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Accurate prediction of heading date under various environmental conditions is expected
to facilitate the decision-making process in cultivation management and the breeding
process of new cultivars adaptable to the environment. Days to heading (DTH) is a
complex trait known to be controlled by multiple genes and genotype-by-environment
interactions. Crop growth models (CGMs) have been widely used to predict the
phenological development of a plant in an environment; however, they usually require
substantial experimental data to calibrate the parameters of the model. The parameters
are mostly genotype-specific and are thus usually estimated separately for each
cultivar. We propose an integrated approach that links genotype marker data with
the developmental genotype-specific parameters of CGMs with a machine learning
model, and allows heading date prediction of a new genotype in a new environment.
To estimate the parameters, we implemented a Bayesian approach with the advanced
Markov chain Monte-Carlo algorithm called the differential evolution adaptive metropolis
and conducted the estimation using a large amount of data on heading date and
environmental variables. The data comprised sowing and heading dates of 112
cultivars/lines tested at 7 locations for 14 years and the corresponding environmental
variables (day length and daily temperature). We compared the predictive accuracy of
DTH between the proposed approach, a CGM, and a single machine learning model.
The results showed that the extreme learning machine (one of the implemented machine
learning models) was superior to the CGM for the prediction of a tested genotype in a
tested location. The proposed approach outperformed the machine learning method in
the prediction of an untested genotype in an untested location. We also evaluated the
potential of the proposed approach in the prediction of the distribution of DTH in 103 F2

segregation populations derived from crosses between a common parent, Koshihikari,
and 103 cultivars/lines. The results showed a high correlation coefficient (ca. 0.8) of the
10, 50, and 90th percentiles of the observed and predicted distribution of DTH. In this
study, the integration of a machine learning model and a CGM was better able to predict
the heading date of a new rice cultivar in an untested potential environment.

Keywords: crop growth model, bayesian inference, differential evolution adaptive metropolis, machine learning,
Markov chain Monte-Carlo
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INTRODUCTION

Heading date is a critical trait for the adoption of a
rice cultivar to target cultivation area and cropping season
(Yano et al., 1997). Improvement in the understanding and
modeling of rice phenology could benefit production and
breeding. However, it has been challenging to model a complex
trait such as heading date, which is usually influenced by
genotype, environment, and their interaction. In the past,
when available data were limited, simple models such as
those based on growing degree days have been used widely,
but these have good predictability for the specific genotype
in environments with few variabilities. With more available
data and knowledge and the improvement in computing
power, more complex models such as crop growth models
(CGMs) have been developed to simulate the performance of
genotypes in a wide range of environments, mainly variable
temperature and photoperiod. A CGM is implemented as a
process-based mathematical set of equations describing the
growth process of a crop plant, and enables the prediction of
growth and production under environmental, management, and
physiological input variables. The physiological parameters in
the CGM equations account for the among-genotype differences
and are usually regarded as environment-independent genotypic
characteristics (Yin et al., 2000). This allows the predictions to
be unrestricted to environments where the model parameters are
calibrated/estimated (Yin et al., 2003).

As genetic marker information becomes available, the genetic
control of the response to environments can be revealed via
the dissection of the variation in the CGM parameters into the
effects of discrete genetic loci—quantitative trait loci (QTLs). The
relevant studies include the research on flowering time in barely
(Yin et al., 2005), rice (Nakagawa et al., 2005), Brassica oleracea
(Uptmoor et al., 2008), and wheat (Bogard et al., 2014). These
studies suggest the possibility of predicting the performance of
a given genotype in an untested environment by plugging in
the parameters that are predicted for the genotype based on the
estimated QTL effects into a CGM. As an example, Bogard et al.
(2014) predicted days to heading (DTH) of wheat based on the
estimated QTL effects and found that the root mean square error
(RMSE) between the observed and predicted values was 6.3 days.
The approach of integrating a gene-based or QTL-based model
with a CGM has been advocated by several studies (White and
Hoogenboom, 1996; Chapman et al., 2002a,b; Letort et al., 2008).
However, further refinement is required for linking the CGM
parameters with genotypes of markers or genes.

For the integrated approach, we must first estimate the
parameters of the CGM using the phenotypic and environmental
data collected in field experiments. Owing to several reasons,
such as the lack of sufficient input data for estimating many
parameters, difficulties in defining the criteria for validating
the predicted accuracy of a CGM, and the diverse structure
of input data, the estimation of CGM parameters remains a
rather open field (Seidel et al., 2018). The estimation methods
can be classified as frequentist or Bayesian. The frequentist
approach assumes that the parameter is a fixed effect and
does not include the prior information of the parameter in

the model. The Bayesian approach assumes that the parameter
is a random variable and the prior information is built into
the model. A comprehensive introduction of this topic can be
found in Makowski et al. (2006). Although the better choice
among Bayesian and frequentist approaches is not clear, the
Bayesian approach could provide further information regarding
the parameters, such as the uncertainty of the estimates, when
the main interest is in interpreting the biological meaning of
estimated parameter values instead of optimizing the predicted
accuracy of the CGM. In several studies (Iizumi et al., 2009; Jones
et al., 2011) a Bayesian approach with the Markov chain Monte
Carlo (MCMC) technique has been applied for estimating CGM
parameters. The commonly used MCMC method, such as the
Metropolis–Hastings algorithm, however, has slow convergence
in practice. Dumont et al. (2014) and Iizumi et al. (2014)
suggested the use of an advanced MCMC technique, such as the
differential evolution adaptive metropolis (DREAM) algorithm,
which can automatically tune the scale and orientation of the
proposed distribution during the search and overcome the
problems of heavy-tailed and multimodal posteriors.

