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How Well Can Multivariate and
Univariate GWAS Distinguish
Between True and Spurious
Pleiotropy?
Samuel B. Fernandes*, Kevin S. Zhang, Tiffany M. Jamann and Alexander E. Lipka*

Department of Crop Science, University of Illinois at Urbana-Champaign, Urbana, IL, United States

Quantification of the simultaneous contributions of loci to multiple traits, a phenomenon

called pleiotropy, is facilitated by the increased availability of high-throughput genotypic

and phenotypic data. To understand the prevalence and nature of pleiotropy, the ability of

multivariate and univariate genome-wide association study (GWAS) models to distinguish

between pleiotropic and non-pleiotropic loci in linkage disequilibrium (LD) first needs

to be evaluated. Therefore, we used publicly available maize and soybean genotypic

data to simulate multiple pairs of traits that were either (i) controlled by quantitative trait

nucleotides (QTNs) on separate chromosomes, (ii) controlled by QTNs in various degrees

of LD with each other, or (iii) controlled by a single pleiotropic QTN. We showed that

multivariate GWAS could not distinguish between QTNs in LD and a single pleiotropic

QTN. In contrast, a unique QTN detection rate pattern was observed for univariate GWAS

whenever the simulated QTNs were in high LD or pleiotropic. Collectively, these results

suggest that multivariate and univariate GWAS should both be used to infer whether or

not causal mutations underlying peak GWAS associations are pleiotropic. Therefore, we

recommend that future studies use a combination of multivariate and univariate GWAS

models, as both models could be useful for identifying and narrowing down candidate

loci with potential pleiotropic effects for downstream biological experiments.

Keywords: Simulation, multi-trait, Unified Mixed-Model, QTN, maize, soybean, LD

1. INTRODUCTION

The number of traits available from state-of-the-art phenotyping techniques typically exceeds the
number of genes in many species’ genomes. For instance, the human genome contains over 20, 000
genes (Wagner and Zhang, 2011), but the Human Metabolome Database (Wishart et al., 2007)
alone has collected more than 114, 000 metabolite traits. A direct consequence is that many genes
likely control more than one of these traits, a phenomenon known as pleiotropy (Visscher and
Yang, 2016). The identification and characterization of this phenomenon has been the subject of
extensive research in the 100+ years following the first attributed use of the term “pleiotropy” in
Platt (1910) Stearns (2010). Examples of important genes with pleiotropic effects in plant science
include Lg1 and its contribution to inflorescence and leaf traits in maize (Foster et al., 2004; Lewis
et al., 2014) and multiple disease resistance attributed to GH3-2 in rice (Fu et al., 2011) and Lr67 in
wheat (Moore et al., 2015).With the recent acquisition of high-throughput phenotype and genotype
data, it is now possible to directly identify pleiotropic causal mutations (Wagner and Zhang, 2011).
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The abundance of such high-throughput data in conjunction
with a plethora of tools available for quantifying genotype-to-
phenotype associations (Marchini et al., 2007; Purcell et al.,
2007; Lipka et al., 2012; Zhou and Stephens, 2014) is providing
increasing evidence for pleiotropic genes involved in evolution
(Smith, 2016; Auge et al., 2019), disease resistance (Wisser et al.,
2011; Lopez-Zuniga et al., 2019; Qiu et al., 2020), yield (Ward
et al., 2019), and many other traits (Jiang et al., 2019; Rice et al.,
2020). These analyses have also led to opposing views for (Boyle
et al., 2017) and against (Wray et al., 2018) the ubiquitousness
of pleiotropy in complex trait variation, particularly in the form
of the omnigenic model. This model assumes that the same set of
small-effect regulatory genes explain the vast majority of complex
disease resistance traits expressed in a disease-relevant cell (Boyle
et al., 2017).

