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Clear cell renal cell carcinoma (ccRCC) is one of the most frequent pathological

subtypes of kidney cancer, accounting for ∼70–75%, and the major cause of mortality

is metastatic disease. The difference in gene expression profiles between primary

ccRCC tumors and metastatic tumors has not been determined. Thus, we report

integrated genomic and transcriptomic analysis for identifying differentially expressed

genes (DEGs) between primary and metastatic ccRCC tumors to understand the

molecular mechanisms underlying the development of metastases. The microarray

datasets GSE105261 and GSE85258 were obtained from the Gene Expression Omnibus

(GEO) database, and the R package limma was used for DEG analyses. In summary,

the results described herein provide important molecular evidence that metastatic

ccRCC tumors are different from primary tumors. Enrichment analysis indicated that

the DEGs were mainly enriched in ECM–receptor interaction, platelet activation, protein

digestion, absorption, focal adhesion, and the PI3K–Akt signaling pathway. Moreover,

we found that DEGs associated with a higher level of tumor immune infiltrates and tumor

mutation burden were more susceptible to poor prognosis of ccRCC. Specifically, our

study indicates that seven core genes, namely the collagen family (COL1A2, COL1A1,

COL6A3, and COL5A1), DCN, FBLN1, and POSTN, were significantly upregulated in

metastatic tumors compared with those in primary tumors and, thus, potentially offer

insight into novel therapeutic and early diagnostic biomarkers of ccRCC.

Keywords: clear cell renal cell carcinoma, metastasis, biomarker, immune infiltration, tumor mutation burden

INTRODUCTION

Clear cell renal cell carcinoma (ccRCC) is one of the most aggressive histologic subtypes of kidney
cancer, accounting for∼3% of all human cancers (Muglia and Prando, 2015). Up to 30% of ccRCC
patients have metastases at the time of diagnosis, and ∼60% have metastases within the initial 2–3
years after diagnosis (Casuscelli et al., 2017). Metastasis is the major reason for mortality associated
with ccRCC. Although surgery is highly effective for the treatment of ccRCC (Chen et al., 2009),
the treatment options available for patients with metastatic disease are very limited (Fisher et al.,
2000; Flanigan et al., 2001).

Transcriptional profiling has emerged as an effective strategy to discover the molecular
mechanisms underlying the metastasis or progression of ccRCC and predict clinical outcomes.
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While there have been comprehensive overviews of somatic
mutations and transcriptomic profiles of primary ccRCC within
The Cancer Genome Atlas project (The Cancer Genome Atlas
Research Network, 2013), the genomic and transcriptomic
profiles of metastatic ccRCC have not been examined in the
context of their primary tumors.

Immunotherapy has recently been identified as an effective
methodology for advanced or aggressive cancers (Hoos, 2016;
Aoun et al., 2017; Kamal et al., 2018). In addition, many
studies have found that the tumor mutation burden (TMB)
and neoepitopes in many cancer types are closely associated
with immunotherapy (Kandoth et al., 2013; Brown et al., 2014).
However, few relevant research studies have centered on the
correlation of the TMB with immune infiltrates and tumor
metastasis in ccRCC. Therefore, we identified a metastasis-
associated gene signature that supports ccRCC metastases by
comparing gene expression profiles, the TMB, and immune
infiltrate differences between metastatic and primary tumors.

MATERIALS AND METHODS

Data Collection and Identification of DEGs
We searched the GEO (Gene Expression Omnibus) database
(https://www.ncbi.nlm.nih.gov/geo/) using the following
keywords: “Clear cell renal cell carcinoma” AND “Primary” AND
“Metastatic” AND “Homo sapiens” AND “Expression profiling
by array.” After a systematic review, two gene expression profiles
(GSE105261 and GSE85258) were collected for analysis. Then,
the R package limma was used for DEG analysis. We perceived
p < 0.05 and a |log (FC, fold change)| >1 to be statistically
significant for the DEGs, and logFC≥1 and logFC≤-1 were used
to indicate upregulated and downregulated DEGs, respectively.
Using all of the DEGs identified in GSE105261 and GSE85258,
we constructed a volcano plot with the R package ggplot2.
The resulting dataset of DEGs was gathered and used for
further analyses.