Another consideration is how an integrated framework
connecting the CGM to markers or genes can be built for
predicting complex traits. A straightforward approach is the two-
step approach that first computes the estimates of the CGM
parameters and then uses the statistical models developed for
QTL analysis or genomic prediction (Meuwissen et al., 2001) to
predict the CGM parameters. A unified predictive system has also
been proposed by Technow et al. (2015) and Onogi et al. (2016)
Their framework applied different Bayesian approaches, but both
based their system on a single hierarchical model instead of the
two-stage approach to predict complex traits such as yield in
maize and heading in rice, respectively. Although the integration
of genomic prediction with CGM has shown good potential in
previous studies, another modeling paradigm, such as machine
learning, could also have great potential as a candidate method
for modeling the non-linear, complicated interaction between the
gene and the environment.

Unlike statistical models that focus more on the extraction of
information on the underlying mechanism producing the data,
the machine learning method is concerned with the accuracy
of prediction (Breiman, 2001b). As a result of the big data era,
machine learning has shown unprecedented predictive power
against traditional statistical models. However, there were very
few studies applying the machine learning method in predicting
crop growth, which could stem from the lack of appropriate data
and unfamiliarity with this method in the relevant community. In
this study, we collected the heading data of 112 rice cultivars/lines
tested in multiple locations from 2004 to 2017. This large amount
of heading data combined with environmental data and genetic
marker data allowed us to train a robust machine learning
model and to compare its predictability with that of other
methods. We also collected the heading of 103 F2 segregating
populations created from the crosses of cultivars/lines, which
were selected from the 112 cultivars/lines. This F2 population
data helps validate the model performance in predicting DTH
of a simulated genotype in a new environment. In addition to
training a single machine learning model, building an integrated
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framework combining a CGM and a machine learning model to
predict the complex trait could also be a promising method that
has not been attempted earlier.

In this study, we explored the potential use of the machine
learning method and proposed an integrated approach that
could be superior in an interpolation scenario. We implemented
a Bayesian method for the estimation of CGM parameters.
Although many powerful machine learning methods have been
proposed, there is no single best method that can outperform
others on all fronts, such as the so-called “no free lunch”
theorem. In this study, we evaluated three representative
methods: two decision tree-based approaches [random forest
(RF) and eXtreme gradient boosting (XGB)], and a neural
network-based approach [extreme learning machine (ELM)].
We compared the predictive performance of different modeling
methods, including a CGM [developmental rate (DVR) model],
three machine learning methods, and the proposed integrated
framework, which combines machine learning and CGM using a
two-stage approach to predict the DTH in rice. The comparison
was performed under three cross-validation schemes. We also
examined the ability of the proposed integrated framework
in predicting the distribution of DTH in 103 F2 segregation
populations and demonstrated the superiority of the proposed
approach in predicting the heading date of a new genotype in a
new environment.

MATERIALS AND METHODS

Rice Heading Data
Two datasets of experiments evaluating DTH in rice
cultivars/lines were analyzed in this study. The first was the
dataset of 112 cultivars/lines, and the other was the dataset
of F2 segregation populations derived from crosses between a
Japanese leading cultivar as a common parent, Koshihikari, and
103 cultivars/lines. The 112 cultivars/lines dataset comprised
7,098 observations of sowing, transplanting, and heading dates
of the 112 cultivars/lines evaluated in eight locations in Japan
from 2004 to 2017 (64 combinations of locations and years in
total, Supplementary Table S1). The 112 cultivars/lines were
chosen from those developed in different regions of Japan
(Supplementary Table S2). The experiments were conducted in
one location (Tsukubamirai) in the middle of Japan in the first 2
years, and then gradually expanded to other locations distributed
from the north to the south of Japan in the following years.
All 112 cultivars/lines were sown and transplanted at the same
time in a single experiment at each location, and more than one
experiment (sowing and transplanting on different dates) was
conducted at some locations. We defined the heading date as the
date when more than 50% of individuals reached the heading
stage. The number of plants evaluated for each cultivar/line was
different among the experiments and ranged from 7 to 30. DTH
was calculated as the difference between the heading date and
sowing date. In 70 of 7,168 cases, cultivars/lines did not reach
the heading stage before the end of the experiment. Thus, 70
cases were removed from the analysis. The dataset of the F2
segregation population was created by crossing Koshihikari and

103 of the 112 cultivars/lines. In 2007 and 2008, we evaluated
73 and 30 F2 populations, respectively, in Kasai, Hyogo. Each
population was evaluated using 96 F2 plants (genotypes). The
distribution of DTH in each segregation population was obtained
by recording the heading date of each plant individually.