One of the most commonly used approaches for quantifying
genotype-to-phenotype relationships is the genome-wide
association study (GWAS), which has been used to investigate
pleiotropy (Wisser et al., 2011; Schaid et al., 2016; Rice et al.,
2020). However, a significant drawback of a GWAS is that
most of the markers available in typical high-throughput
genotypic data are not causal. Instead, they are in imperfect
linkage disequilibrium (LD) with the causal mutations of a
given trait. This LD obfuscates the ability to distinguish a single
pleiotropic causal mutation underlying multiple traits from
multiple non-pleiotropic causal mutations in LD with each other
(Gianola et al., 2015). Furthermore, it would only be possible
to differentiate between a set of multiple non-pleiotropic causal
mutations and one pleiotropic causal mutation if the former
were in imperfect LD (Kemper et al., 2018). The scenario of
tightly-linked non-pleiotropic causal mutations being mistaken
for one pleiotropic causal mutation is known as spurious
pleiotropy (Solovieff et al., 2013; van Rheenen et al., 2019). In
addition to hindering the characterization of biological processes
underlying trait variability, the presence of spurious pleiotropy in
GWAS results could have serious negative downstream breeding
ramifications (Chen and Lübberstedt, 2010). For instance, if
two separate causal mutations in LD with antagonistic effects
each control one of two correlated traits, breeders could allocate
resources toward increasing population size to find individuals
with recombination between these causal mutations (Schulthess
et al., 2017). However, if a set of GWAS results are misinterpreted
as suggesting that one pleiotropic causal mutation is present (i.e.,
the scenario of spurious pleiotropy is realized), then such efforts
to increase the population size may never be undertaken.

Many studies use the term cross-phenotype to refer to
markers with strong statistical associations with multiple traits
(Tyler et al., 2016). Several univariate and multivariate GWAS
approaches have been implemented to detect cross-phenotype
associations (Zhou and Stephens, 2014; Cichonska et al., 2016;
Joo et al., 2016), with multi-trait models shown to be optimum
under many circumstances (Yang and Wang, 2012; Porter and
O’Reilly, 2017; Melo et al., 2019; Pitchers et al., 2019; Rice et al.,
2020). Although there is great value in detecting cross-phenotype
associations, there is still a critical need to distinguish whether
the underlying causal mutation(s) are pleiotropic or are non-
pleiotropic but in strong LD. We hypothesized that one of the

major reasons underlying the difficulty in distinguishing between
these two scenarios is that the most widely-used univariate and
multivariate GWAS models are insufficient for making such
a distinction. Therefore, we used publicly available maize and
soybean genotypic data to simulate pairs of correlated traits that
were either (i) controlled by non-pleiotropic quantitative trait
nucleotides (QTNs) on separate chromosomes, (ii) controlled
by non-pleiotropic QTNs in various degrees of LD with each
other, or (iii) controlled by a single pleiotropic QTN. We then
assessed the ability of state-of-the-art univariate and multivariate
GWAS models to identify these QTNs. We predicted that as the
amount of LD between the non-pleiotropic QTNs increased, the
multivariate GWAS results would more closely resemble those
from traits controlled by a single pleiotropic QTN.

2. MATERIALS AND METHODS

2.1. Maize and Soybean Data
In this study, we used publicly available molecular marker
data from two crop species, specifically maize (Zea mays L.)
and soybean (Glycine max L.). These two species were selected
because of their contrasting rates of LD decay; while soybean
tends to have long-range LD (Hyten et al., 2007; Zhang
et al., 2015), more rapid LD decay is typically observed in
maize (Gore et al., 2009; Romay et al., 2013). The maize data
were comprised of 2, 815 accessions from the North Central
Regional Plant Introduction Station (NCRPIS) panel (Romay
et al., 2013), while the soybean data consisted of a random
sample of 2, 815 accessions in maturity groups III and IV
from SoyBase (Song et al., 2015). To investigate the impact of
sample size on the results, for each data set, we considered
the full set of S1 = 2, 815 accessions, a subsample of S2 =

1, 000 accessions, and a subsample of S3 = 500 individuals.
The accessions of S3 were randomly sampled from S2, whereas
the accessions of S2 were randomly sampled from S1, i.e.,
S3 ⊂ S2 ⊂ S1. All subsamples were obtained using the
(vcftools --max-indv) command in vcftools (Danecek et al., 2011).
Details on how to access the datasets are provided in the
Supplementary Material.

