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Early-life adversity caused by poor social bonding and deprived maternal care is known 
to affect mental wellbeing and physical health. It is a form of chronic social stress that 
persists because of a negative environment, and the consequences are long-lasting on 
mental health. The presence of social stress during early life can have an epigenetic effect 
on the body, possibly resulting in many complex mental disorders, including depression 
in later life. Here, we review the evidence for early-life social stress-induced epigenetic 
changes that modulate juvenile and adult social behavior (depression and anxiety). This 
review has a particular emphasis on the interaction between early-life social stress and 
genetic variation of serotonin associate genes including the serotonin transporter gene 
(5-HTT; also known as SLC6A4), which are key molecules involved in depression.
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INTRODUCTION

History of early-life social stress indicates adverse effects on functions of the hypothalamic-
pituitary-adrenal axis and stress response in later life (Denhardt, 2018; Lapp et  al., 2019) 
linked to the development of the major depressive disorder in adolescents and adults (Hettema 
et  al., 2006; Pace et  al., 2006; Rao et  al., 2008; Heim and Binder, 2012; Bunea et  al., 2017). 
These clinical findings are backed by animal studies demonstrating that poor social bonding 
and reduced maternal care can subsequently cause altered behavior and heightened anxiety, 
as well as negative consequences on the brain development of offsprings (Eiland and McEwen, 
2012; Carini and Nephew, 2013; Murgatroyd et  al., 2015).

The effect of early-life social stress on the genetics of depression can be  described as 
the influence of the environment on the genes of the brain – in other words, epigenetics. 
Epigenetics involves modifications to gene expression that may be inherited by the offspring, 
without any changes in the DNA sequences that encodes for those genes (Hochberg et  al., 
2011). Epigenetic modifications involve three processes, DNA methylation, histone 
modification, and various RNA-mediated processes. In DNA methylation, a methyl group 
is transferred to C-5 of a cytosine residue in DNA – this interferes with the ability of 
transcription factors to bind to DNA, and as such, high methylation levels are associated 
with repression of gene expression (Crabtree, 2020). Histone modification, on the other 
hand, involves either methylation, acetylation, or phosphorylation of amino acids in the 
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histone protein tails; as the histones control how tightly 
chromatin is coiled and a tightly packed chromatin restricts 
access of regulatory factors to DNA, modification of those 
histones can control how much genes are expressed (Crabtree, 
2020). Finally, non-coding RNAs can facilitate chromatin 
modifications, while microRNAs can pair to complementary 
target mRNAs, directly suppressing translation from mRNA 
to protein (Crabtree, 2020).

It is well known that early-life social stress leads to persistent 
epigenetic modifications of target genes associated with changes 
in emotional behavior (Nugent et  al., 2011; McCann et  al., 
2017; Fogelman and Canli, 2019). There has been a growing 
body of work in the past decade, documenting epigenetic 
action in the brain, stemming from exposure to early-life 
social stress in animal models and human studies (Murgatroyd 
et  al., 2009; McClelland et  al., 2011; Heim and Binder, 2012; 
Huang, 2014; Provençal and Binder, 2015; Vaiserman, 2015). 
These studies have indicated various lasting changes in gene 
expression due to early-life stress, such as altered arginine 
vasopressin expression (Murgatroyd et al., 2009) and increases 
in seizure and epilepsy incidences (Huang, 2014). Prenatal 
stress caused elevated methylation of a glucocorticoid receptor 
gene in infants, altering their reactivity to stress (Oberlander 
et  al., 2008). A genome-wide study discovered significant 
methylation differences within promoters of subjects exposed 
to early-life stress; 248 promoters showed hypermethylation, 
while 114 showed hypomethylation. The expressions of genes 
involved in neuronal plasticity, in particular, were significantly 
different (Labonté et al., 2012). Genes undergoing methylation 
in association with early-life social stress-induced depression 
are also well studied (Schoenherr and Anderson, 1995; Jiang 
et  al., 2019). The monoaminergic theory is supported as the 
main neuropathogenesis of depression. Based on this, epigenetic 
modifications of monoamine-related genes such as transporters, 
metabolic enzymes, synthesis enzymes, and receptors have 
been well investigated to understand the neuropathogenesis 
of depression.