PPI Network Construction and Analysis of
Clusters
The STRING database (http://string-db.org/) is an online
database designed to provide a vital assessment and integration
of protein–protein interactions, which includes direct (physical)
and indirect (functional) associations (von Mering et al., 2003).
Cytoscape and Gephi are popular open-source software devices
for the visual exploration of biomolecule interaction networks
composed of proteins and genes and other types of interactions
(Bastian et al., 2009; Smoot et al., 2011). The DEGs were mapped
with STRING to evaluate the protein–protein interactions (PPIs)
and then visualized with Cytoscape and Gephi. Then, the
Molecular Complex Detection (MCODE) plugin was used to
screen core cluster from the PPI network with degree cutoff = 2,

Abbreviations: BP, biological process; CC, cell component; ccRCC, clear cell

renal cell carcinoma; DEGs, differentially expressed genes; ECM, the extracellular

matrix; EMT, epithelial–mesenchymal transition; FC, fold change; GEO, Gene

ExpressionOmnibus; KIRC, kidney renal clear cell carcinoma; KM, Kaplan–Meier;

MCODE, Molecular Complex Detection; MF, molecular function; OS, overall

survival; TMB, tumor mutation burden.

node score cutoff= 0.2, haircut= true, fluff= false, K-Core= 2,
and max. depth from seed= 100.

Identification and Analysis of Shared DEGs
and Hub Genes
By writing an R script, we compared the DEGs of two GSE
samples and identified the shared DEGs (including upregulated,
downregulated, and reversed expressions). Then, we employed
unsupervised hierarchical clustering and expression correlation
calculations based on the shared DEG series matrix file and
plotted them with the R package ggplot2. The Annotation,
Visualization, and Integrated Discovery Database (DAVID,
v6.8, https:/david.ncifcrf.gov/) was employed to conduct Gene
Ontology and Kyoto Encyclopedia of Genes and Genomes
pathway enrichment analyses. A modified Fisher’s exact test,
the p-value (or EASE score), was used to examine the
significance of gene ontology/KEGG pathway term enrichment.
The Benjamini–Hochberg procedure was used to correct the p-
values of individual term member enrichment globally. These
gene ontology/pathway terms with a p-value cutoff ≤0.05 and
Benjamini–Hochberg cutoff ≤0.5 were regarded as significant
and interesting.

In the present study, the PPI network of shared DEGs
was constructed using the STRING database, and interaction
with a combined score >0.4 was regarded as statistically
significant. Subsequently, engaging the Network Analyzer plugin
in Cytoscape, the network topology parameters were analyzed
to obtain the average shortest path length (ASPL), betweenness
centrality (BC), etc., and nodes with a shorter ASPL and
higher BC were considered as hub genes (Assenov et al., 2008;
Li et al., 2018).

Validation of Shared DEGs
To validate the mRNA expression level of the identified shared
genes, the ONCOMINE microarray database (https://www.
oncomine.org), which is a translational bioinformatics service
that provides a powerful genome-wide expression analysis
(Rhodes et al., 2004) was used. Data were extracted to assess
the mRNA expression levels (cancer vs. normal) of shared DEGs
in multiple types of cancer, including ccRCC. In this study, the
thresholds were set as p < 0.05, a fold change of 2, and a gene
ranked in the top 10%. Student’s t-tests were used to analyze the
expression differences.

Determination of Shared DEG Alterations
in ccRCC
The data were obtained from cBioPortal (http://www.
cbioportal.org/), an open-access platform for assessing
genetic mutation variability among pan-cancer patients
(Gao et al., 2013). cBioPortal evaluated the frequency of genetic
alterations (including mutations, amplifications, deletions,
and associations of fusions with clinical parameters) across
ccRCC studies.

Survival Analysis of Shared DEGs
We used the Kaplan–Meier (KM) plotter
(http:/kmplot.com/analysis/) to perform analysis of the shared
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FIGURE 1 | Roadmap of the approach and summarized findings.

DEGs with KIRC (kidney-clear cell carcinoma) overall survival

(OS). In this study, patients were divided by autoselection best

cutoff, type of cancer = kidney clear cell carcinoma (n = 530),
and survival = OS (n = 7,642) as the basic parameters. Based

on the gene transcriptional expression level of a given gene,

the plotter endows users with the ability to separate patients

into high and low expression groups and create KM plots. In

addition, the hazard ratio (HR) was calculated and shown on the
chart with 95% confidence interval and the log-rank p-value, and
the number-at-risk is shown below the curves.