Meteorological Data
Temperature and photoperiod (day length) are the two most
influential meteorological factors affecting the phenological
development (e.g., flowering) of rice. We downloaded the
daily average temperature data from the Agro-Meteorological
Grid Square Data, National Institute for Agro-Environmental
Sciences, National Agriculture and Food Research Organization,
Japan. We computed the theoretical day length based on the
latitude and longitude of each location according to the CBM
model (Forsythe et al., 1995).

Genotype Marker Data
We used two sets of genotypic marker data from 112
cultivars/lines in this study. The first was the genotype data of 14
SNPs in five heading date-related genes, Hd1 (Yano et al., 2000),
Ghd7 (Xue et al., 2008), Hd6 (Takahashi et al., 2001), Hd16 (Hori
et al., 2013), and Hd17 (Matsubara et al., 2012). The other was the
genotype data of 1,594 markers, which included the 14 heading
date-related SNPs and other SNPs and Simple-sequence repeats
(SSRs) markers. We generated 1,000 simulated genotypes of the
14 heading date-related SNPs as simulated progeny from each F2
population. The simulation was performed based on the linkage
map positions of the SNPs and genotype marker data of parents
of an F2 population.

Methods for Predicting Rice Heading
We compared three methods in the prediction of the heading
date of rice. CGM, a machine learning method, and the proposed
integrated models. The three methods are described in Table 1
with the type of input data and the type of cross-validation
schemes, which are explained in section “Cross-Validation.”

DVR Model
A CGM named the DVR model was modified from a three-stage
beta model (Yin et al., 1997), as proposed by Nakagawa et al.
(2005). The model assumes that the pre-flowering development
of a rice plant is divided into three subphases: (1) the juvenile
phase, when the plant is insensitive to the flowering stimulus;
(2) the “photoperiod sensitive phase,” when the plant starts
to respond to the photoperiodic flowering stimulus; and (3)
the “post- photoperiod sensitive phase,” the period after the
completion of the photoperiod sensitive phase. The progress of
developmental stages (DVS) from seedling emergence (DVS0),
flowering (DVS1) to maturation (DVS2) is quantified as 0, 1, and
2, respectively, and is calculated by integrating the growth rate of
the i-th day DVRi as:

DVSd =
d∑

i=0

DVRi
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where d is the number of days since seedling emergence. DVR is
modeled as the multiplicative function of a temperature response
function and a photoperiod response function, and is defined as
follows:

DVRi =

{
f (Td)
G if DVSd < DVS1 or DVSd > DVS2

f (Td)g(Pd)/G if DVS1 < DVSd < DVS2

where Td and Pd are the daily mean temperature (◦C) and the
photoperiod (h) of the d-th day, respectively, f and g denote
the temperature response function and photoperiod function,
respectively, and G (G > 0) denotes the earliness of flowering
under the optimal condition. DVS1 and DVS2 represent the
ends of the juvenile and photosensitive phases, respectively. The
functions f and g are given by

f (Td) =
[(

Td−Tb
To−Tb

) (
Tc−Td
Tc−To

)(Tc−To)/(To−Tb)
]α

if Tb ≤ Td ≤ Tc,

0 otherwise

g (Pd) =


[(

Pd−Pb
Po−Pb

) (
Pc−Pd
Pc−Po

) Pc−Po
Po−Pb

]β

if Po ≤ Pd,

1 otherwise

where, Tb, Tc, and To are the base, ceiling, and optimum
temperatures (in the unit of degree Celsius), respectively, and Pb,
Pc, and Po represent the base, ceiling, and optimum photoperiods
(in the unit of hours), respectively. The values ofTb,To,Tc, Pb, Po,
and Pc, are fixed at 8, 30, 42, 0, 10, and 24 according to Nakagawa

et al. (2005). The parameter α (α > 0) is the temperature-
sensitivity coefficient, whereas β (β > 0) is the photoperiod
sensitivity coefficient. To minimize the number of parameters,
DVS1 and DVS2 are defined as

DVS1 = 0.145+ 0.005G

DVS2 = 0.345+ 0.005G

according to Nakagawa et al. (2005). Parameters α, β, and
G remain in the DVR model and are assumed to be able
to quantify genetic differences in phenological responses to
environmental factors.

Parameter Estimation
We used the advanced MCMC algorithm to estimate the
posterior distribution of the parameters (α, β, and G). The
details of the implemented DREAM algorithm are provided in
Supplementary Material. The DREAM algorithm runs multiple
chains instead of a single chain. The number of chains should be
larger than twice the number of parameters (three in the DVR
model) and was set to 10. The number of iterations, the number
of samples discarded during burn-in, and the number of selected
samples were set as 50,000, 10,000, and 10,000, respectively.
For the parameters in the DVR model, the normal priors and
ranges of the parameters assumed in the study are summarized
in Table 2. We developed a program in the language Julia to
implement the DREAM algorithm for parameter estimation of
the DVR model. The source code is available from the authors
upon request.

TABLE 1 | Prediction methods used in the study.