Serotonin (5-hydroxytryptamine, 5-HT) is the main 
monoamine system involved in the neuropathogenesis of 
depression. The key 5-HT-related genes are serotonin transporter 
(5-HTT; also known as SLC6A4), monoamine oxidase A 
(MAO-A), tryptophan hydroxylase 2 (TPH2), and 5-HT receptors. 
These 5-HT-related genes and their signaling pathways are 
involved in brain development, stress response, and emotional 
control. Epigenetic alterations of 5-HT-related genes may be the 
underlying effect of early life stress on depression (Parade 
et  al., 2017). Since depression is closely tied to the 5-HT 
system, therefore, the examination of epigenetic influence on 
5-HT-associated genes could generate an interesting body of 
work that would serve better to explain the interplay between 
nature and nurture in depression. In this review, we  looked 
at the mounting evidence for early life social stress-induced 
epigenetic changes in several 5-HT-associated genes and how 
these gene modifications influence behavior in later life. Besides, 
treatments that reduce early-life social stress are also reviewed 
to understand their impact on the attenuation of genetic and 
behavioral changes.

EARLY LIFE SOCIAL STRESS-INDUCED 
EPIGENETIC CHANGES IN  
SEROTONIN-RELATED GENES

Serotonin Transporter
The 5-HTT gene was first sequenced and characterized by 
Lesch et al. (1994), but its function in terminating serotonergic 
neurotransmission was already documented earlier (Kanner 
and Schuldiner, 1987). Variants of 5-HTT gene potentially 
increase susceptibility to a stressful environment, increasing 
the risk for mental disorders. There have been numerous studies 
and reviews covering the role of 5-HTT in psychiatric disorders, 
indicating that polymorphisms in the 5-HTT lead to serotonergic 
dysfunction that can develop into various diseases such as 
major depressive disorder and bipolar disorder (Mann et  al., 
2000; Zanardi et  al., 2000; Hahn and Blakely, 2002; Anguelova 
et  al., 2003; Murphy et  al., 2004; Abdolmaleky et  al., 2014). 
An epidemiology study performed on a cohort of 1,037 children 
identified a correlation between the presence of a functional 
polymorphism in the 5-HTT gene in individuals having a 
heterozygous or homozygous variant of the short allele, who 
exhibited greater susceptibility to life stress history for predicting 
depression, compared to individuals with a homozygous long 
allele variant (Caspi et  al., 2003).

The influence of epigenetics on 5-HTT is also well documented. 
For example, DNA hypermethylation, an indicator of epigenetic 
influence, has been observed in the 5-HTT gene of schizophrenic 
patients alongside reduced 5-HTT expression (Abdolmaleky 
et  al., 2014). Increased methylation in the proximal promoter 
region of 5-HTT is an epigenetic change that has a positive 
correlation with increased responsiveness to threat in the 
amygdala (Nikolova et  al., 2014).

As stress is one of the major drivers for epigenetic changes 
in the brain (Gudsnuk and Champagne, 2012), it stands to 
reason that early life social stress would also have a major 
effect on epigenetic modifications to the 5-HTT gene. Methylation 
of retro-transposonal AluJb element is associated with stress 
response under major depressive disorder, where lower 
methylation has a better stress-adaptive reaction (Schneider 
et  al., 2018). The link between methylation and depression is 
influenced by genetic variation – specific genotypes have higher 
methylation associated with depression, while those homozygous 
for short 5-HTT alleles exhibit lower methylation in association 
with depression (Lam et al., 2018). DNA methylation of 5-HTT 
in the 10-year-old twins experiencing discordant stress through 
bullying has been demonstrated to be  significantly higher 
compared to their co-twin that did not undergo bullying in 
the same period (Ouellet-Morin et  al., 2013). The focus on 
twins indicates that childhood bullying – early life social  
stress – is the influencer for increased 5-HTT methylation 
rather than predetermined genetic factors. The bullied twin 
also exhibited blunted cortisol responses in comparison to the 
non-bullied twin (Ouellet-Morin et  al., 2013).