The maize data included 681, 257 single-nucleotide
polymorphisms (SNPs) obtained through genotyping-by-
sequencing (Romay et al., 2013), available at http://cbsusrv04.
tc.cornell.edu/users/panzea/download.aspx?filegroupid=6. The
soybean data were downloaded from SoyBase (Song et al.,
2015) at http://soybase.org/snps/download.php, and consisted
of 42, 291 SNPs obtained with the SoySNP50K (Song et al.,
2013). The same filters were applied to both datasets using
vcftools. These filters included removing all SNPs with more
than 5% missing data. Additionally, Plink was used to conduct
LD pruning, where the LD parameter was set to r2 = 0.9
(--indep-pairwise 100 10 0.9) (Purcell et al., 2007). Thus, only
markers that were in an LD of r2 ≥ 0.9 were filtered out. Only
SNPs from chromosomal DNA that passed the minor allele
count threshold of 5 in S3 were included in this simulation study.
Consequently, the final data sets used for simulation were 44, 930
SNPs for maize, and 18, 364 for soybean.
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FIGURE 1 | Flow chart with the methods used to simulate, conduct a

genome-wide association study (GWAS), and detect quantitative trait

nucleotides (QTNs) in multiple traits.

2.2. Trait Simulation
The flow chart presented in Figure 1 summarizes the main
aspects of the simulation study we conducted. In brief, we
simulated pairs of traits controlled by either pleiotropic or non-
pleiotropic QTNs. Each pair of traits was simulated with the
simplePHENOTYPES (Fernandes and Lipka, 2020) package in
the R software (R Core Team, 2020). We were specifically
interested in comparing and contrasting the behavior of single
peak-associated SNPs from GWAS, similar in magnitude to
those reported in Rice et al. (2020), over multiple simulation
replicates. Thus, all individual traits were controlled by exactly
one additive QTN selected from either the maize or soybean

marker data. For each pair of replicate traits, a maximum
of two QTNs were selected. To investigate the impact of LD
between two non-pleiotropic QTNs on the GWAS results, we
sampled QTNs in three different scenarios. First, the QTNs
were sampled from different chromosomes (called “Independent
QTNs” in Figure 1). Such a configuration of QTNs was achieved
by simulating trait pairs independently in simplePHENOTYPES.
For a given set of input parameter values (Table 1), this process
was repeated until 100 replicate trait pairs, with each trait in a pair
controlled by a QTN on a different chromosome, were obtained.
Next, we simulated trait pairs where the maximum amount of
LD between the two linked non-pleiotropic QTNs controlling
each trait was specified (called “QTNs in linkage” in Figure 1).
We simulated this configuration in simplePHENOTYPES by
specifying architecture = “LD,” and indicated the amount of
maximum desired LD between pairs of selected SNPs through
the ld input parameter. We controlled this amount of LD both
directly (i.e., the LD between the two QTNs) and indirectly (the
LD between each QTN and amarker located in between). Finally,
we simulated pairs of correlated traits that were controlled
by a single pleiotropic QTN (called “Pleiotropy” in Figure 1).
This configuration was specified in simplePHENOTYPES by
architecture = “pleiotropic.”

Table 1 provides a summary of the input parameters
considered in the simulation study. Briefly, three configurations
of narrow-sense heritability (h2) were simulated: two with the
same h2 for both traits and one with a different h2 for each
trait. The latter configuration is a common situation in breeding
programs, where a trait of interest with small heritability is
correlated to a trait of less interest but with a higher h2

(Fernandes et al., 2018). Because a single QTN controlled each
trait, and the non-genetic variance was a function of the inputted
heritability, the additive effect size of every QTN in this study
was set to the same value, namely 0.10. To evaluate the impact
of rare vs. common variants on the results, we also considered
the minor allele frequencies (MAFs) of the selected markers
as an input parameter (see Table 2 for details). Altogether, we
simulated 216 scenarios, where each scenario consisted of a
unique combination of input parameters. Each scenario was
replicated 100 times using the option vary_QTN = TRUE in
simplePHENOTYPES, meaning that a different pair of QTNs
were selected for each replicate.

We used simplePHENOTYPES’ option “remove_QTN =

TRUE” to simulate the frequently occurring scenario of the causal
mutations not being included in the marker sets. Thus, for each
of the 100 replicate trait pairs evaluated at a given scenario,
the marker data were saved without the SNPs used as QTNs.
Accordingly, for all traits, we conducted GWAS on all markers
except the one selected to be the QTN.