Methoda Inputb Cross-validationc

Type Name Description E G LOGO LOGLO

CGM DVR DVR model with Bayesian DREAM MCMC algorithm X

Machine learning ELM Extreme learning machine X X

XGB Gradient boosting X X X X

RF Random forest X X

Integrated model CGM-ELM DVR-Bay -> ELM X X X X

CGM-XGB DVR-Bay -> GB X X X X

CGM-RF DVR-Bay -> RF X X X X

aMethods used for predicting days to heading in rice.
b Input data used for prediction: E indicates environmental data, including daily mean temperature and daily photoperiod; G indicates the genotype marker data.
cLOGO represents leave-one-genotype-out cross-validation. LOGLO is a leave-one-combination-of-genotype-and-location-out cross-validation.

TABLE 2 | DVR model parameters and their prior information.

Parameter Definition Prior N (µ, σ) Range* Unit

alpha Sensitivity of temperature N (3, 1) 0–20 −

beta Sensitivity of photoperiod N (4, 1) 0–25 −

G Earliness of flowering under optimal photoperiod and temperature N (35, 2) 30–120 Day

*A proposal that fell out of the range was discarded during Markov chain Monte-Carlo sampling.
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Machine Learning Methods
We implemented RF, XGB, and ELM to predict the heading
date of rice. The same training data, with the environmental
data and genotypic data as inputs and DTH as outputs,
were prepared for the three machine learning methods. The
environmental data of each observation consisted of daily
temperature from the date of sowing to 199 days later and the
daily photoperiod at the sowing day, and 100 and 200 days
after sowing. As the theoretical photoperiod has a bell-shaped
curve determined only by latitude and longitude, the photoperiod
of three representative days was used to avoid multicollinearity
in the input variables. As described in section “Genotype
Marker Data,” we used two types of genotype marker data. The
data were converted to dummy variables and combined with
environmental data as input.

RF is an ensemble learning method that combines de-
correlated trees and aggregates their predictions by averaging
(Breiman, 2001a). It has been successful as a general-purpose
classification and regression method and is involved in
various practical problems (Biau and Scornet, 2016). We
implemented RF using the R package “randomForest” (Liaw
and Wiener, 2002) with hyperparameters set as the default
values, except for the following parameters: the number of
trees ntree = 500 and the number of variables randomly
sampled mtry = p/3, where p is the number of columns in
the input matrix.

The gradient tree boosting proposed by Friedman (2002) is
an effective and popular machine learning method. Chen and
Guestrin (2016) and Sagi and Rokach (2018) implemented a
scalable end-to-end tree boosting system, called XGB, which
includes innovations such as a novel tree learning algorithm
and a theoretically justified weighted quantile sketch procedure.
XGB has won competitions for machine learning on Kaggle
(Ziêba et al., 2016) and has been proven to be a versatile
and effective tool in regression and classification problems.
We implemented XGB using the R package “XGBoost” (Chen
and He, 2015) with hyperparameters set as their default
values except the following parameters: the maximum depth
of a tree = 6, learning rate = 0.1, and the number of
iterations = 200.

An ELM is a single hidden layer neural network that randomly
assigns the hidden node learning parameters and analytically
determines the network output weights by solving the linear
square system using the least squares method (Huang et al.,
2006). ELM can save time in the training process compared to a
feedforward neural network that adjusts weights through a back-
propagation method. We implemented ELM using the R package
“elmNNRcpp” and set the hyperparameter for the number of
hidden nodes as 100 based on the result of a grid search for 25,
50, 100, 200, and 400 nodes.

Integrated Approach
The proposed integrated approach aimed to link the genotypic
effect on phenological growth using the concept shown in
Figure 1. Data with a large variation in phenological growth
among diverse genotypes tested in multiple environments are

essential for the success of the proposed approach. The approach
is basically a two-step model (Nakagawa et al., 2005; Bogard
et al., 2014) that first links the gene effect to the parameters
in the CGM through a machine learning method, and then
predicts the heading date of a genotype in a target environment
through the CGM. In step 1a, we estimated the model parameters
(α, β, and G) for each genotype using the Bayesian method.
The posterior distributions of the parameters are obtained
via the Bayesian methods. The mean values of the posterior
distributions were chosen as the estimates of the parameters
in the Bayesian method. To link the effect of markers to the
model parameters, we used 112 cultivars/lines for 14 heading-
related markers or 1,594 markers as the input of a machine
learning model for predicting the parameter values. Estimates
of the parameters were used as the output for training a
machine learning model (step 1b). Then, we connected the
genetic effect on the parameters to the crop model in step 2 and
predicted the heading date of a given marker genotype under the
target environment.

Cross-Validation
Three types of cross-validation (CV) were performed to
compare the prediction ability of the different methods.
The first is a fivefold CV that was applied to compare
the performance of the CGM with the machine learning
methods when information on all genotypes and locations
are available. This is a scheme used to validate the accuracy
of prediction for tested genotypes under tested locations. In
a breeding program, we usually do not test the full set of
genotypes across all the environments. The prediction under
this scheme therefore allows breeders to predict the DTH
of “untested combinations” of tested genotypes under the
tested locations. Based on the prediction, breeders can evaluate
the potential adaptation of a tested genotype to a tested
target location.