Research using animal models supports the role of stress 
during early life – it causes epigenetic changes that may 
be  associated with risk of depression. Peer rearing in rhesus 
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macaques, which is a form of early life stress in comparison 
to maternal rearing (Harlow and Suomi, 1974; Suomi et  al., 
1976), causes reduced H3K4me3 (Histone 3 protein with 
trimethylation at lysine 4) binding at the promoter of the 
5-HTT gene (Lindell et al., 2012). As H3K4me3 is an epigenetic 
modification that promotes gene expression, lower H3K4me3 
indicates lower 5-HTT expression. This is further supported 
by the finding of serotonin metabolite 5-HIAA in the 
cerebrospinal fluid of peer-reared macaques, which suggests 
a decreased serotonergic function in the central nervous 
system (Lindell et  al., 2012).

Homozygous and heterozygous 5-HTT knockout rats when 
exposed to early-life stress show decreased serotonergic 
innervation to Edinger-Westphal urocortin 1 neurons (van der 
Doelen et  al., 2017). Abnormal levels of urocortin 1 have been 
associated with major depressive disorder (Ryabinin et al., 2012; 
Waters et al., 2015), suggesting that early-life stress can interact 
with 5-HTT to cause depressive-like neurophysiology. 
Furthermore, heterozygous 5-HTT knockout rats exposed to 
early life social stress triggered by maternal separation, exhibit 
anhedonic behavior in the form of lower sucrose preference 
(Houwing et  al., 2019). The same study also found low gene 
expression of nerve growth factor. Examination of clinical 
studies has reported a significant correlation between reduced 
nerve growth factor expression and the diagnosis of major 
depressive disorder (Chen et  al., 2015). As a whole, these 
studies provide strong support for the role of epigenetic action 
on 5-HTT in early life social stress.

Monoamine Oxidase A
MAOA is involved in breaking down serotonin. An increase 
in MAOA expression results in a decrease in serotonin levels 
in the brain, which has been suggested as the main factor in 
major depressive disorder (Naoi et al., 2018). Epigenetic regulation 
of MAOA has been documented in humans (Shumay et  al., 
2012). In particular, methylation of MAOA in the promoter 
region of CpG5 and CpG11 increases MAOA expression, which 
in turn decreases serotonin levels; this has been observed in 
female patients with depression (Domschke et  al., 2015). 
Behavioral disinhibition in children has been associated with 
a functional promoter polymorphism on MAOA (MAOA-LPR) 
that interacts with early life social stress (Enoch et  al., 2010). 
Furthermore, while early life social stress has been associated 
with increased aggressive disorders in males through the MAOA-L 
allele, such stress exposes MAOA-L females to a higher risk 
of developing depression (Melas et  al., 2013). It has been 
suggested that the susceptibility of MAOA-L females to depression 
may be  a result of epigenetic dysregulation of MAOA by early 
life stressors, which affects DNA methylation of the glucocorticoid 
receptor gene NR3C1 (Melas et  al., 2013).

Studies in rodents have also drawn similar connections between 
early life stress and epigenetic control of MAOA. Early life social 
stress induces CpG-specific methylation in the MAOA promoter, 
which elevates MAOA expression in the dorsal striatum – this 
is associated with voluntary alcohol consumption (Bendre et  al., 
2019). The effect of peripubertal stress on the epigenetic state 
of MAOA is associated with the development of antisocial 

behavior (Márquez et  al., 2013). The development of aggressive 
behavior is sexually dimorphic, with MAOA hypermethylation 
in the hypothalamus and in the prefrontal cortex of male rats. 
In contrast, female rats do not exhibit any changes in epigenetic 
control of MAOA (Konar et  al., 2019).

Tryptophan Hydroxylase 2
The gene for tryptophan hydroxylase 2 (TPH2) is a neuron-
specific rate-limiting 5-HT biosynthetic enzyme in the brain. 
Alterations in TPH2 gene expression is involved in the 
pathogenesis and treatment of MDD (Tsai et  al., 2009; Xu 
et al., 2012). Single-nucleotide polymorphisms (SNPs) in TPH2 
gene are linked to 5-HT dysfunction (Gao et al., 2012), which 
have been associated with MDD (Zill et  al., 2004; Zhang 
et  al., 2005), and one of the SNPs in the TPH2 gene is 
associated with amygdala and hippocampal volume (Inoue 
et  al., 2010). The promoter region of the TPH2 gene lacks 
a CpG island; however, there are numerous scattered CpG 
sites and an enriched signal of DNA hypomethylation at the 
5′-UTR locus (Chen and Miller, 2012). A recent study has 
shown that hypermethylation of the CpG-site in the TPH2 
gene during early-life stress could reduce antidepressant 
response within the first 2  weeks of treatment in patients 
with MDD (Xu et  al., 2016; Shen et  al., 2020). Furthermore, 
methylation of a single CpG site in the promoter region of 
TPH2 significantly decreases TPH2 gene expression levels. 
This methylation is also partially linked with suicide in MDD 
patients (Zhang et al., 2015). These studies suggest the impact 
of early life social stress-associated epigenetic action on TPH2 
gene and depression.