2.3. Genome-Wide Association Studies
Multivariate and univariate GWAS was conducted on all
simulated traits. For each replicate trait pair, we used the
multivariate version of the unified mixed linear model (MLM)
(Yu et al., 2006) implemented in GEMMA (Zhou and Stephens,
2014) to conduct the multivariate GWAS. In this analysis, a given
replicate trait pair was included in this model as the multivariate
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TABLE 1 | Description of the input parameter values considered to simulate each pair of traits in the simulation study.

h2d

QTN selectiona Type of LDb MAFc Trait 1 Trait 2 Sample size Species

QTNs independently selected Direct 0.05 0.30 0.30 500 Maize

LD controlled at < 0.01 Indirect 0.40 0.30 0.80 1,000 Soybean

LD controlled at < 0.98 0.80 0.80 2,815

One pleiotropic QTN

Each combination of input parameter values resulted in 216 simulation scenarios.
aQTN, quantitative trait nucleotide.
bLD, linkage disequilibirum (r2 ).
cMAF, minor allele frequency.
dh2, narrow-sense heritability.

TABLE 2 | Description of how minor allele frequency (MAF) was controlled in the

simulation study.

QTNa configuration MAF control

QTNs independently selected Both QTNs selected based on MAF

LDb between QTNs directly controlled QTN for first trait selected based on MAF

LD between QTNs indirectly controlled Common marker located between

QTNs selected based on MAF

One pleiotropic QTN Pleiotropic QTN selected based on MAF

aQTN, quantitative trait nucleotide.
bLD, linkage disequilibirum.

response variable. The multivariate MLM was fitted in GEMMA
using the commands (“gemma --bfile bed_file -lmm 2 -miss 0.001
-maf 0.001 -r2 0.999999 -n 1 2 -k kinship.txt -o output”), with the
kinshipmatrix (VanRaden, 2008) calculated with the AGHmatrix
R package (Amadeu et al., 2016). Similarly, for each of the two
simulated traits contributing to a replicate trait pair, an analogous
univariate unified MLM was fitted in the GEMMA software
using all of the same commands except for -n 1. No fixed-effect
covariates accounting for subpopulation structure were included
in any GWAS model because (i) subpopulation structure did not
explicitly contribute to the variability of the simulated traits, and
(ii) all QTNs were randomly sampled irrespective of the degree
to which their alleles segregated by subpopulations.

2.4. QTN Detection Rate for Univariate and
Multivariate GWAS
For each simulation scenario, we compared the proportion of
100 replicate trait pairs in which the multivariate MLM identified
a signal in the vicinity of the QTN(s) and the proportion in
which the univariate MLM identified a signal in the vicinity of
the QTN controlling the tested trait. We applied the Benjamini
andHochberg (1995) procedure to control the genome-wide false
discovery rates (FDR) at 10%, and 5% for eachmodel ran on each
replicate trait pair. A SNP-trait association passing this threshold
was deemed to be in the vicinity of a given QTN if it was within
10 kb (in maize) or 1Mb (in soybean) of the QTN. These physical
window sizes roughly correspond to a pairwise LD decay of r2 =
0.10 in both species (Supplementary Figures 1, 2). To compare

the influence of window sizes on the results, we also considered
window sizes of 1 kb in maize and 10 kb in soybean; these results
are presented in Supplementary Figures 20–29, 40–49.

For a given replicate trait pair, the multivariate MLM (which
tested H0: No association between the tested SNP and any trait
in the multivariate model) was said to have identified a QTN
if at least one SNP with an FDR-adjusted P-value <0.10 (or
0.05 when the FDR was controlled at 5%) was located within
the surrounding physical window. Similarly, for a given trait in
a replicate trait pair, the univariate MLM (which tested H0: No
association between the tested SNP and the trait in the univariate
model) was said to have correctly identified the QTN underlying
that trait if at least one SNP with an FDR-adjusted P-value <0.10
(or 0.05) was located within the physical window of that QTN.
Thus, across the 100 replicate trait pairs simulated at each setting,
we recorded the following percentages:

1. The percentage of replicate trait pairs where a given GWAS
model identified the QTN underlying the first trait.

2. The percentage of replicate trait pairs where a given GWAS
model identified the QTN underlying the second trait.

3. The percentage of replicate trait pairs where a given GWAS
model identified both QTNs underlying both traits.

4. The percentage of replicate trait pairs where a given
GWAS model identified at least one statistically significantly
associated marker outside of both windows for both traits.

