks effectively revealed the critical
known differences between liver cancer and normal tissues.
NME2 and NFKBIA represent putative tumor suppressor factors
for future studies.

Integrative Regulatory-Metabolic
Network Identified Abnormality of Hippo
Signaling as Key Misregulation in HCC
We integrated the regulatory network with metabolic models to
identify potential TFs vital to the growth of HCC cells using the
source code of Part2 in Supplementary File 1. The compositions
of the integrated models for HCC and normal liver tissue are
listed in Supplementary Table 1. The basic metabolism was

FIGURE 2 | Core structure of different nodes between topology of normal/tumor regulatory networks. (A) Differences between normal and tumor networks.
(B) Differences between tumor and normal networks; Nodes filled with green are TFs while nodes filled with red are metabolic genes.
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consistent, while the TFs and target genes differed. There were
1313 and 1312 TFs in the HCC and normal model, respectively.
These TFs included 33 that were HCC-specific and 32 that were
specific for a normal liver.

Reactome database analysis of the 32 specific TFs (including
NME2 and NFKBIA) not involved in the HCC regulatory
network revealed that they were enriched for the YAP1-
and WWTR1 (TAZ)-stimulated gene expression pathways.
They are transcriptional co-activators interacting with TEAD
family genes to promote the expression of TFs critical to
cell proliferation and apoptosis through the Hippo signaling
pathway (Lehmann et al., 2016). The findings suggested that
depletion of these 32 TFs might lead to abnormal Hippo
signaling and might induce a wide range of cancers. In
addition, the 33 specific TFs in the HCC integrated model
were mainly enriched in cancer metabolism and transcriptional
misregulation pathways.

For each TF knockout simulation, we changed the constraints
on corresponding reactions according to activation/inhibition
interactions and then simulated the cell growth rate to calculate
the growth ratio relative to wildtype, as implemented in Part3
script in Supplementary File S1. We found TFs affecting both
tumor and normal cell growth, as well as TFs that only reduced
the growth of tumor cells (Supplementary Table 2). For example,
disruption of SMAD2, HEY2, ELK1, and CREB3L3 was predicted
to lead to >80% reduction in tumor cell growth while having no
effect on normal cells. In particular, the involvement of HEY2 and
SMAD2 in HBV induced HCC development was evident. The
important TFs are likely to be effective targets for the inhibition
of tumor cells of HCC.

Precise Stratification of TCGA-LIHC
Samples Based on Metabolic and
Transcriptional Gene Expression
The identification of genes or pathways that could be valuable
as targets for treatment has been a goal for a long time.
Precise clinical diagnosis has been hindered by the pronounced
heterogeneity of HCC. This heterogeneity partly reflects

TABLE 1 | HCC Cell growth ratio by influential TFs knockouts.

Ratio after knockout of common TFs in all three classes of TCGA-LIHC

TF Class 1 Class 2 Class 3

CTBP1 0.926 0.926 0.926

HTATIP2 0.926 0.926 0.926

ETV7 0.234 0.12 0.09

Ratio after knockout of specific TFs in lowest survival class

TF TCGA-LIHC LIRI-JP

NR1I3 0.978 0.978

HNF4A 0.969 0.984

RORC 0.935 0.888

F2 0.975 0.967

CREB3L3 0.856 0.876

the inefficient current TNM stage classification. Molecular
stratification of HCC patients and identification of corresponding
therapeutic targets are current research goals. Bidkhori et al.
(2018) utilized a metabolic network-based method to divide
179 TCGA-LIHC samples into three subtypes and identified
their specific characteristics. Jiang et al. (2019) used proteomic
data to classify HCC patients and explored the mechanism of
an early-stage HCC tumor cell. Here, we used the expression
data of 3,492 genes in the integrated model to stratify all the
HCC samples with actual clinical survival information from
the TCGA-LIHC dataset and to identify altered metabolism
among different subgroups and specific characteristics of the
poor prognosis subgroup.

Using an NMF consensus clustering analysis, three major
classes were identified in the TCGA-LIHC cohort: Class 1
(n = 130), Class 2 (n = 127), and Class 3 (n = 58). The survival
curves (Figure 3A) revealed a significantly lower OS rate for Class
2 (P = 0.00049). Comparison of the 159 overlapped samples in a
previous study (Bidkhori et al., 2018) and this study revealed the
relatively good agreement in identifying the lowest OS subgroup:
91% (48 of 53; former results that are also in ours) and 70%
(49 of 70, our results that are also in the former findings).
Consequently, we focused on determining the characteristics of
the Class 2 poor prognosis subgroup at the transcriptome and
metabolism levels.

