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Whole-genome sequence (WGS) data are increasingly being applied into genomic
predictions, offering a higher predictive ability by including causal mutations or single-
nucleotide polymorphisms (SNPs) putatively in strong linkage disequilibrium with causal
mutations affecting the trait. This study aimed to improve the predictive performance of
the customized Hanwoo 50 k SNP panel for four carcass traits in commercial Hanwoo
population by adding highly predictive variants from sequence data. A total of 16,892
Hanwoo cattle with phenotypes (i.e., backfat thickness, carcass weight, longissimus
muscle area, and marbling score), 50 k genotypes, and WGS imputed genotypes were
used. We partitioned imputed WGS data according to functional annotation [intergenic
(IGR), intron (ITR), regulatory (REG), synonymous (SYN), and non-synonymous (NSY)]
to characterize the genomic regions that will deliver higher predictive power for the
traits investigated. Animals were assigned into two groups, the discovery set (7324
animals) used for predictive variant detection and the cross-validation set for genomic
prediction. Genome-wide association studies were performed by trait to every genomic
region and entire WGS data for the pre-selection of variants. Each set of pre-selected
SNPs with different density (1000, 3000, 5000, or 10,000) were added to the 50 k
genotypes separately and the predictive performance of each set of genotypes was
assessed using the genomic best linear unbiased prediction (GBLUP). Results showed
that the predictive performance of the customized Hanwoo 50 k SNP panel can be
improved by the addition of pre-selected variants from the WGS data, particularly 3000
variants from each trait, which is then sufficient to improve the prediction accuracy
for all traits. When 12,000 pre-selected variants (3000 variants from each trait) were
added to the 50 k genotypes, the prediction accuracies increased by 9.9, 9.2, 6.4,
and 4.7% for backfat thickness, carcass weight, longissimus muscle area, and marbling
score compared to the regular 50 k SNP panel, respectively. In terms of prediction bias,
regression coefficients for all sets of genotypes in all traits were close to 1, indicating an
unbiased prediction. The strategy used to select variants based on functional annotation
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did not show a clear advantage compared to using whole-genome. Nonetheless, such
pre-selected SNPs from the IGR region gave the highest improvement in prediction
accuracy among genomic regions and the values were close to those obtained using
the WGS data for all traits. We concluded that additional gain in prediction accuracy
when using pre-selected variants appears to be trait-dependent, and using WGS data
remained more accurate compared to using a specific genomic region.

Keywords: genomic selection, pre-selected sequence variants, genome annotation, carcass traits, Hanwoo cattle

INTRODUCTION

The use of whole-genome sequence (WGS) data in genomic
prediction is expected to be advantageous, since all or most of
the causal mutations or single-nucleotide polymorphisms (SNPs)
are putatively in strong linkage disequilibrium (LD) with causal
mutations affecting the traits. This was confirmed in a simulation
study (Meuwissen and Goddard, 2010), but in real data, the use
of entirely WGS data was shown to lead to no or only small
improvements in prediction accuracy. For instance, Heidaritabar
et al. (2016) reported in chicken that increasing the marker
density from 60 K SNP panel to imputed WGS data resulted
in only a slight improvement (~1%) in prediction accuracy.
Frischknecht et al. (2018) also concluded that the inclusion of
imputed WGS data did not lead to increase the accuracy of
genomic prediction in Brown Swiss cattle.

The poor performance of using WGS data could be due to
several reasons, including the small number of sequenced animals
(Heidaritabar et al., 2016), imputation accuracy of marker
genotypes (Druet et al, 2014), and LD between quantitative
traits loci (QTL) and SNPs (Meuwissen and Goddard, 2010).
Moreover, van den Berg et al. (2016) pointed out that such
small improvement from using WGS data could be because
only variants close to causative mutations or causative mutations
themselves can improve genomic prediction accuracy. Thus,
as an alternative to a simple increase in marker density,
some studies suggested that the prediction accuracy could be
improved by adding significant QTL or variants that were
selected based on genome-wide association studies (GWAS)
using WGS data (Brondum et al., 2015; Veerkamp et al., 20165
Moghaddar et al., 2019).

In recent years, the customized Hanwoo 50 k SNP Chip
(58,990) has been the main technology used to calculate
genomic breeding values (GEBV) in Hanwoo cattle. However,
our previous study (Lopez et al, 2019) showed that only
around 37,000 SNPs remained after genomic quality control
for estimating the GEBV. SNPs were excluded mainly due to
low minor allele frequency (MAF). Hence, these SNPs need to
be replaced with those SNPs with high MAF likely to have an
effect on breeding goal trait to further improve the accuracy of
genomic prediction. Hayes et al. (2014) reported that variants
in regulatory (REG) or coding regions could also have an effect
on traits, since these variants (missense) have direct effects on
proteins and are likely to have a phenotypic effect (Koufariotis
et al., 2014). Our previous works also showed that the SNPs
in REG regions were able to capture a large proportion of the

total genetic variation in carcass traits of Hanwoo cattle (Bhuiyan
et al, 2018; Srikanth et al., 2020). Therefore, incorporating
such coding SNPs into genomic predictions may improve the
prediction accuracy.