When these percentages 1–3 were calculated for the multivariate
GWAS under the “Independent QTNs” and “QTNs in linkage”
scenario, they were referred to as the spurious pleiotropy
detection rate. Otherwise, these proportions were called QTN
detection rates. For both multivariate and univariate GWAS, the
percentages calculated in 4 were called the error rate. Finally, as a
measure of regional LD, i.e., LD in the region surrounding the
selected QTN, we calculated the LD (r2) between the selected
QTN and the 20 SNPs upstream and the 20 SNPs downstream.

3. RESULTS

In general, the results were similar across sample sizes and
heritabilities. Unless noted otherwise, we highlight below the
findings at the relatively moderate sample size of 1, 000
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individuals, heritability of trait pairs set to h2 = (0.30, 0.80),
10% FDR and window size of 10 kb for maize and 1 Mb
for soybean. We chose to present these particular heritabilities
because of the aforementioned interest in correlated traits with
contrasting heritabilities among breeders (Fernandes et al., 2018).
For completeness, results for the remaining sample sizes and
heritabilities are included in the Supplementary Material.

3.1. Observed MAFs Were Similar to
User-Inputted Values, but Observed LD
Was Lower
The various user-inputted parameters in simplePHENOYPTES
enabled control of the MAFs of QTNs, as well as the LD between
non-pleiotropic QTNs, to a certain extent. For QTNs where we
specified the MAFs as an input parameter (indicated by a darker
color in Figure 2; Supplementary Figures 6–9), the observed
MAF distributions were similar to the user-inputted values.
For QTNs where the MAFs were not directly controlled as an
input parameter (indicated by a lighter color in Figure 2), most
observed MAFs tended to be lower in maize than in soybean.

As expected, the observed LD between non-pleiotropic QTN
pairs tended to be higher in soybean than in maize, although
outlying instances of similar levels of high LD were observed
in maize (Figure 2; Supplementary Figures 6–9). Surprisingly,
the distribution of LD between non-pleiotropic QTN under the
independent QTNs scenario yielded outlying LD values greater
than what was observed under the direct control of LD at r2 =

0.01. Because each pair of independent QTNs were simulated
on separate chromosomes, we attribute these outlying values to
interchromosomal LD. Thus, these simulated traits yielded pairs
of non-pleiotropic QTNs with contrasting levels of LD between
each other, enabling a thorough evaluation of the performance of
univariate and multivariate GWAS models.

3.2. QTN and Spurious Pleiotropy
Detection Rates Varied Across Sample
Sizes, Heritabilities and QTN MAFs
The QTN and spurious pleiotropy detection rates
generally increased as the sample size increased
(Supplementary Figures 10–12, 20–22, 30–32, 40–42).
Similarly, these rates increased monotonically as the heritabilities
increased (Figure 3, Supplementary Figures 10–12, 20–22,
30–32, 40–42). The overall high QTN and spurious pleiotropy
detection rates in soybean precluded the discernment of any
notable trends in the GWAS approaches’ performance across the
observed MAFs (Supplementary Figures 10–12, 20–22, 30–32,
40–42). However, in maize, we noted that for most settings,
higher QTN and spurious pleiotropy detection rates tended to be
observed for QTNs where the MAFs were specified to be around
0.40 instead of 0.05 (Figure 4). In general, all the conclusions
were similar when varying the FDR and window size. The
largest difference in this regard was noted in soybean, specifically
in that a considerably higher QTN and spurious pleiotropy
detection rate was noted whenever the multiple testing was
adjusted at 10% FDR and the window size was 1 Mb (Figure 5;
Supplementary Figures 16–19).