A supervised analysis using Limma (Matthew et al., 2015)
revealed 399 differentially expressed genes having distinguishable
pattern in Class 2 compared to Class 1 and 3, as shown
in the heatmap in Figure 3B, comprising 287 upregulated
genes [including three potential therapeutic targets: ALDOA,
G6PD, and ACSS1 specific to the lowest OS subgroup identified
by Bidkhori et al. (2018)] and 112 downregulated genes
(Supplementary Table 3) enriched in 17 and 13 non-overlapping
KEGG pathways, respectively (Figure 3C).

To validate the effectiveness of our stratification strategy, we
applied the same strategy for the LIRI-JP dataset in the ICGC
database to form three subgroups with significant prognosis
differences (Figure 4A; P = 0.0018). We found 332 differentially
expressed genes revealed distinguishable pattern between the
poor prognosis subgroup and other two subgroups, as shown
in heatmap of Figure 4B, and the pathways enriched for DEGs
were very consistent with DEG-enriched pathways of TCGA-
LIHC data (Figure 4C). Specifically, the upregulated genes were
mainly enriched in established cancer-related pathways involved
in improved cell proliferation. Notably, viral carcinogenesis
and HBV pathways were upregulated and could be directly
linked with HCC development. Another example is increased
glucose uptake as a principal nutrient source in central carbon
metabolism of cancer, cell cycle, and fructose metabolism.
We also found that hypoxia-inducible factor signaling was
upregulated. This signaling consists of master regulators of
oxygen homeostasis that allow tumor cells to adapt to a
hypoxic environment by enhancing oxygen delivery and also
affect important growth factors like the vascular endothelial
growth factor gene. In contrast, the downregulated genes were
generally found in pathways contributing to drug metabolism.
An example is the peroxisome proliferator-activated receptor

Frontiers in Genetics | www.frontiersin.org 6 December 2020 | Volume 11 | Article 595242

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-595242 December 18, 2020 Time: 19:58 # 7

Sun et al. Regulatory-Metabolic Integration for HCC Targets

FIGURE 3 | Stratification of 315 TCGA-LIHC samples. (A) Kaplan-Meier curve shows the survival outcomes of Class 1 (red), Class 2 (blue), and Class 3 (yellow); the
P-value is 0.00049, which is significant. (B) Heatmap of 399 differentially expressed genes revealed a distinguishable pattern between Class 2 and Class 1 and 3.
Red color represents upregulated while dark gray represents downregulated. (C) Enrichment analysis of KEGG pathways of 287 upregulated and 112
downregulated genes, respectively.

signaling pathway, which has also been identified in less
aggressive HCC subtypes through proteomics analysis, as well as
drug cytochrome P450 metabolism, which is reduced in advanced
cancer patients (Rivory et al., 2002).

Phosphoinositide 3-Kinase (PI3K)-Akt
and Mammalian Target of Rapamycin
(mTOR) Signaling Pathways Are Critical
to HCC Tumor Cell Growth
By using IDREAM, eight, 13, and five TFs were identified as
being vital for HCC cell growth in Class 1, Class 2, and Class
3, respectively, of TCGA-LIHC, after excluding TFs that also
affected normal tissue. Three TFs were common in all three
classes (Table 1).

The knockout of ETV7 produced the greatest decrease in
growth rate in all three classes, as shown in Table 1. ETV7 is
a TF belonging to the ETS family, which is responsible for the
development of different tissues as well as the progression of
several cancers, such as HCC (Peeters et al., 1997; Matos et al.,
2009). Due to its translocation function, the overexpression of
ETV7 has been associated with tumorigenic transformation and
restriction of apoptosis by blocking the Mys-induced apoptosis
pathway (Cardone et al., 2005; Carella et al., 2006; Federica et al.,
2018). Accumulating experimental evidence indicates that ETV7
also plays a significant role in the mTOR signaling pathway

by assembling the mTOR3 complex, which can stimulate cell
proliferation and is not sensitive to rapamycin, a common anti-
tumor agent, unlike mTOR1/2 (Harwood et al., 2018). Therefore,
ETV7 depletion may cause the inactivation of mTOR3 and lead
to tumor cell death after treatment.