Tumor-Infiltrating Immune Cell Association
With Gene Expression in Tumor Immune
Estimation Resource
The association between the abundance of immune tumor
infiltrates (B cells, CD4+ T cells, CD8+ T cells, dendritic cells,
macrophages, and neutrophils) and the expression of the selected
genes was analyzed via the Tumor Immune Estimation Resource
(TIMER) platform, a web server that contains 10,897 samples
of various types of cancer available in the TCGA database
(Li et al., 2017). The gene module allows users to select any
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TABLE 1 | Characteristics of the GSE105261 and GSE85258 datasets.

Series code Series geo

accession

Series type Number of

samples

Group Organism Series platform id

G1 GSE105261 Expression

profiling by array

35 Primary ccRCC (n = 9)

Metastatic ccRCC (n = 26)

Homo sapiens GPL10558

G2 GSE85258 Expression

profiling by array

31 Primary ccRCC (n = 15)

Metastatic ccRCC (n = 16)

Homo sapiens GPL570

gene of interest and visualize its expression in correlation
with the level of immune infiltration in different types of
cancer. The scatterplots of correlation showed the value of
the partial Spearman correlation, corrected by purity, and its
statistical significance.

RESULTS

Identification of DEGs
The methodology roadmap for our study is shown in
Figure 1. In summary, we obtained the gene expression
profiles for GSE105261 and GSE85258 from the GEO
database. The sample information of GSE is shown in
Table 1. Overall, 115 and 276 DEGs were identified from
the GSE105261 and GSE85258 datasets, respectively.
Furthermore, 20 shared DEGs (17 downregulated, three
upregulated) of the two groups were identified through multiple
comparisons, and 10 genes sorted by the integrated score
were considered as hub genes (Tables 2, 3). The results
are shown in Figure 1 and Supplementary Material 1.
We constructed a volcano plot with the R package
ggplot2 (Figure 2).

Construction of the PPI Network and
Clusters
We used STRING to identify the PPI networks for both
the up- and downregulated genes to assess the PPIs between
the DEGs. A combined score of ≥0.9 was considered to
indicate a significant interaction. Then, we focused on exploring
the spatial distribution characteristics of 20 shared DEGs
in the PPI network model of the two datasets to verify
the reliability. We exported the resulting PPI network from
STRING as a “CSV” file and imported it to visualization
software Cytoscape v3.7.1 and Gephi 0.9.2. The graphical
representations of the PPI networks are shown in Figure 3.
The G1 and G2 DEG PPI network models comprised 87 nodes
and 262 edges and 220 nodes and 634 edges, respectively.
The results are presented in Supplementary Material 2. We
found that the 20 shared DEGs were located in different
spatial positions in the PPI network of the two sets of DEGs,
but they were vital ones (Figures 3A,B). Then, we carried
out independent cluster analysis on the two PPI networks,
and we found that 20 shared DEGs were all distributed in
the core cluster, suggesting that these genes were stable and
reliable (Figures 3C,D).

TABLE 2 | The shared DEGs of the GSE105261 and GSE85258 datasets.

Gene Regulation Gene title

1 REN Up Renin

2 OGDHL Up Oxoglutarate dehydrogenase-like

3 HSD11B2 Up Hydroxysteroid 11-beta dehydrogenase 2

4 COL3A1 Down Collagen type III alpha 1 chain

5 COL1A1 Down Collagen type I alpha 1 chain

6 COL1A2 Down Collagen type I alpha 2 chain

7 COL6A3 Down Collagen type VI alpha 3 chain

8 PRRX1 Down Paired related homeobox 1

9 POSTN Down Periostin

10 COL5A1 Down Collagen type V alpha 1 chain

11 FBLN1 Down Fibulin 1

12 SPINK13 Down Serine peptidase inhibitor, Kazal type 13 (putative)

13 GJB2 Down Gap junction protein beta 2

14 PDGFRL Down Platelet-derived growth factor receptor-like

15 CTHRC1 Down Collagen triple helix repeat containing 1

16 FGG Down Fibrinogen gamma chain

17 SCG5 Down Secretogranin V

18 DCN Down Decorin

19 LUM Down Lumican

20 MXRA5 Down Matrix remodeling associated 5

Validation of the mRNA Expression of
Shared DEGs
First, we checked the mRNA expressions of the GSE105261
and GSE85258 datasets and employed unsupervised hierarchical
clustering and expression correlation calculations based on the
shared DEG series matrix file. As demonstrated in Figure 4, the
mRNA expression was obviously clustered into different groups
(primary and metastatic) and different expression differences
(downregulated and upregulated). Then, we further verified
the mRNA expression levels of shared DEGs between multiple
cancer types (Figure 5A) or ccRCC (Figure 5B) with non-tumor
kidney tissues (normal group) using the ONCOMINE database.
The mRNA expression levels of COL1A1, COL1A2, COL6A3,
PRRX1, POSTN, COL5A1, SPINK13, PDGFRL, CTHRC1, FGG,
SCG5, and DCN were markedly upregulated in ccRCC tissues
(p < 0.05) compared with those in non-tumor kidney tissues.