3.3. Observed Multivariate GWAS
Performance for Non-pleiotropic QTNs in
Linkage and a Single Pleiotropic QTN
The multivariate GWAS results are presented in their entirety
in Figure 5 and Supplementary Figures 16–19, 26–29, 36–
39, 46–49). In general, high spurious pleiotropy detection
rates were observed under the “QTNs in Linkage” scenario.
Specifically, for QTNs that were in high LD, we observed that the
multivariate GWAS spurious pleiotropy detection rate of both
QTNs (depicted as the light green bar in Figure 5) tended to be
similar to or greater than the multivariate GWAS detection rate
of the pleiotropic QTNs (yellow bar in Figure 5). Interestingly,
we also noted a trend in the ability of multivariate GWAS to
identify each individual non-pleiotropic QTN in LD (depicted
as the purple and blue-green bars in Figure 5). That is, with the
exception of indirect LD of 0.01, we observed that all individual
multivariate GWAS spurious pleiotropy detection rates were
higher than the corresponding multivariate GWAS detection
rates on the pleiotropy scenario. The pattern of error rate,
i.e., significant markers detected outside the predefined window
size, was similar to the QTN and spurious pleiotropy detection
rate (Supplementary Figures 50–89). The only notably different
result when considering the error rate was observed in the
independent QTNs scenario, where it resulted in a reduced error
rate compared to the other genetic architectures.

3.4. Univariate GWAS Displayed Distinct
Detection Patterns for Non-pleiotropic
QTNs in High LD and Single Pleiotropic
QTNs
Univariate GWAS tended to yield distinct patterns of QTN
detection under both (i) high LD between non-pleiotropic QTNs
and (ii) pleiotropy (depicted as the two rightmost columns
of Figure 5; Supplementary Figures 16–19, 26–29, 36–39, 46–
49). Specifically, the simultaneous detection rate of the QTNs
for both traits (depicted as the green bars in Figure 5) tended
to be relatively similar to the individual QTN detection rates
for each trait (depicted as the purple and blue-green bars
Figure 5). For the remaining scenarios where non-pleiotropic
QTN were simulated (presented in the four leftmost columns
of Figure 5), we contrastingly observed that the simultaneous
detection rate of each pair of non-pleiotropic QTNs tended to
be less similar to the individual QTN detection rates. These
results suggest that univariate GWAS could be extremely useful
for distinguishing between a single pleiotropic QTN and two or
more non-pleiotropic QTNs in linkage. In the scenarios of high
LD, the SNPs selected to be QTNs were located in regions of
slightly higher LD (Supplementary Figures 3–5). Consequently,
the univariate QTN detection rate was slightly higher in the
instances where QTNs in LD were simulated. In most cases, the
error rate was similar across different settings.

4. DISCUSSION

The full potential of GWAS to contribute to the identification
of pleiotropy will not be realized until its ability to distinguish
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FIGURE 2 | Observed minor allele frequencies (MAF) for quantitative trait nucleotides (QTN) controlling trait 1 (QTNT1) and trait 2 (QTNT2), and the observed linkage

disequilibrium (LD) between them, measured as r2, for the sample size of 1, 000 and narrow-sense heritability of 0.3 and 0.8, for traits 1 and 2, respectively. Darker

colors indicate QTNs that had MAF directly controlled by an input parameter of the simulation, whereas lighter colors indicate QTNs where MAF was not controlled.

The simulated genetic architecture is listed in the horizontal and vertical titles.

between a single pleiotropic causal mutation and multiple non-
pleiotropic causal mutations in LD is scrutinized in real genomic
data. Therefore, we used publicly available maize and soybean
marker data to conduct a simulation study that quantified the
QTN and spurious pleiotropy detection rates of both pleiotropic
and non-pleiotropic QTNs for two widely-used statistical models
in plant GWAS. We specifically used the univariate and
multivariate MLM and controlled for multiple testing at 10%
FDR. Our results showed that even at surprisingly small LD
between non-pleiotropic QTNs, the multivariate GWAS model
tended to yield high spurious pleiotropy detection rates. Because
of the high spurious pleiotropy detection rates we inferred that
multivariate GWAS was unable to distinguish between a single
pleiotropic QTN and two non-pleiotropic QTNs in LD. We
also observed that for pleiotropic QTNs, the univariate GWAS
model’s simultaneous QTN detection rates for both traits were
similar to the QTN detection rates for the individual traits; such
a degree of similarity was observed only at non-pleiotropic QTNs

pairs in the highest amount of pairwise LD that we specified in
our simulation parameters. Collectively, these results suggest that
the univariate GWAS model might be useful in conjunction with
multivariate GWAS model for distinguishing between true and
spurious pleiotropy.