CTBP1 is a well-known cancer hallmark. The gene is linked
with a pro-tumorigenic process and can affect the regulatory
network (Blevins et al., 2017). It can bind to the C-terminus
of the adenovirus protein E1A to promote cell proliferation
and invasion (Hildebrand and Soriano, 2002). In addition, the
characteristic elevated NADH level of cancer cells makes it
possible for CTBP1 to bind to NADP with a high affinity, thus
triggering a conformational change that leads to hyper-activity of
both tumorigenesis and tumor progression.

To explore the characteristics of TFs leading to low survival
rate and poor prognosis, we selected TFs whose knockout only
influenced samples in Class 2 of the TCGA-LIHC dataset. Five
TFs were specific for Class 2 (threshold: ratio <0.98). Four of the
five TFs were also associated with the lowest survival subgroup
(Class 3) of the LIRI-JP dataset (the ratio of HNF4A somewhat
exceeded the threshold), as shown in Table 1.

The knockout of CREB3L3, which was predicted to decrease
the growth rate of tumor cells by over 15% but which had no
effect on normal tissues, is reportedly activated with PPARα for
lipid metabolism in liver-specific tissue (Vecchi et al., 2013).
They both play important roles in the utilization of fatty acid
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FIGURE 4 | Stratification of 232 LIRI-JP samples. (A) Kaplan-Meier curve shows the survival outcomes of Class 1 (red), Class 2 (blue), and Class 3 (yellow); the
P-value is 0.0018, which is significant. (B) Heatmap of 332 differentially expressed genes revealed a distinguishable pattern between Class 3 and Class 1 and 2. Red
color represents upregulated while dark gray represents downregulated. (C) Enrichment analysis of KEGG pathways of 210 upregulated and 122 downregulated
genes, respectively.

for energy in a fasting state and in cell proliferation. Thus, it
was not surprising that its absence was predicted to result in a
decreased growth rate in tumor cells. The expression of CREB3L3
is linked with restricted apoptosis, cell survival, and HBV-
associated HCC development by regulating hepatic genes in the
PI3K-Akt and AMPK signaling pathways. The alignment of in-
silico analyses and biological knowledge suggests that CREB3L3
is a potential therapeutic target, especially for advanced-stage
HCC patients.

Metabolic Genes in Cholesterol
Biosynthesis Are Druggable Targets in
HCC Treatment
We incorporated patient-specific models established by Uhle
et al. (2017) to do metabolic analyses, including identification of
metabolic genes essential for tumor cell growth and annotation
of the specific reactions altered during tumor development.
All 315 metabolic models were built to represent tumor
growth. Using the genetic human metabolic model HMR2
and RNA-Seq expression data from TCGA-LIHC, a task-driven
model reconstruction algorithm called tINIT was employed to
construct all models.

We performed a single gene deletion simulation using a
function provided in the COBRA Toolbox. The total gene

number of each model ranged from 1,106 to 2,169. We first
identified the essential genes in the three subtypes of TCGA-
LIHC samples calculated by the NMF stratification strategy. We
then collected genes that were essential in at least half of the
samples in each class. Nineteen, 20, and 18 genes remained
for Class 1, Class 2, and Class 3, respectively, after filtering
those having no influence on tumor cell growth. Of these, the
18 genes found in Class 3 (relatively high OS rate) were are
also found in the other two classes. ACADSB was shared by
Class 1 and Class 2, and CMPK1 was only identified in Class 2.
We assessed prior knowledge about the therapeutic potential of
these 20 genes in DrugBank6. The findings are summarized in
Table 2.

The DrugBank analysis identified 11 genes (CRAT, EBP,
ACADSB, CMPK1, SLC22A5, HMGCR, HSD17B7, NSDHL,
DHCR7,FDPS, and CYP51A1) that have already been targeted by
approved drugs in the treatment of cancer or relative diseases.
Six other genes have corresponding drugs being evaluated
experimentally or investigationally. Both CMPK1 and ACADSB
seem to be vital to tumor cell growth in HCC models with
a lower survival rate. These genes have been implicated as
prognosis biomarkers associated with worse survival in multiple
tumors for a long time (Ryu et al., 2011; Ohmine et al., 2015;

6https://www.drugbank.ca/
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TABLE 2 | Lethal metabolic genes as potential targets and corresponding drugs in DrugBank.