GO and KEGG Enrichment Analyses
We imported all shared DEGs into the online analytics tool
DAVID to conduct the annotation process to determine
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TABLE 3 | The top 10 hub genes in the shared DEG PPI network.

Rank Average shortest path length Betweenness centrality Degree Symbol

1 1.08333333 0.05176768 11 COL1A2

2 1.08333333 0.05176768 11 COL1A1

3 1.08333333 0.05176768 11 COL3A1

4 1.08333333 0.05176768 11 POSTN

5 1.25 0.01515152 9 LUM

6 1.25 0.01515152 9 COL6A3

7 1.25 0.01010101 9 COL5A1

8 1.25 0.16666667 9 DCN

9 1.25 0.01010101 9 FBLN1

10 1.58333333 0 6 MXRA5

FIGURE 2 | Volcano plot of the DEGs in the primary ccRCC group compared with the metastatic ccRCC group from the GSE105261 (A) and GSE85258 (B)

datasets. Each point corresponds to one gene.

the potential GO classifications and KEGG pathway-
enriched genes from the dataset. The results are presented
in Supplementary Material 3. The annotated results for the GO
terms were divided according to the MF (molecular function),
BP (biological process), and CC (cell component) categories
(p < 0.05, FDR < 0.05). The results of the GO biological
process analysis revealed that the shared DEGs were mainly
enriched in the organization of extracellular matrix and collagen
fibrils, collagen catabolic process, platelet activation, and the
development of blood vessels (Figure 6). For the GO molecular
function analysis, the shared DEGs were significantly enriched
in platelet-derived growth factor, collagen, and cell adhesion
molecule. The shared DEGs were mostly enriched in the
extracellular matrix and the extracellular region in GO cell
component analysis. By examining the KEGG pathways, we
noticed an enrichment of the shared DEGs in platelet activation,
protein digestion, absorption, focal adhesion, and the PI3K–Akt
signaling pathways. These results suggested that the shared DEGs

could be significantly related to the process of tumor aggression
and immune infiltration.

Mutation Burden and Selection Analysis
The cBioPortal platform was used to identify mutational
processes by adjusting the mutational signatures published
on the platform to the mutational profiles of the somatic
SNVs in ccRCC tumors, referring to the total number of
genetic mutations per patient identified and patient survival.
As shown in Figure 7, neither HSD11B2 mutations nor SCG5
mutations were identified. In addition, other shared DEGs
were assessed for the existence of genetic alterations (including
mutations, amplifications, deletions, and fusions associated with
clinical parameters).

Survival Analysis of Shared DEGs
The Kaplan–Meier test and Cox regression analysis were used to
assess associations with OS (Figure 8). As a result, we noticed
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FIGURE 3 | Illustration of the protein networks of DEGs from the GSE105261 (G1) and GSE85258 (G2) datasets. The spatial distribution characteristics of the PPI

network model of G1 (A) and G2 (B) based on a macro perspective were constructed by the “Fruchterman–Reingold” layout in the Gephi software. The spatial

distribution characteristics of the PPI network model of G1 (C) and G2 (D) based on independent perspectives were constructed by the MCODE plugin of

Cytoscape software.
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FIGURE 4 | Hierarchical clustering analysis and expression correlation calculation of mRNA expression of shared DEGs, which were compared primarily with the

metastatic ccRCC group in the GSE105261 (A,C) and GSE85258 (B,D) datasets.

that a higher expression of REN (HR = 0.5; CI = 0.37–0.69; log-
rank p= 1.6e-05), OGDHL (HR= 0.46; CI= 0.34–0.63; log-rank
p = 5.7e-07), and HSD11B2 (HR = 0.53; CI = 0.39–0.72; log-
rank p= 3e-05) was associated with the improved overall survival
in ccRCC patients. The expression levels of REN, OGDHL, and
HSD11B2 were higher in the primary group than those in the
metastatic group.