4.1. High Spurious Pleiotropy Detection
Rates From Multivariate GWAS Were
Observed Under LD
The potential of multivariate GWAS models has been
demonstrated in many studies (Galesloot et al., 2014;
Zhou and Stephens, 2014; Pitchers et al., 2019; Rice et al.,
2020). Our results agree with this previous work, as the
observed ability of multivariate GWAS to identify QTNs
was generally high for all scenarios particularly in soybean.
The fact that the multivariate GWAS was able to detect
non-pleiotropic QTNs is not surprising because the null
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FIGURE 3 | Quantitative trait nucleotide (QTN) and spurious pleiotropy detection rate (Y-axis) achieved by multivariate (Multi) and univariate (Uni) GWAS, relative to the

QTN controlling trait 1 (T1), trait 2 (T2), and both QTN simultaneously (T1&T2) or, in the pleiotropic scenario, relative to the pleiotropic QTN (MT). These values were

obtained for maize with a sample size of 1, 000. The X-axis displays the narrow-sense heritability for Trait 1 (bottom value) and Trait 2 (top value). (A) Inputted minor

allele frequency (MAF) of 0.05; (B) MAF of 0.4.

hypothesis for most multivariate tests of association, including
those used for the multivariate MLM, is H0 : No association
between the tested SNP and any trait (Schaid et al., 2016;
Salinas et al., 2018). Thus, the multivariate MLM’s detection
of non-pleiotropic QTN, and more specifically spurious
pleiotropy under the “QTNs in linkage” scenario, should
not be regarded as false positives because these events
technically occur in the alternative hypothesis. Nevertheless,
the outcome of spurious pleiotropy underscores an intrinsic
lack of resolution to distinguish between pleiotropic and
non-pleiotropic QTNs.

The observed performance of multivariate GWAS at the
various levels of LD between non-pleiotropic QTNs on the
same chromosome was insightful. Although a previous study
showed that multivariate GWAS could not distinguish between
a single pleiotropic QTN and multiple non-pleiotropic QTNs
in LD (Chebib and Guillaume, 2019), we expected that at
low levels of LD between non-pleiotropic QTNs, the spurious
pleiotropy detection rates would be similar to QTN detection
rates under the scenario where non-pleiotropic QTNs were
simulated on separate chromosomes. Furthermore, we predicted
that as the amount of LD between the non-pleiotropic QTNs
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FIGURE 4 | Quantitative trait nucleotide (QTN) and spurious pleiotropy detection rate (Y-axis) in scenarios for which minor allele frequency (MAF) was directly

controlled by a simulation input parameter. These values were obtained by multivariate (Multi) and univariate (Uni) GWAS, relative to the QTN controlling trait 1 (T1),

and trait 2 (T2), or in the pleiotropic scenario, relative to the pleiotropic QTN (MT). This figure shows results for maize with a sample size of 1, 000, and a narrow-sense

heritability of 0.3 and 0.8, for Trait 1 and Trait 2, respectively.

increased, the spurious pleiotropy detection rate of multivariate
GWAS would become similar to the observed multivariate
GWAS detection rate of a single pleiotropic QTN. Instead, we
observed that even at LD levels of r2 < 0.01 between non-
pleiotropic QTNs, the multivariate GWAS model yielded high
spurious pleiotropy detection rates, a trend that was analogous
to the QTN detection rates observed for traits controlled by one
pleiotropic QTN. Interestingly, for the most stringent control of
LD between non-pleiotropic QTNs on the same chromosome
(i.e., r2 < 0.01), the maximum amount of observed LD was
less than some outlying values of interchromosomal LD between
non-pleiotropic QTNs simulated on separate chromosomes
(Figure 2). These results were contrary to our prior expectations,
and we consequently made two main conclusions. First, we
confirmed that multivariate GWAS is a potentially useful tool
for identifying causal mutations. Second, multivariate GWAS,
particularly the multivariate unified MLM, alone is insufficient
for distinguishing between multiple QTNs in LD and a single
pleiotropic QTN, irrespective of the amount of LD between
the QTNs.

4.2. Univariate GWAS Is Potentially Useful
for Identifying Pleiotropy
One of the most useful findings from this study was the subtle
differences in univariate GWAS QTN detection rates for both
non-pleiotropic QTNs in high LD and pleiotropic QTNs. We
hypothesize that if incorporated into standard GWAS analyses,
these subtle differences could play a crucial role in inferring
whether or not a certain set of GWAS results suggest pleiotropy.