Lethal gene Target drug Drug state Brief description of drug

IDI1 Dimethylallyl diphosphate Experimental Unknown

SQLE Ellagic acid Investigational Antioxidant and anti-proliferative/anti-cancer effects

FDFT1 TAK-475 Investigational Target rate-limiting enzyme in the hepatic biosynthesis of
cholesterol

CRAT Levocarnitine Approved Treatment of primary systemic carnitine deficiency

EBP Tamoxifen Approved Treatment of metastatic breast cancer

ACADSB Isoleucine Approved Anti-proliferative effects useful in cancer therapy

Valproic Acid Approved

SLC22A5 Levocarnitine Approved Treatment of primary systemic carnitine deficiency, affect fatty
acid synthesis

HMGCR Lovastatin Approved Lowering LDL cholesterol and triglycerides,
hypercholesterolemia;

Cerivastatin Approved Target rate-limiting enzyme in the hepatic biosynthesis of
cholesterol

Simvastatin Approved

Atorvastatin Approved

Rosuvastatin Approved

Meglutol Experimental

CMPK1 Gemcitabine Approved Various advanced cancers

Lamivudine Approved Treatment of HBV

Sofosbuvir Approved Treatment of HCV

Reduce incidence of HCC

MVK Farnesyl thiopyrophosphate Experimental Unknown

HSD17B7 NADH Approved Treating Parkinson’s disease, chronic fatigue syndrome,
Alzheimer’s disease and cardiovascular disease

NSDHL NADH Approved Treating Parkinson’s disease, chronic fatigue syndrome,
Alzheimer’s disease and cardiovascular disease

DHCR7 NADH Approved Treating Parkinson’s disease, chronic fatigue syndrome,
Alzheimer’s disease and cardiovascular disease

ACACB Soraphen A Experimental Anti-HCV viral activity

LSS R048-8071 Experimental Unknown

Lanosterol Experimental

FDPS Pamidronic acid Approved Treating severe hypercalcemia of malignancy

Zoledronic acid Approved Treating Paget’s disease of bone

Alendronic acid Approved Treating bone metastases from solid tumors

Ibandronate Approved, investigational Treating osteolytic lesions of multiple myeloma

Risedronic acid Approved, investigational Experimental drugs’ targets are still unknown

ISOPENTENYL PYROPHOSPHATE Experimental

Dimethylallyl Diphosphate Experimental

Farnesyl diphosphate Experimental

Geranyl Diphosphate Experimental

Geranylgeranyl diphosphate Experimental

Isopentyl Pyrophosphate Experimental

Incadronic acid Experimental

CYP51A1 Levoketoconazole Investigational Treating fungal infections in immunocompromised and
non-immunocompromised patients

(S)-econazole Experimental Treating diabetes mellitus type 2.

Miconazole Approved, investigational, vet_approved

Itraconazole Approved, investigational

Tioconazole Approved

PMVK Unknown Unknown Unknown

MVD Unknown Unknown Unknown

SC5D Unknown Unknown Unknown
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Liu N.Q. et al., 2016; Zhou et al., 2017a,b; Zhang B. et al., 2019).
CMPK1 is also the target of three FDA approved cancer drugs
(Gemcitabine, Lamivudine, and Sofosbuvir) for the treatment of
diseases induced by a virus infection, such as HCC caused by
HBV/hepatitis C virus. Li et al. (2019) recently reported that
in Kaposi’s sarcoma, a common acquired-immunodeficiency-
syndrome-related malignancy caused by infection of Kaposi’s
sarcoma-associated herpesvirus, the invasiveness and motility of
cells can be increased by overexpression of CMPK. This effect has
also been validated by the knockout experiments carried out in
cell lines. FDPS has been targeted by 11 drugs, among which five
types of drugs are approved for mainly treating osteoporosis as
well as bone metastases from solid tumors. CYP51A1 has been
the targets of three approved drugs, which are mainly used for
treating fungal infections.