The second is the leave-one-genotype-out (LOGO) CV. In
this scheme, from among the 112 genotypes, one genotype is
removed from the data and the model is trained to predict
the DTH for the removed genotype. The process is repeated
until each genotype has been removed and predicted once. The
predictions under this scheme allow breeders to predict the DTH
of new lines (or even simulated marker genotypes) under the
tested locations. Based on the prediction, breeders can evaluate
the potential adaptation of an untested genotype (e.g., lines
under development) to a tested target location based on the
marker genotype of the untested genotype. The LOGO CV was
only applied to machine learning methods, and the integrated
approach as the crop model requires the data of the target
genotype to estimate the model parameters.

The third is the leave-one-combination-of-genotype-and-
location-out (LOGLO) CV. In this scheme, one of the eight
locations and one of the 112 cultivars/lines were removed
from the data, and the DTH of the removed genotype in
the removed location is predicted using the prediction model
derived from the data comprising 111 genotypes in 7 locations.
This is a scheme to validate the accuracy of prediction of
untested genotypes under untested locations. The prediction
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FIGURE 1 | Integrated approach concept. Ej is the environmental data that comprises the daily average temperature and daily photoperiod in the j-th environment
(from the date of seeding to the date of heading + 70 days). Yij is the observed phenotypic trait (heading date) for the i-th genotype in j-th environment
(j = 1, 2, . . . , n). Pli is the l-th CGM parameters for the i-th cultivars/line. Gi is a vector of marker genotypes of the i-th cultivar/line.

under this scheme allows us to predict the DTH of new
breeding lines (or simulated marker genotypes, as demonstrated
in this study) to an untested target environment (e.g., expected
environmental conditions in the future) based on marker

genotypes of the untested genotype and environmental data of
the untested environment.

In each CV scheme, the predicted DTH was obtained
for each genotype in each environment (combination of
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location, year, and treatment of different sowing dates).
We then compared the prediction ability among the
modeling methods based on the RMSE between the predicted
and observed DTH.

Prediction of DTH in the F2 Segregation
Populations
The selection of a good parental combination that has a high
probability of generating offspring with desired characteristics is
important in breeding (Iwata et al., 2013). The better prediction
of DTH in the F2 segregation population can help the breeder
to choose the best parental combination to generate progeny
with the desired DTH prior to crossing. This can greatly reduce
the cost and increase the efficiency of breeding. To demonstrate
the potential of the integrated approach, we implemented the
integrated model CGM-XGB trained by parents’ data (the same
data of 112 cultivars) and predicted the DTH in the derived F2
segregation populations (created from the crossing of selected
parental combinations of 112 cultivars) grown under an untested
location, Kasai. In Kasai, 103 F2 segregation populations derived
from a common parent, Koshihikari, and 103 cultivars/lines
were planted in 2008 and 2009 with 73 and 30 populations,
respectively. We evaluated 96 F2 individuals of each segregation
population and measured their heading date to determine
the distribution of DTH in the population. To predict the
distribution of DTH in the segregation populations, we simulated
the genotype marker data of F2 segregation populations, and then
predicted the heading date of simulated genotypes at an untested
location with environmental data. The genotype marker data of
progeny in an F2 segregation population can be simulated from
the genotype marker data of their parents and the estimated
recombination rates between markers. In this study, we simulated
1,000 progeny for 14 markers of heading date-related genes, and
applied the genotype data to the CGM-XGB model constructed
based on the data of 112 cultivars/lines to predict the segregation
distribution of DTH in the F2 population. We considered the
range of DTH of the F2 segregation population for the selection
of progeny with a reasonable value. We therefore compared the
10, 50, and 90th quantiles of the predicted and observed DTH.

RESULTS

Estimation of the DVR Model Parameter
We implemented a Bayesian method for estimating the CGM
parameters in this study. The Bayesian method provided us
with an approximated posterior distribution that was more
informative than the point estimation obtained from the
frequentist method. Table 3 shows the average of the posterior
mean, median, and mode of the CGM parameters (α, β, and
G) among the cultivars/lines from each origin. The average of
the median and mean values of the cultivars/lines from the
same origin are similar; however, the average of the mode
occasionally deviates from the average of the mean. This tendency
is mainly because of the multimodal posteriors induced by
the correlation between the CGM parameters. Therefore, the
mean of the approximated posterior distribution could be more

appropriate to describe the phenological features of a genotype.
The genotypes from the high latitude origins, such as Hokkaido,
Tohoku, and Hokuriku, have less photoperiod sensitivity and
are expected to have a smaller estimated value of β. In contrast,
a larger β should be observed for the photoperiod sensitive
genotypes, mostly from the south of Japan, such as Kinki,
Chugoku, and Kyushu. The average values of the posterior mean
of β were approximately 1.01–1.48 for high latitude origins and
4.76–5.66 for low latitude origins. For α, we can find fewer
differences between the average value of the posterior mean
among origins (all average values were approximately 0.8–1.2).
This probably reflects that the heading date in rice is more
sensitive to the variation in photoperiod rather than the variation
in temperature under the usual conditions. For parameter G,
the smallest average posterior mean could be observed for the
genotype of Northeast origins, Hokkaido (47.6 days) and a larger
average value for the genotypes from Tohoku and Hokuriku (61.4
and 59.6 days), which are south of Hokkaido and in the north of
Japan. The genotypes from the other origins had a similar average
posterior mean of around 52.9–55.4 days.