However, the higher expressions of COL1A1 (HR = 1.76;
CI = 1.29–2.39; log-rank p = 0.00027), COL1A2 (HR = 1.57;
CI = 1.12–2.2; log-rank p = 0.0078), COL6A3 (HR = 1.72;
CI = 1.72–2.32; log-rank p = 0.00036), PRRX1 (HR = 1.89;
CI = 1.39–2.57; log-rank p = 4.2e-05), POSTN (HR = 1.55;
CI = 1.12–2.14; log-rank p = 0.007), COL5A1 (HR = 1.77;
CI = 1.31–2.39; log-rank p = 0.00016), FBLN1 (HR = 2.07;
CI = 1.24–3; log-rank p = 9.4e-05), SPINK13 (HR = 1.77;
CI = 1.31–2.4; log-rank p = 0.00017), GJB2 (HR = 1.83;
CI = 1.35–2.49; log-rank p = 8.7e-05), PDGFRL (HR = 2.63;

CI = 1.94–3.56; log-rank p = 7.4e-11), CTHRC1 (HR = 2.06;
CI = 1.46–2.9; log-rank p = 2.4e-05), and SCG5 (HR = 2.03;
CI = 1.48–2.78; log-rank p = 7.3e-06) were linked with worse
overall survival in ccRCC patients. The expression of these
genes, as listed above, was upregulated in the metastatic group
compared with that in the primary group.

Correlation of Hub Genes With Tumor
Immune Infiltrates
Finally, we further explored the association between the
expression of hub genes with worse overall survival and immune
tumor infiltrates. The levels of the gene expression to the purity
of the tumor are always displayed on the leftmost panel. As
shown in Figure 9, tumor purity was negatively correlated with
the expression levels of these genes (tumor purity, cor< 0). Genes
highly expressed in the microenvironment were expected to
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FIGURE 5 | The mRNA expression levels (cancer vs. normal) of shared DEGs in multiple cancer types (A) and ccRCC (B), which were based on ONCOMINE. The

figure shows the numbers of datasets with statistically significant upregulated (red) and downregulated (blue) mRNA expression.

have negative associations with tumor purity, while genes highly
expressed in tumor cells were expected to have the opposite
association (Alcaraz-Sanabria et al., 2020). Besides, the COL1A2
expression level correlated with the infiltration level of CD4+

T cells (part.cor = 0.378) and macrophages (part.cor = 0.313);
the COL1A1 expression level correlated with the infiltration level
of CD4+ T cells (part.cor = 0.353); the COL6A3 expression
level correlated with the infiltration level of CD4+ T cells
(part.cor = 0.37); the COL5A1 expression level correlated with
the infiltration level of CD4+ T cells (part.cor= 0.382); the DCN
expression level correlated with the infiltration level of CD4+

T cells (part.cor = 0.256) and macrophages (part.cor = 0.265);
the FBLN1 expression level correlated with the infiltration level

of CD4+ T cells (part.cor = 0.255); and finally, the POSTN
expression level correlated with the infiltration level of CD4+

T cells (part.cor = 0.343) and macrophages (part.cor = 0.367).
Therefore, these seven hub genes (COL1A2, COL1A1, COL6A3,
COL5A1, DCN, FBLN1, and POSTN) were considered as
core genes.

DISCUSSION

Though metastatic ccRCC treatment options have increased
over the past decade, mortality and 5-year survival remain
unsatisfactory (Courtney and Choueiri, 2010; Pal et al., 2012).
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FIGURE 6 | Gene ontology and KEGG pathway enrichment bubble diagram for shared DEGs (showing the first seven items).

Previous studies focused mainly on the screening of biomarkers
expressed differently between tumor and normal tissues. In
the more lethal and therapeutically relevant distant metastatic
tumor, however, less is known regarding gene expression profiles.
Microarray technology is one of the leading approaches that
many researchers worldwide use to explore the gene expression
levels involved in cancer (Russo et al., 2003; Perez-Diez et al.,
2007). Hence, it is relatively more meaningful to survey the
expression profiles of DEGs and predict metastasis-associated
gene signatures. In this study, data were obtained from the
GEO database from a total of 24 patients with primary ccRCC
and 42 patients with metastatic ccRCC. For screening DEGs,
we considered p < 0.05 and log (FC, fold change) > 1 to
be statistically significant. As a result, a total of 115 and
276 DEGs, including 106 upregulated and 285 downregulated
genes, were identified from the GSE105261 and GSE85258
datasets, respectively.