Among the 18 genes lethal in all three classes, 15 genes
participate in cholesterol biosynthesis via the desmosterol
(DESMOL) pathway, which is the dominant form of liver
cholesterol biosynthesis (Song et al., 2005). The HMGCR,
MVK, PMVK, MVD, and IDI1 genes involving in the
mevalonate pathway that converts acetyl-CoA to dimethylallyl
pyrophosphate (DMAPP). The enzyme encoded by FDPS aids
DMAPP in synthesizing farnesyl pyrophosphate (FAPP). FDFT1
catalyzes the dimerization of two FAPP into squalene (SQNE). In
the next step, SQLE and LSS play important rate-limiting roles in
cholesterol biosynthesis by catalyzing the conversion of SQNE to
lanosterol (LNSOL). LNSOL then goes through demethylation,
oxidation, and reduction steps catalyzed by CYP51A1, NSDHL,
and HSD17B7 to form zymosterol (ZYMOL), the precursor in the
DESMOL pathway. The EBP, SC5D, and DHCR7 gene catalyze
the conversion of ZYMOL to DESMOL. Finally, DESMOL
is reduced by DHCR24 to produce cholesterol. Knockout of
any of these genes will disrupt cholesterol biosynthesis and
lead to the depletion of cholesterol, which is disastrous for
tumor cell growth.

There are only three predicted essential genes that have
not been recorded in DrugBank. The high hit rate of drug
targets (17/20) suggested that those three metabolic genes are
potential targets and worthy of exploration in future studies.
As mentioned above, PMVK and MVD are involved in the
mevalonate pathway that converts acetyl-CoA to DMAPP.
It has been reported that a key enzyme HMGCR, in the
mevalonate pathway was confirmed to be closely related
to cancer (Jiang et al., 2019). These three genes together
help the transformation from Mevalonic acid to Isopentenyl
diphosphate (IPP). SC5D catalyzes a dehydrogenation to
introduce C5-6 double bond into lathosterol in cholesterol
biosynthesis. Krakowiak et al. (2013) found that the mouse
with SC5D disruption had elevated lathosterol, decreased
cholesterol levels, and abnormal hedgehog signaling, which
is considered to be related to tumorigenesis (Patrycja et al.,
2003). Furthermore, SC5D regulates the enzyme converting
lathosterol to 7-Dehydrocholesterol. And the downstream gene
DHCR7, which converts 7-Dehydrocholesterol to cholesterol,
has been targeted by drugs inhibiting HBV infection (Xiao
et al., 2020). Therefore, although the three genes are currently
not targets of existing drugs, they are all related to the

main-effect pathway cholesterol biosynthesis and important for
tumorigenesis of HCC.

Enhancement of Glutathione and Fatty
Acid Biosynthesis Are Important
Metabolic Reprogramming Events
Associated With Poor Prognosis
It is widely accepted that tumor cells reprogram metabolic
pathways to enable unlimited cell proliferation, aggressive
invasiveness, and restricted apoptosis. We investigated 1,329
reactions in all 315 patient-specific models to identify flux
patterns and enzymes that differed between the poor prognosis
subgroup (Class 2) and the other two classes. We conducted
flux balance analysis with cell growth as the objective function
to calculate the flux distribution for each patient, and selected
candidate reactions having similar flux changes in over half
samples of each subgroup. Four flux alteration patterns were
evident. The first was from negative flux value in Class 1 and
Class 3 to positive flux in Class 2. The second was from positive
flux value in Class 1 and Class 3 to negative flux in Class 2. The
third was from a non-zero flux in Class 1 and Class 3 to zero flux
in Class 2. The fourth was from zero flux in Class 1 and Class
3 to non-zero flux in Class 2. The altered reactions, formulas,
enzymes, and corresponding types of flux patterns are shown in
Supplementary Table 4.

Two reactions simulated type 1 and type 2 flux change,
respectively. According to these four reactions, the production of
glutathione (GSH) was suspected to increase in Class 2 samples
due to the enhancement of AKG biosynthesis and cysteine
accumulation in the cytosol. GSH is a key member of the cell
immune response system. The lack of GSH can easily lead to
cell death. Several labs have confirmed its common occurrence
in all cancers (Mehrmohamadi et al., 2014) and it is considered
a potential therapeutic target. Additionally, loss of the enzyme
catalyzing these reactions (encoded by SLC25A11) inhibits tumor
cell growth in non-small cell lung cancer (Lee et al., 2019). Baulies
et al. (2018) suggested that the overexpression of SLC25A11
works as an adaptive mechanism of HCC to provide enough GSH
for abundant cell growth, while SLC25A11 induces the export of
AKG to the cytosol to activate the mTOR pathway to promote cell
growth and anabolism through egl-9 family hypoxia-inducible
factors (EGLNs) (Villar et al., 2015).