Comparison of Prediction Ability
Between the Methods
The comparison between the prediction ability of the CGM, the
machine learning approach, and the integrated approach for the
heading date of rice is summarized in Table 4. We first evaluated
the prediction of the heading date of a tested cultivar/line in
a tested location through a fivefold CV process. The machine
learning approach using XGB had a smaller RMSE (4.372 and
2.653 for the model using the environmental data with 14 heading
date-related markers and 1,594 markers data, respectively, as
input) than the CGM (5.711 for the DVR with the parameters
estimated by the Bayesian approach with the DREAM algorithm).
This shows that the use of environmental data and genetic
data combined with the powerful machine learning method can
better predict the heading date of the tested cultivar/line in a
tested environment than the CGM alone. We then evaluated the
prediction of the heading date of an untested genotype in a tested
location using the LOGO CV process. As described in “Materials
and Methods” section, the CGM requires parameters that are
genotypic specific and is unable to make such predictions. The
machine learning method XGB had a better predictive ability
(RMSE = 5.02 and 4.468 with 14 heading date-related markers
and 1,594 markers, respectively) in LOGO CV than the integrated
approach (RMSE = 6.47 and 9.05 with 14 heading date-related
markers and 1,594 markers, respectively). This shows that the
single machine learning method could be a better predictor
when the environmental data is included and the genotypic data
are removed from the training data. The integrated approach
achieved the prediction of the heading date of an untested
genotype via the estimation of the CGM parameters and then
via the fitting of the CGM with the estimates. Both the bias in
predicting the CGM parameters and the adoption of relatively
simple functions in the CGM compared to the more complex
and flexible machine learning methods could be responsible
for the relatively poor predictability in the integrated approach.
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TABLE 3 | Average of the posterior statistics among 112 cultivars/lines from seven different origins.

Parameters in DVR Posterior Cultivar origins

Hokkaido
(9)

Tohoku
(26)

Kanto and
Tokai (24)

Hokuriku
(14)

Kinki and
Chugoku

(9)

Kyushu
(11)

Landrace
and others

(19)

α mean 0.792 1.062 1.141 1.224 0.944 0.891 0.976

median 0.789 1.063 1.149 1.225 0.953 0.911 0.977

mode 0.781 1.071 1.031 1.219 0.735 0.592 0.853

β mean 1.478 1.015 3.994 1.336 4.764 5.652 4.499

median 1.419 0.917 3.853 1.282 4.537 5.144 4.361

mode 1.019 0.427 5.948 1.116 6.632 9.810 5.315

G mean 47.559 61.432 55.236 59.62 55.435 54.788 52.916

median 47.653 61.619 55.693 59.727 56.195 56.497 53.18

mode 47.430 62.403 45.357 55.98 50.004 42.844 49.600

The parameters α, β, and G in the DVR model represent the temperature sensitivity coefficient, the photoperiod coefficient, and the earliness of flowering under the optimal
condition, respectively.

TABLE 4 | Root mean square errors (RMSE) of the three prediction methods used.

Crop growth model Machine learning Integrated approach

DVRa XGBb CGM-XGBc

14H 1,594 14H 1,594

Fivefoldd 5.711 4.372 2.653

LOGOe 5.025 4.468 6.471 9.050

LOGLOf 9.361 8.573 7.690 9.793

aDVR: DVR model with Bayesian DREAM Markov chain Monte-Carlo algorithm.
bXGB: gradient boosting method.
cCGM-XGB: the integrated approach combining DVR with XGB.
dFivefold: fivefold cross-validation.
eLOGO: leave-one-genotype-out cross-validation.
f LOGLO: leave-one combination-of-genotype-and-location-out cross-validation.
14H represents 14 heading-related markers. 1,594 represents 1,594 markers,
including the 14 heading-related markers.

The integrated approach shows its superiority in predicting
the untested genotype in the untested location in the LOGLO
CV process. The integrated approach adopted the Bayesian
approach for the estimation of CGM parameters and trained
an XGB model for predicting the parameters from genotype
markers in step 1. Then, the heading date was predicted with
the CGM of the predicted parameters in step 2. The procedure
of this prediction, abbreviated as CGM-XGB, had the best
predictive ability (RMSE = 7.69 when using 14 heading-related
markers in machine learning) compared to a simple XGB model
(RMSE = 9.361 and 8.537 for the model using the environmental
data with 14 heading-related markers and 1,594 markers data,
respectively, as input). In LOGLO CV, the information of the
tested genotype and the tested location are removed from the
training data, leading the predictor trained by the machine
learning method to be more specific to the involved regions
only. In contrast, the CGM quantifies the response of a plant
to environmental factors using non-linear mechanical equations,
which are more simplified but could be more robust in the
prediction under a more uncertain condition.

TABLE 5 | Root mean square errors (RMSE) of the integrated approaches
involving three different machine learning methods.