5-HT Receptors
Seven families of 5-HT receptors and their subtypes have 
been identified, namely, 5-HTI (5-HT1A, 5-HT1B, 5-HTID, 
5-HTIE, and 5-HT1F), 5-HT2 (5-HT2A, 5-HT2B, and 5-HT2C), 
5-HT3, 5-HT4, 5-HT5 (5-HT5A and 5-HT5B), 5-HT6, and 
5-HT7. 5-HT receptor-specific agonists and antagonists have 
been designed and developed as therapeutics against mental 
disorders. Among the 5-HT receptors, the most well-studied 
receptor is 5-HT1A, known as an autoreceptor, which has 
inhibitory control over the 5-HT neuronal activity. Increased 
levels of 5-HT1A in 5-HT neurons of the dorsal raphe have 
been reported in MDD patients and suicide victims with 
MDD (Stockmeier et al., 1998; Hesselgrave and Parsey, 2013). 
5HT1A is also a postsynaptic receptor, expressed in main 
target brain areas, the hippocampal, cortical, and hypothalamic 
regions, that are associated with depression, stress, and anxiety 
(Albert et  al., 2019). Several SNPs and stress-induced DNA 
methylation of the 5-HT1A promoter have been associated 
with MDD and alteration in their response to antidepressants. 
C(−1,019)G (rs6295) is a functional 5-HT1A promoter 
polymorphism that modifies 5-HT1A gene expression in a 
brain region-specific manner (Le Francois et  al., 2008) and 
modify connectivity such as amygdala-ventrolateral prefrontal 
cortex, and corticolimbic connectivity related to MDD  
(Vai et  al., 2017). In fact, C(−1,019)G (rs6295) promoter 
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polymorphism in 5-HT1A elevated risk of depression (Benedetti 
et  al., 2011; Kim et  al., 2011; Vai et  al., 2017), resistance 
to an antidepressant (Wang et  al., 2018b), panic disorder 
(Choe et al., 2013), fear (Straube et al., 2014), gender-dependent 
modulatory effects on depression, physical function in patients 
with pain (Lebe et  al., 2013), and suicidal attempt in MDD 
(Sawiniec et  al., 2007). Kim and co-workers have reported 
interactions between C-1019G polymorphism in 5HT1A and 
negative life stressors that account for MDD symptoms (Kim 
et  al., 2011). These findings support those genetic alterations 
of the 5-HT1A promoter that make it sensitive to stress 
and increase the risk of MDD.

Some studies have suggested that human 5HT1A gene 
methylation is associated with MDD. Increased DNA methylation 
of 5HT1A promoter in leukocytes has been reported in bipolar 
depression (Carrard et al., 2011). Stress-linked hypomethylation 
of CpG668 site in the 5HT1A gene from blood samples is 
associated with resistance to antidepressants in treatment-naive 
MDD patients (Wang et  al., 2018a).

Studies in animal models suggest that early-life social stress 
induces persistent changes in 5-HT1A expression levels in the 
amygdala, hippocampus, and dorsal raphe nucleus (Bravo et al., 
2014). Furthermore, early-life stress, in combination with adult 
social isolation, dramatically decreases the 5-HT1A-mediated 
inhibition of layer II/III pyramidal neuronal activities (Goodfellow 
et  al., 2009). Le Francois and co-workers have reported 
methylation of 24 CpG sites on the mouse 5-HT1A promoter, 
and chronic mild stress increased DNA methylation of a single 
site located within the Sp4 element of the 5HT1A gene that 
correlates with increased mRNA expression levels in the raphe 
and prefrontal cortex in male mice (Le Francois et  al., 2015). 
In brief, subjects with methylation of the 5-HT1A gene variant 
may be  more susceptible to developing MDD.