Eleven reactions displayed no flux in Class 2 but a positive
flux in Class 1 and 3 (type 3). Four of these reactions are
part of porphyrin metabolism. The enzyme encoded by UROD
is involved in this pathway and was recently identified as
a potential anti-cancer target due to its ability to convert
uroporphyrinogen to coproporphyrinogen (Yip et al., 2014).
Another enzyme encoded by ALAD is overexpressed in breast
cancer patients with a favorable clinical outcome. Its upregulation
can suppress cell proliferation and invasion (Ge et al., 2017). In
addition, a set of enzymes responsible for carnitine shuttling,
which are encoded by SLC22A1, SLC25A20, SLC25A29, and
CPT2, are downregulated in HCC tumor cells. These enzymes
play rate-limiting roles in controlling fatty acid oxidation
(Meihua et al., 2018). Their low expression has been significantly
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associated with worse patient survival (Heise et al., 2012) and
differentiation state by impairing production of nitric oxide and
the mTOR signaling pathway mediated by arginine. In some
situations, this can lead to severe autophagy (Lifeng et al., 2016;
Keshet and Erez, 2018).

Three reactions displayed non-zero flux in Class 2 but zero
flux in Class 1 and 3 (type 4). These involved fatty acid activation
responsible for providing adequate ATP and CoA for tumor
cell growth; glycine, serine, threonine metabolism, which helps
reduce reactive oxygen species pressure through the serine–
glycine-one-carbon metabolic network during tumor metastasis
(Amelio et al., 2014); and arginine/proline metabolism, which
can regulate response to nutrient and oxygen deprivation in
oncogenesis, thus avoiding cell apoptosis (Phang et al., 2015).
Furthermore, exploration of enzymes revealed that ACADSB
(which was also highlighted by previous analyses), ACSL3, and
ACSL4 regulate proteins that stimulate tumor cell proliferation,
including p-AKT, LSD1, and β-catenin (Wu et al., 2015).

The altered reactions specific to Class2 samples promote
tumor cell growth and decrease sensitivity towards normal
apoptosis signals. Several key enzymes have already been
implicated as biomarkers in cancers. Metabolic reprogramming
accounting for poor prognosis also supports our stratification of
the HCC patients.

miRNAs Regulating Influential Genes for
HCC Cell Proliferation
To investigate the interplay between regulation and metabolism
of HCC further, we retrieved miRNAs regulating the influential
genes highlighted in our previous analyses. These include the
three common TFs that were influential in all three classes,
the five overlapping TFs that specifically affected the lowest
survival subgroup of TCGA-LIHC (Class 2) and LIRI-JP (Class
3), and the 20 metabolic genes revealed by single-gene deletion
result (Supplementary Table 5). Evaluation of the MIRNET
database identified the miRNAs functioning in liver tissue with
higher connections to target TFs/genes. We found six miRNAs
connected to the 28 genes of interest (Supplementary Table 5).
Three of these were directly linked with HCC. MiR-124-3p and
miR-1-3p have been reported to be downregulated in HCC
patients compared to normal subjects (Lang and Ling, 2012;
KöBerle et al., 2013). MiR-24-3p is involved in an HCC diagnosis
panel because of its abnormal overexpression.

The specific mechanism concerning how the loss-of-function
or gain-of-function of these miRNAs contribute to tumorigenesis
remains unclear. However, there are some experiment-based
hypotheses. Figure 5A depicts the core network comprising
miRNAs, TFs, and genes involved in HCC. The data will inform
further studies in HCC development.

In particular, miRNA-124-3p appears to be the key miRNA
during oncogenesis in many cancers (Murakami et al., 2006; Dai
et al., 2009; Vlierberghe et al., 2010). Zheng et al. (2012) opined
that miR-124-3p participates in reducing tumor cell motility and
invasion by controlling epithelial–mesenchymal cell transition
as well as cytoskeletal events through a cpG-island methylation
(Furuta et al., 2010).