Although there is a critical need for future studies to investigate
the most appropriate use of univariate GWAS in such a role,
our results suggest two steps for using univariate GWAS for
this purpose. First, a univariate GWAS could be conducted
on each trait separately. Second, an a posteriori analysis could
then be used to determine how frequently each univariate
GWAS detects a signal. If a signal is consistently detected across
several univariate analyses of individual traits, this could provide
evidence that a pleiotropic causal mutation is underlying the
signals detected from GWAS.

4.3. Considerations for Further Studies on
the Ability of GWAS to Identify Loci
Controlling Multiple Traits
Our findings build upon other studies (e.g., Chebib and
Guillaume, 2019), indicating that caution should be used when
interpreting multivariate GWAS results. Moreover, it highlights
the usefulness of univariate GWAS in making conclusions
regarding trait genetic architecture. However, some potential
weaknesses of our study should be considered when designing
future research. In particular, the inconsistent amount of local
LD levels surrounding QTNs selected from different genetic
architectures is a potential source of bias. We opted to consider
a fixed window size when detecting the QTNs; this favors
a comparison across different sample sizes, but because the
LD will vary, so will the chance of detecting a QTN in that
specific window.

In particular, when we simulated traits with QTNs in high LD
“QTNs in Linkage” scenario, we observed that they were typically
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FIGURE 5 | Quantitative trait nucleotide (QTN) and spurious pleiotropy detection rate (Y-axis) achieved by multivariate (Multi) and univariate (Uni) GWAS (X-axis),

relative to the QTN controlling trait 1 (T1), trait 2 (T2), and both QTN simultaneously (T1&T2) or, in the pleiotropic scenario, relative to the pleiotropic QTN (MT). The

simulated genetic architecture is listed in the horizontal and vertical titles. These values were obtained with a sample size of 1, 000, and a narrow-sense heritability of

0.3 and 0.8, for traits 1 and 2, respectively. MAF, minor allele frequencies.

selected from genomic regions that contained at least one pair of
SNPs in high LD. Thus, the local LD in these regions tended to
be biased upwards. For the remaining simulation scenarios, the
amount of local LD was not biased upwards, as can be seen in
Supplementary Figures 3–5. We infer that these differences in
local LD might have influenced the observed QTN and spurious
pleiotropy detection rates in this study. A potential solution for
this issue would be to simulate pleiotropy and linked QTNs based
on marker data with SNPs evenly spaced.

One final suggestion for future research is to investigate the
impact of (i) the residual correlation between traits and (ii) the
sign of QTN effect sizes on the performance of univariate and
multivariate GWAS. As described in Jiang and Zeng (1995), the
power of multivariate approaches should be less than those of
the univariate ones whenever the direction of residual correlation
(i.e., whether the sign of the residual correlation is positive or
negative) is the same as those of the product of QTN effect
sizes, regardless of whether these QTNs are in linkage or are
pleiotropic. Thus, it is critical to determine if the overall patterns
of QTN and spurious pleiotropy detection observed in this
study are similar under genetic architectures where multivariate
GWAS is theoretically expected to yield lower power than
univariate GWAS.

5. CONCLUSION

The main conclusion from this study is that the use of
either univariate or multivariate GWAS alone is insufficient
for rigorously dissecting the genetic architecture of multiple
traits. Association studies should instead use both univariate
and multivariate models, as we demonstrated that both of these
models are useful. Although our results suggest that multivariate
GWAS cannot distinguish between a single pleiotropic QTN
and multiple non-pleiotropic QTNs in LD, we confirmed that
multivariate models are potentially useful for analyzing traits that
are controlled by causal mutations that are either pleiotropic
or in LD with each other. Once the genomic regions most
likely to contain relevant causal mutations are identified through
multivariate GWAS, univariate analyses could then be applied,
potentially through the a posteriori analysis proposed in the
Discussion, to shed light on whether or not the underlying
causal mutations are pleiotropic. Such use of univariate and
multivariate analyses in a concerted manner could maximize
the amount of information ascertained from the GWAS of
multiple traits, and potentially provide biological researchers
with a smaller list of candidate loci that are likely to contribute
to their variability.
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