Good efficiency has been demonstrated in in silico methods,
and network analysis has been shown to be a reliable way
of depicting genomic data (Jeong et al., 2015). For large PPI
networks, the topological interpretation of shared DEGs was
required and was thus substantially based on integrated local
components, such as the degree distribution node, the topological
coefficient, the average shortest path length, the centrality of
betweenness, and the centrality of closeness (Assenov et al.,
2008). These parameters were used to analyze the nodes in
individual PPI networks of the DEG dataset to determine
their significance in networks with different characteristics.

Then, we compared the DEGs of two GSE samples and
identified 20 shared DEGs (namely three upregulated and 17
downregulated genes), and 10 hub genes were screened by
constructing a PPI network. We found that the 20 shared
DEGs were located in different spatial positions in the PPI
network of the two sets of DEGs, but they were all vital
ones (Figures 3A,B). Moreover, we carried out independent
cluster analysis on the two PPI networks, and we found
that 20 shared DEGs were all distributed in the core
cluster, suggesting that these genes were stable and reliable
(Figures 3C,D).

The focus of our further analyses was directed toward
the validation of the global gene expression of shared
DEGs. We first analyzed the transcriptional profiles of
the GSE105261 and GSE85258 datasets. Hierarchical
clustering showed a perfect distinction between the
primary and metastatic groups (Figure 4). Then, we further
identified the mRNA expression levels of shared DEGs
between multiple cancer types (Figure 5A) or ccRCC
(Figure 5B) and non-tumor kidney tissues (normal group)
based on ONCOMINE. Based on these results, it was
revealed that the mRNA expression levels of shared DEGs
distinguished metastatic ccRCC tissues from primary ccRCC
tissues. These findings were consistent with the obtained
microarray data.

Furthermore, we employed DAVID to implement GO
and KEGG pathway enrichment analyses to determine MF,
BP, and CC terms and pathways involving shared DEGs.
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FIGURE 7 | The frequency of genetic alterations (including mutations, amplifications, deletions, and fusions associated with clinical parameters) of shared DEGs was

evaluated through ccRCC studies using cBioPortal. Stacked plots show mutational burden (histogram, top), mutations in shared DEGs (tile plot, middle), and

mutational marks (bottom) (A). Overall description and cancer type summary of the selected sample (B). The histogram combined with the dotted-line graph shows

the overlap of samples (patients) (C). Box plots display shared DEG mutation counts based on the Kruskal–Wallis test (p = 0.0140) (D). HSD11B2, POSTN, GJB2,

SCG5, and LUM completely overlapped with other selected groups and were excluded from the analyses in other tabs.

The results indicated an enrichment of the shared DEGs
in extracellular matrix (ECM)–receptor interaction, platelet
activation, protein digestion and absorption, focal adhesion,
and the PI3K–Akt signaling pathway (Figure 6). These
pathways were reported to promote the migration and
invasion of cancer cells (Northey et al., 2017; Stein et al.,
2019). The ECM consists of a complex mixture of structural
and functional macromolecules and plays an important role
in tissue and organ morphogenesis and in maintaining the
structure and function of cells and tissues. The pathway
of ECM–receptor interactions leads to direct or indirect
control of cellular activity, such as adhesion, migration,

differentiation, proliferation, and apoptosis. Cancer cell
activation of platelets has a myriad of procancer effects, such
as stimulating tumor growth, preparing the metastatic niche,
and helping metastatic cells survive in circulation (Gay and
Felding-Habermann, 2011). The phosphoinositide 3-kinase
(PI3K)/Akt pathway is a classic and important signaling
pathway that is involved in numerous cellular functions,
including cell proliferation, survival, adhesion, migration,
and metabolism (Xu et al., 2016; Yin et al., 2017). Therefore,
our observed results were consistent with the role of shared
DEGs in tumor aggressiveness pathways and abnormal cell
cycle and mitosis functions. Based on the above results,
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FIGURE 8 | Outcomes associated with mutation and immune infiltrates were illustrated in patients with ccRCC. Kaplan-Meier survival curves with the log-rank test

and hazard ratio (HR) for overall survival are shown.

these shared DEGs partially represent metastasis-specific
genes and showed significant biological progression of
the tumor and may contribute to the progression toward
increased malignancy.