Zhang H. et al. (2019) suggested that miR-1-3p overexpression
can inhibit cell proliferation and induce apoptosis by targeting
the PI3K-Akt and mTOR pathways through ETV7. The
downregulation of mir-24-3p can assist this process by
deactivating the Fas receptor in the NOTCH pathway and
inhibiting HNF4A to drive a feedback loop that leads to cancer-
related inflammatory reaction (Salam et al., 2016). Additionally,
Wang G. et al. (2017) and Chen et al. (2016) indicated that
the regulatory impact of miR-24-3p includes an altered cell
cycle by inducing p53 mutation as well as the avoidance of cell
death by targeting the Fas receptor in the NOTCH pathway
(Nicolas et al., 2003).

In addition, miR-26b-5p, which was connected to nine of
the 28 genes, has been experimentally validated to be under-
expressed in HCC patients with a worse prognosis. It can
suppress tumor invasion as well as inducing apoptosis by
targeting SMAD1 (Wang et al., 2016), which is consistent
with our conclusion about the SMAD gene. Three of the
genes obtained by our integrated regulatory-metabolic analysis
(CMPK1, ACADSB, and RORC) are directly regulated by
miR-26b-5p. The fact that they are all specific genes for
Class 2 (the class with the worst OS rate) substantiates the
previous association.

Ingenuity Pathway Analysis (Krämer et al., 2013) of the 28
candidate genes and six top-connected miRNAs was performed
to explore the biological connection among them. As shown
in Figure 5B, EGFR was inferred and linked with our core
gene set. EGFR is one of the most crucial genes responsible for
cancer cell growth. Its overexpression can lead to unlimited cell
proliferation, just like that in tumor cells. The gene is a potential
therapeutic target in cancer therapy. Multiple FDA approved
drugs, such as Gefitinib and Lapatinib, are effective in EGFR-
related non-small-cell lung cancer and several other cancers
(Rawluk and Waller, 2018; Voigtlaender et al., 2018).

DISCUSSION

Integrated Regulatory-Metabolic
Network Differences Between HCC and
Normal Liver Cells
The curated information linking the reactions of genes and
proteins in GEMs has enabled the identification of many
potential disease-related biomarkers by metabolic analyses. The
interconnectedness between metabolism and regulation permits
the integration of regulatory with metabolic models, which in
turn allows the more precise description of the phenotypic
impact of mutations and environmental perturbations. This
integration has proven effective in model organisms, including
S. cerevisiae and E. coli, but has not yet been applied to the study
of human diseases.

Here we leveraged the mechanistic modeling of transcriptional
regulatory network and metabolic network for HCC study,
by extensively improving our IDREAM framework. We used
two different approaches to construct transcriptional regulatory
networks for HCC and normal liver tissue samples. Through
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FIGURE 5 | Multi-scale network exploration of HCC mechanism. (A) Core miRNA relation network of potential therapeutic targets. The octagon represents
metabolic genes while the square represents TFs and the circle represents miRNAs; The orange color represents genes/TFs that have been experimentally validated
as crucial genes in HCC tumor cells. (B) Biological connection of 34 genes (28 candidate genes and top 6 miRNAs).

topology analysis, NME2, and NFBIKA were implicated as tumor
suppressor TFs because of their absence in a tumor regulatory
network and high connectivity in a non-tumor network. We
integrated the regulatory networks with a human liver metabolic
model, and compared the effects of TFs on cell growth in tumor
and normal models. TFs that only reduced the growth of tumor
cells were predicted to be potential targets. These included the
SMAD2, HEY2, ELK1, and CREB3L3 genes.

Three Subtypes of HCC Samples
Demonstrate Significantly Different
Prognosis
By allocating TCGA-LIHC samples using pre-filtered 3,492 genes,
we defined three patient subgroups distinguished by the OS rate.
Patients in Class 2 displayed the worst survival. We identified
three essential TFs for HCC tumor cell growth that were common
in all three groups. Among these, ETV7 displayed the greatest
impact, decreasing cell growth rate by approximately 88% in
Class 2. ETV7 is a TF belonging to the ETS family. It is
responsible for the progression of several cancers, including
HCC. Because of its translocation function, the overexpression
of ETV7 has been associated with tumorigenic transformation
and restricted apoptosis by blocking the Mys-induced apoptosis
pathway. There is growing evidence of a significant role of ETV7
in the mTOR signaling pathway, which involves the assembly of
the mTOR3 complex to stimulate cell proliferation and prevent
cell damage by rapamycin, a common anti-tumor agent.