Other variants of 5-HT receptors have also been reported 
to have a risk of MDD. Methylation of 5-HTR2A genotype 
at two CpG sites (−1,420 and −1,224) has been associated 
with PTSD and MDD under contextual stress (Parade et  al., 
2017). An SNP in the allele of −1438A/G (rs6311) in the 
5HTR2A promoter is highly influenced by genetic factors 
and the environment in female MDD patients (Lebe et  al., 
2013). These studies support that 5HT2A methylation is a 
mechanism by which early adversity is biologically encoded. 
In another case, epigenetic modification of the 5-HT3A is 
involved in the molecular mechanism underlying the 
relationship between childhood maltreatment and the severity 
of neuropsychiatric diseases in adulthood (Perroud et  al., 
2016). These studies of epigenetic regulation of 5-HT and 
5-HT receptors could be applied for more effective personalized 
treatments for MDD.

Brain-Derived Neurotrophic Factor
Brain-derived neurotrophic factor (BDNF) is a neurotrophin 
involved in many of the brain’s activities, including, but not 
limited to, neuronal development, synaptic modulation, and 
plasticity, as well as hippocampal function (McAllister et  al., 
1999; Huang and Reichardt, 2001; Lu, 2003; Monteggia et  al., 
2004). While BDNF plays a role in serotonergic expression, it 

may also itself be  regulated by 5-HT, particularly in depression 
and stress (Martinowich and Lu, 2008). During the depression, 
the role of BDNF can vary; in the hippocampus and the prefrontal 
cortex, BDNF expression is associated with inhibition of depressive 
symptoms, whereas it promotes anxiety-like symptoms in the 
nucleus accumbens and the amygdala (Yu and Chen, 2011). 
Higher DNA methylation of the Bdnf gene has been associated 
with the improved antidepressant response, with escitalopram 
treatment increasing methylation after 8 weeks (Wang et al., 2018b).

The effect of early life stress on BDNF has been well 
studied in the past decade. Maltreatment of rat pups by 
stressed caretakers during infancy elicited significant 
methylation of Bdnf exons in the prefrontal cortex – the 
presence of methylation persists even into adulthood, 
demonstrating a long-term effect (Roth et  al., 2009). The 
postnatal maternal separation was found to induce a decrease 
in exon IV Bdnf mRNA, with adult restraint stress further 
exacerbating the maternal separation-induced drop in BDNF 
expression (Seo et  al., 2016). Furthermore, Bdnf promoter 
IV displays a decrease in acetylation of histone 3 (H3) and 
histone 4 (H4) in adult restraint stress, and further reduction 
in acetylation of H3 and H4 is observed from maternal 
separation. However, these epigenetic changes can be recovered 
by escitalopram treatment (Seo et  al., 2016).

In addition to postnatal maternal separation, which occurs 
at a very young age, adolescent social stress in mice also 
causes epigenetic changes to BDNF in adulthood (Xu et  al., 
2018). Here, Bdnf gene expression is downregulated in the 
medial prefrontal cortex as a result of adolescent social stress, 
and increased dimethylation of H3 at lysine 9 (H3K9me2) 
downstream of the Bdnf IV promoter – his occurs in conjunction 
with cognitive flexibility in the mice after reaching adulthood. 
Both epigenetic changes and behavioral changes can be reverted 
by antidepressant treatment (Xu et  al., 2018). The effect of 
maternal separation on behavior has been examined in a similar 
study; early-life interaction with a stranger can induce a stressful 
social experience, and as a result, less social interaction with 
strangers is observed from pups who have been separated from 
their mothers (Karen and Rajan, 2019). Furthermore, the 
stressful social experience subsequently elevated DNA 
methyltransferase (Dnmt3a) as well as other epigenetic elements 
such as decreased acetylation and increased methylation of 
histones in the amygdala of rats, which had been raised under 
maternal separation (Karen and Rajan, 2019).

In addition to stress-induced epigenetic changes, a recent 
study also investigates the effect of early life stress across 
generations and gender. By subjecting the first generation 
of rats to maternal separation and the subsequent generation 
raised in a balanced cross-fostering manner, it was found 
that early-life stress through maternal separation resulted in 
increased Bdnf methylation in both male and female rats, 
but Bdnf expression was reduced only in females (Coley 
et  al., 2019). Subsequently, the second-generation rats from 
an early life social stress lineage exhibited increased Bdnf 
methylation, while fostered female rats raised by a  
first-generation mother, which had previously undergone early 
life stress exhibited Bdnf methylation (Coley et  al., 2019). 
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These studies suggest that stress-induced epigenetic changes 
are carried across generations.