It is widely known that the tumor mutation burden is an
important indicator of immunotherapy (Foulkes et al., 2016;
Samstein et al., 2019). In this study, we showed that there
was a significantly higher mutational burden associated with
worse overall survival. Although prior work has shown an
association between the number of mutations and outcomes
in ccRCC, no distinctions have been made between patients
who were diagnosed with metastatic disease and patients who
were diagnosed with localized disease (Hsieh et al., 2015, 2017).
However, those tumors that progress at relapse or metastatic
sites may have accumulated additional genomic mutations over
time, and this hypothesis is supported by data from other cancer
subtypes (Yates et al., 2017).

Given that patients with metastatic ccRCC have poor
prognosis, we decided to investigate the capacity of metastasis-
associated gene signatures to predict the overall survival in
patients with ccRCC tumors. As a result, we reported a clear
association of our gene signatures with a favorable prognosis
that was higher than those of metastatic cancer. Specifically,
the higher expression of COL1A2, COL1A1, COL6A3, COL5A1,
DCN, FBLN1, and POSTN in patients with ccRCC was
associated with immune infiltrates and worse overall survival
(Figures 8, 9). Moreover, the existence of genetic alterations
(including mutations, amplifications, and deletions) of these
genes was assessed (Figure 7). Solid tumors have been reported
to consist of cancer cells that interact with the tumor
microenvironment, which includes stromal cells, immune cells,
and ECM, and poor prognosis of breast, gastric, and oral cancers
(Ohno et al., 2010; Conklin et al., 2011; Li et al., 2013). Several
studies suggest that POSTN (periostin) can act to promote cell
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FIGURE 9 | Association of core gene expression in ccRCC with immune infiltrates. Partial correlation analysis of gene expression and tumor immune infiltrate levels

(B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells).
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migration by facilitating the interaction between cancer cells
and the tumor niche. These interactions are essentially mediated
through interactions with integrin family receptors (Laura
and Javier, 2018). The results showed that immune infiltrates
were positively correlated with poor prognosis, indicating that
infiltrating immune cells contribute to poor ccRCC results.

The collagen family (COL1A2, COL1A1, COL6A3, and
COL5A1), DCN, FBLN1, and POSTN were the most abundant
components of the tumor ECM. Through its effects on
cancer cells and stromal cells, the ECM can increase many
of the cancer hallmarks, such as angiogenesis induction
(Mammoto et al., 2011), invasion, and metastasis activation
(Leight et al., 2012; Pickup et al., 2015). Decorin (DCN)
can play a proangiogenic role by facilitating the adhesion
and migration of endothelial cells on type I collagen (Semler
et al., 2010). In particular, decorin mediates adhesion by
binding to integrin α2β1 and promoting the interaction between
integrin and collagen (Davies et al., 2001). It is interesting
that decorin has also been involved in downregulating models
of the E-cadherin binding partner β-catenin in in vitro, in
vivo, and xenograft experiments (Bi et al., 2008; Goldoni
et al., 2009; Buraschi et al., 2010). Loss of E-cadherin
promotes metastasis by inducing disaggregation of cancer cells,
activating specific downstream signal transduction pathways,
and causing epithelial–mesenchymal transition (EMT), which
facilitate metastasis. In various aspects of tumor cells, such as
cell motility (Lee et al., 2005), cell proliferation (Cheng et al.,
2008), apoptosis, and angiogenesis (Xie et al., 2008), fibulin-1
(FBLN1) was reported as a novel ECM protein. Activation of
the epidermal growth factor receptor (EGFR) is a vital oncogenic
signaling regulator for the invasion and metastasis of cancer cells
(Normanno et al., 2006). It has been shown that FBLN1-mediated
EGFR signaling regulates cell adhesion and motility (Alexi et al.,
2011; Bakker et al., 2017).

Overall, our systematic genomic and transcriptomic analyses
showed that shared DEGs could play a vital role in ccRCC tumor
aggressiveness. A total of 20 shared DEGs and 10 hub genes were
identified in this study, and seven core genes (COL1A2, COL1A1,

COL6A3, COL5A1, DCN, FBLN1, and POSTN) were associated
with immune infiltrates and worse overall survival. To prove this
hypothesis, we need to conduct a series of experimental studies
to obtain more precise data on these correlations. In addition,
the subsets of these genes could be used to code for secreted
proteins and membrane receptors for both potential therapeutic
and diagnostic targets.
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