In addition, we identified potential TFs related to poor
prognosis based on the simulated knockouts of five TFs, which

were predicted to specifically affect patients in Class 2. Among
these five TFs, CREB3L3 was also predicted as being influential
for advanced-stage HCC samples by the TF knockout simulation
in the generic integrated regulatory-metabolic model. It has been
reported that the expression of CREB3L3 is linked with cell
survival and HBV-associated HCC development by regulating
hepatic genes in the PI3K-Akt and AMPK signaling pathways
(Vecchi et al., 2013).

The poor prognosis group (Class 2) also exhibited a specific
pattern of altered metabolism. Flux alterations in Class 2 samples
included the accumulation of both AKG and cysteine, which
indicated the over-production of GSH, a key member of the
cellular immune response system that improves cell proliferation
and avoids apoptosis. Besides the biosynthesis of fatty acids,
mTOR signaling was also hyper-activated, and pathways that
included those of glycine, serine, and threonine metabolism
reduce reactive oxygen species stress during tumor homeostasis.

We used the same stratification strategy for the LIRI-
JP dataset. Survival outcomes likewise displayed significant
differences among the subgroups. The predicted outcomes of TFs
affecting the lowest survival subgroup were consistent with that
of the TCGA-LIHC dataset.

Key Metabolic Genes in Cholesterol
Biosynthesis Identified by
Patient-Specific Models Are Potential
Targets
The metabolic analyses based on patient-specific models revealed
20 metabolic genes with important roles in HCC tumor
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cell growth by participating in the cholesterol biosynthesis
pathway. Recent research uncovered that cholesterol biosynthesis
supports the growth of hepatocarcinoma lesions depleted of fatty
acid synthase, concomitant targeting de novo lipogenesis and
cholesterol biosynthesis are highly detrimental for the growth of
human HCC cells (Che et al., 2019)

According to DrugBank, eleven genes have already been
therapeutically targeted in various cancers or cancer-related
diseases, and six other genes have corresponding drugs being
evaluated experimentally or investigationally. Although the
remaining three genes, PMVK, MVD, and SC5D are currently
not targets of existing drugs, they are all related to the
main-effect pathway cholesterol biosynthesis and important for
tumorigenesis of HCC, which might become novel potential
therapeutic targets and worthy of exploration in future studies.
We further found that ACADSB and CMPK1 appeared to be
specifically essential in Class 2. These two genes could be
associated with poor prognosis and may be the targets for the
treatment of more serious HCC patients.

Multi-Scale Regulatory-Metabolic
Network Reveals a Critical Mechanism
of HCC Cell Proliferation
In addition to the integration of transcriptional regulation
with metabolism, it is well known that dysregulated miRNAs
also played an important regulatory role in tumorigenesis. We
incorporated the miRNAs regulating the identified influential TFs
and metabolic genes generated from an integrated transcriptional
regulatory-metabolic network model. Based on the highlighted
genes (total of 28 key genes), we predicted miRNAs regulating
these candidates using MIRNET. Three miRNAs (miR-124-3p,
miR-1-3p, and miR-24-3p) have been described as important
factors associated with HCC tumorigenesis and function in
established cancer-related pathways, including NOTCH, PI3K-
Akt, and mTOR. We illustrated the core network of HCC
cell proliferation involving interactions between miRNAs-TFs,
miRNAs-Targets, and TFs-Targets (Figure 5A), and emphasized
the targets that were highlighted in the combined analyses.
In general, the inhibition of miRNAs on overexpressed genes
in HCC were consistent with their validated function such
as suppressing tumorigenesis. The findings suggest potential
mechanisms associating the key genes predicted from our
regulatory-metabolic network analysis with cancer cell growth
outcomes. Notably, the direct regulation of miR-26b-3p on
ACADSB and CMPK1 provides experimental evidence to support
the idea that these two metabolic genes are linked with lower
OS in HCC. Moreover, the biological connection inferred by
the Ingenuity Pathway Analysis indicated these highlighted
genes are closely connected to EGFR, which plays a significant
role in cancer cell proliferation, providing evidence for our
comprehensive analyses.
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