TREATMENTS ATTENUATING  
EARLY-LIFE SOCIAL STRESS CHANGES

While early-life social stress may induce adverse epigenetic 
and behavioral changes, these changes might not be  entirely 
irreversible. As noted above, the use of antidepressants such 
as escitalopram has proven effective in recovering epigenetic 
changes in the Bdnf gene in both humans and rats (Seo 
et  al., 2016; Wang et  al., 2018b). Lithium treatment has been 
noted to reverse the effects of early-life social stress by 
increasing neuropeptide Y and corticotropin-releasing hormone 
– both associated with depression and stress vulnerability 
– in the adult rat hypothalamus (Husum and Mathé, 2002). 
Valproic acid treatment helps treat cognitive dysfunction 
induced by amphetamine to mimic a later-life social stress 
event. Still, a combination of both early life stress and later 
life stress renders the treatment ineffective (Pinheiro et  al., 
2012). Other treatments attenuating early-life social stress 
changes can be  found in corticotropin-releasing hormone 
blockers, which recover early-life social stress-induced 
hippocampal dysfunction (Ivy et  al., 2010), or the use of 
dopamine receptor 3 (Drd3) agonists to increase dopaminergic 
neuronal activity, which has been shown to restore normal 
social behavior in mice that have undergone early-life social 
stress (Shin et  al., 2018).

LIMITATIONS AND FUTURE PERSPECTIVES

While the role of epigenetics in regulating 5-HT-associated 
genes under early-life social stress appears to be  backed by 

substantial evidence, limitations remain when it comes to 
translating those results to clinical research; after all, the 
same methods used to directly study the expressions of genes 
in the rodent brain cannot be  effectively implemented with 
humans. The relative scarcity of neurological data available 
means that investigation of peripheral expression levels for 
genes such as 5-HTT (Olsson et  al., 2010) and BDNF (Lopez 
et  al., 2013) in association with epigenetic regulation under 
exposure to early life stress is necessary for future research. 
Furthermore, future studies may also want to consider and 
compare the effect of the social and natural environment on 
epigenetic regulation; stress in early life can come through 
various means, and as such, natural obstacles such as food 
deprivation may yet generate different responses compared 
to social stress.

Even so, epigenetic studies have proven to be highly useful 
in improving our understanding of the biological processes 
that serve as the fundament for social influences on health. 
By combining human epidemiological studies and animal 
model experimental studies, the role of epigenetic mechanisms 
in social stress-related health risks should become clearer. 
This would help advise public health and social interventions, 
which serve to reduce epigenetic aging and improve long-
term health.

SUMMARY

Early life social stress may be  a driving force for susceptibility 
to depression in later years, and epigenetic regulation of 
serotonin-associated genes is another means by which early-life 
social stress exerts its influence (Figure  1). Genetic changes 
to the associated genes in later life have proven to be  a strong 
indicator for depressive disorders in both animal models and 
clinical studies – this suggests that targeted recovery of these 

FIGURE 1 | DNA methylation of CpG islands in the genetic code silences expression of a gene after early-life social stress exposure. Methylation occurs by a 
methyltransferase (DNMT3) transferring a methyl group to cytosine, and when occurring on a transposable element has the effect of repressing gene transcription 
related to that element. 5-HTRs, 5-HT receptors; SERT, serotonin transporter; TPH2, tryptophan hydroxylase 2; MAO-A, monoamine oxidase A.
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epigenetic changes is a potential path to take when considering 
treatment of the major depressive disorder. Epigenetic changes 
to serotonin-associated genes are tied directly to increased or 
decreased genetic expression, which in turn is correlated to 
behaviors distinctive of depressive disorders. However, one 
thing of note when it comes to epigenetic changes in the 
sexual dimorphism present in their effects is an observation 
that is recurring in both BDNF and MAOA, where the presence 
of the epigenetic changes might be  opposed or non-existent 
depending on the sex. Regardless, as progress in epigenetics 
advances, greater understanding and better treatment philosophies 
for depression may arise in the future.
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