Methods in step 1a of the integrated approachesa

Methods in step 1b
of the integrated
approachesb

Bayesian with normal dist. prior

Marker LOGOc LOGLOd

ELM 14H 6.566 7.731

XGB 14H 6.574 7.776

RF 14H 6.817 8.038

ELM 1,594 18.627 19.087

XGB 1,594 9.552 10.658

RF 1,594 7.716 8.528

aStep 1 in the integrated approaches was to estimate the crop growth model
parameters using the rice heading date data and the environmental data.
bStep 2 in the integrated approaches was to train a machine learning model to
predict the CGM parameters of an unknown genotype.
cLOGO: leave-one-genotype-out cross-validation.
dLOGLO: leave-one-combination-of-genotype-and-location-out cross-validation.
ELM, extreme learning machine; XGB, eXtreme gradient boosting; RF, random
forest.

Table 5 shows the results of the integrated approaches that
were implemented with the combinations of three machine
learning methods (RF, XGB, and ELM), and two sets of genotype
marker data (14 heading-related markers and 1,594 markers).
First, we found that the model with 14 heading date-related
markers had better prediction ability than the model with
1,594 markers, which also included the 14 heading-related
markers. The lower prediction ability in the model with a
larger number of markers could be attributed to the inclusion
of markers irrelevant to phenological growth and the lack
of training data for the target genotype. αβG Second, the
adoption of a different machine learning method could affect
the prediction ability. The rank of the ability in the model
was XGB > ELM > RF with 14 heading date-related markers,
and RF > XGB > ELM with the 1,564 markers. It reveals
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that XGB and ELM could be a better predictor of CGM
parameters when less noise is present in the input data (14
heading date-related markers), whereas RF is relatively robust
to the input data with noise. ELM could be greatly affected
by the noise in the input data and even provided a highly
deviated estimation of the parameters. Such problems could
be found in the especially large RMSE of ELM in the model
with 1,594 markers. Among all combinations of methods in
the integrated approaches, XGB in step 1b in the integrated
approach had the best prediction ability in both the LOGO and
LOGLO CV processes.

Predicting DTH Distribution in F2
Segregation Populations
We examined the ability of the proposed integrated model
CGM-XGB in predicting the distribution of DTH in 103 F2
segregation populations. Figure 2 shows the scatterplot of
the 10, 50, and 90th percentiles of the observed distributions
and predicted distributions. The predicted RMSE, correlation
coefficient, and absolute mean difference are also shown in
Figure 2. The percentiles of the predicted DTH distribution
tended to be underestimated in comparison to the percentiles
of the observed DTH distribution for most populations. The
correlation coefficients were mostly over 0.8, and showed that
the integrated approach could be useful in predicting the rank
of the percentiles of distribution in DTH between different
F2 segregation populations. A slightly better prediction was
found in the 30 populations tested in 2009 than in the 73
populations tested in 2008, although the reason for this is
unclear. Histograms of the observed and predicted distributions
in DTH for each segregation population are shown in
Supplementary Figures S1–S3.

DISCUSSION

In this study, we proposed a potential integrated approach
that combines machine learning methods and a CGM to
improve the modeling of physiological growth of rice plants.
We emphasize the importance of the training data for the
successful building of the model. Phenotypic and environmental
data consisting of a wide range of genotypes grown in
multiple environments is a prerequisite for the proposed
approach. In this study, 112 cultivars/lines were selected from
among those adapted to different ecological regions in Japan
(Yamasaki and Ideta, 2013) and had been evaluated at these
locations for more than 10 years. Such comprehensive data
allows us to estimate the phenological parameters in a CGM
with less estimation bias and mitigates the bias induced
by the location effect and makes it possible to associate
the marker effect with the model parameters. In addition,
the real data of the F2 segregating populations presents
opportunities to validate the predictability of the model for
predicting the potential of a cross to develop a new cultivar/line
for a new environment. In previous studies, this validation
was mostly conducted using a simulation study or cross-
validation that might not reflect the true performance of the

proposed model. The power of machine learning methods
is in addition to the quality of the training data. Because
more information can be collected from high-throughput
phenotyping, genotyping, environmental sensing, and omics
analyses, more attention can be paid to the data rather than only
the methodologies.

Estimating the parameters of the CGM appropriately is
essential for the prediction accuracy of a model and for further
inference that utilizes the predicted model parameters. Despite
prior knowledge, the estimation method can influence the
results; therefore, the best strategy to conduct such estimation
remains open for discussion. For parameter estimation, we
implemented both frequentist and Bayesian approaches and
showed no obvious difference in the prediction accuracy of
the CMG (results not shown here). This might mainly result
from the substantial and complete heading data collected
in this study, which provides sufficient information for
parameter estimation.

The parameters α, β, and G in the DVR model represent
the temperature sensitivity coefficient, the photoperiod
coefficient, and the earliness of flowering under the optimal
condition, respectively. In this study, we obtained not only
the point estimated value but also the approximated posterior
distribution of these three parameters for 112 Japanese rice
cultivars. This information allowed us to first examine the
phenological characteristics of the most representative cultivars
quantitatively and use them in building the integrated model.
The characteristics of most Japanese rice cultivars, including
the tendency of photoperiod sensitivity, can be found in a
database1. We compared the tendency of photoperiod sensitivity
of the tested cultivars/lines to the posterior mean of β, and
the results were mostly matched (results not shown here). In
addition, parameter estimation using the Bayesian method
also matched our knowledge regarding the character of a
genotype and might better quantify the indirect features of the
phenological growth of rice.

As shown in Table 3, the β of cultivars originating in
high latitude regions was close to 1, indicating the strong
tendency of photoperiod insensitivity and vice versa. The
results are consistent with those of a previous study (Okumoto
et al., 1996) and rice photoperiod sensitivity is generally
diverse (Hori et al., 2016). All five heading date-related
genes in this study are associated with the rice photoperiodic
pathway (Yano et al., 2000; Takahashi et al., 2001; Xue et al.,
2008; Matsubara et al., 2012; Hori et al., 2013). Although
temperature is also an essential factor in predicting rice
growth, the variation in α was small, suggesting that the
diversity of the thermal reaction among the 112 cultivars
may be small. In combination with the estimation of α and
G, it presented the possible coordination between thermal
reaction, photoperiod sensitivity, and the earliness of flower
initiation that helps the corresponding cultivar to adapt to the
target environment.

Compared to the results achieved by machine learning
methods in other fields in agriculture, such as crop management

1https://ineweb.narcc.affrc.go.jp/
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FIGURE 2 | Scatterplot of the 10, 50, and 90th percentiles of observed and predicted distribution of days to heading (DTH) of segregation populations in 2008 (A)
and in 2009 (B). The observed DTH was obtained from the 96 plants of each population, and the predicted DTH was generated from the proposed integrated
approach CGM-XGB. RMSE: root mean square error; COR: correlation coefficient; MD: mean absolute difference.

and water management (Liakos et al., 2018), examples of
successful applications in crop breeding and genetics are still
relatively rare. The fundamental reason is not only the complexity
of the genotype × environment × management interaction,
but also the unfamiliarity of the method, the lack of adequate
data, and the few experts who are familiar with both fields. We
compared the use of a CGM, machine learning models, and
integrated approaches in predicting rice heading. The results
showed that the machine learning model with the genotypic
marker was more accurate than the CGM in predicting the
heading of a tested cultivar/line in a tested location. We
also compared the predictability of three machine learning
methods: RF (a popular ensemble learning method), ELM (a
feed-forward neural network), and XGB (a modified gradient
boosting method), and showed the advantages of applying
the newly developed algorithm. It is not surprising that the

machine learning methods were capable of better capturing the
complex and non-linear association between complicated traits
and genetic and environmental variables. However, at the same
time, a machine learning method could yield worse predictions
than a mechanistic CGM if the training data is limited or full of
noise. We also showed that the machine learning models were
less applicable for predicting the extrapolation problem, such
as the prediction of the heading of untested genotypes in an
untested location that can be predicted better by the proposed
integrated approach. However, both CGM and the machine
learning model could be useful for cultivation management, such
as supporting the decision on the suitable sowing timing for an
optimal heading date.

The three machine learning methods (RF, XGB, and ELM)
compared in this study have proven their superiority in many
machine learning challenges, and the implemented packages are
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already available to run on many platforms. Although XGB and
ELM had slightly better predictability than RF in our results,
there is no guarantee that one method could outperform others
in a different scenario. The experimental design, training data,
and setting of hyperparameters sometimes play an important
role in practical applications. In addition, factors such as (1)
suitability to a given setting, (2) computational cost, (3) software
availability, and (4) usability, may be considered when selecting
the best method (Sagi and Rokach, 2018). In addition, the lack
of interpretability in most machine learning methods could be an
issue when we apply them to biological problems. For example,
the machine learning model in our integrated approach could
not provide an intuitive understanding of the underlying gene
regulation of rice heading. The development of interpretable
machine learning methods might be helpful in the future when
both predictability and interpretability are needed.

Using 112 cultivars, the integrated model CGM-XGB
simulated and predicted the distributions of DTH in 103 F2
segregation populations. The predicted distributions of DTH
were generally similar to those observed in the real data.
Based on the prediction of DTH in a segregating population
in an environment and management system before producing
crosses, breeders can consider the optimum cross combinations
to develop a novel cultivar. In addition, a recent serious event,
high temperature during the rice ripening period resulted in
deterioration of the grain quality in Japan (Morita, 2009). The
models explored in this study can propose the ideal heading date
and sowing timing in a cultivar to avoid such damage.

CONCLUSION

The capability of the proposed integrated approach in predicting
the heading of a new genotype in a new environment was
demonstrated, and this could prove useful in suggesting the
locally adapted ideotype for rice phenology. We also revealed
that the machine learning model could outperform the crop
growth model (CGM) (phenological model without genotypic
data) in predicting the heading of a tested cultivar/line in a
tested environment and could be replaced with a phenological
model when higher accuracy is preferred. However, the machine
learning model is highly dependent on the given data and is
usually less capable of extrapolating, as demonstrated by the
Leave-one-genotype-out cross-validation (LOGLO CV) results. It
is also difficult to dissect the machine learning model and reveal
the explanatory mechanisms underneath the model, as can be
done with the CGM. The CGM models the key physiological
processes of crop growth, and the inclusion of CGM into the
modeling platform can reduce the uncertainty when simulating
crop growth. This study confirmed that the integrated approach

improved the prediction of the complex trait for a new genotype
in a new location and may benefit crop selection.
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