In this study, imputed WGS data were partitioned into
different genomic regions based on the functional annotation
information, namely, intergenic (IGR), intron (ITR), REG,
synonymous (SYN), and non-synonymous (NSY). Then, GWAS
was carried out for each genomic region and the entire WGS data
for the pre-selection of variants in a separate discovery dataset.
Each set of pre-selected variants were added to the standard
50 k SNP array separately, and the predictive performance of
each of these SNP sets was evaluated. We investigated whether
the use of variants selected based on their functional annotation
information especially those from the coding regions would
improve the prediction accuracy compared to those that were
selected from the WGS data. Moreover, we evaluated the different
density of pre-selected variants to identify the optimum number
of variants to be added to the standard 50 k set. The ultimate
goal of this study was to improve the predictive performance of
the customized Hanwoo 50 k SNP panel by incorporating highly
predictive variants from the imputed sequence data for backfat
thickness, carcass weight, longissimus muscle area, and marbling
score carcass traits from a commercial Hanwoo population.

MATERIALS AND METHODS

Animals and Experimental Design

Data used in this study consisted of phenotypic and genotypic
records of 16,892 Hanwoo cattle mostly composed of steers
(16,535). These animals were born between April 2006 and June
2017 from around 4,000 farms in South Korea. Four routinely
collected carcass traits were analyzed: backfat thickness (BFT in
mm), carcass weight (CWT in kg), longissimus muscle area (LMA
in cm?), and marbling score (MS: scored from 1 to 9). All animals
were slaughtered at an average age of 30 months, and their carcass
traits were measured in accordance with the guidelines proposed
by the Korea Institute for Animal Production Quality Evaluation
(KAPE). Ethics approval for this study was given by the Animal
Care and Use Committee of the National Institute of Animal
Science, Rural Development Administration, South Korea (2018-
293). A detailed description of the data and other pertinent
information were provided in the previous study of Lopez et al.
(2019). The descriptive statistics for traits studied are shown in
Table 1.
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TABLE 1 | Descriptive statistics for carcass traits in Hanwoo cattle.

Trait! N Min Max Mean SD

BFT, mm 16,892 2.00 47.00 14.25 5.03
CWT, kg 16,892 159.00 692.00 441.06 52.31
LMA, cm? 16,892 34.00 156.00 95.61 12.06
MS (1-9) 16,892 1.00 9.00 6.10 1.87

! Backfat thickness (BFT), carcass weight (CWT), longissimus muscle area (LMA),
and marbling score (MS).

The animals were divided into two non-overlapping groups,
the discovery set used for variant detection in the GWAS and
the cross-validation set for genomic prediction. To minimize
any probable bias in the evaluation of prediction accuracy, the
animals in the discovery set were composed of diverse individuals
with low genetic relationships with those animals in the cross-
validation set (Veerkamp et al., 2016). This was made possible
by calculating the genomic relationship matrix (GRM) between
all pairs of individuals in the population using GCTA (Yang
et al., 2011), and then, a GRM threshold was applied to extract
individuals from the dataset who do not have any relatives in
population given the relatedness threshold. A different GRM
threshold was tested as shown in Supplementary Table 1. A GRM
threshold of 0.30 was used in this study to keep a reasonable
number of animals in the two datasets, which was a little higher
to the GRM threshold of 0.25 used by Moghaddar et al. (2019)
for meat traits in Australian sheep populations. The GRM was
constructed from 50 k SNP genotypes (SNPs were removed if
they had a call rate lower than 0.90, MAF lower than 0.01, and
Hardy-Weinberg disequilibrium < 0.000001). Ultimately, a total
of 7,324 animals were assigned in the discovery set for GWAS
while the remaining animals (9,568) were used in cross-validation
for genomic prediction.

Derivation of Corrected Phenotypes
Corrected phenotypes were used as response variables in genomic
prediction analyses. Phenotypes were pre-corrected for fixed
effects in a single-trait analysis using a pedigree-based model in
the PREDICTF90 (Misztal et al., 2014):

y=Xb+Za+e,

where, y is a vector of observations; b is the vector of fixed
effects of year-month of birth, slaughter year-month, slaughter
place, herd (province-city/town), sex, and slaughter age as a
covariate; a is the vector of random additive genetic effects
[a ~ N (0, Ao2)] where 62 is the additive genetic variance and
A is the pedigree-based relationship matrix of individuals; e is
the vector of random residual effect [e ~ N (0, Iog)] where 05
is the residual variance and I is an identity matrix. X and Z are
indices matrices associating band a to y.

SNP Genotyping, Imputation, and

Annotation

The genomic DNA for each animal was extracted from tissue
samples using the DNeasy Blood and Tissue Kit (Qiagen,
Valencia, CA, United States). Samples were genotyped using

the customized Hanwoo 50 k SNP Chip (58,990) according to
the manufacturer’s instructions (Illumina, South Korea). The
following threshold levels were applied for quality control using
the PLINK software (Purcell et al., 2007): SNPs were removed if
they had a MAF < 0.01 or call rate <0.90 and Hardy-Weinberg
disequilibrium <0.000001. Genotypes situated on the sex
chromosomes were also excluded. Furthermore, individuals with
more than 10% missing genotypes were removed. After applying
these quality control measures, 37,712 SNPs were remained.

A two-step imputation process of 50 k genotypes to WGS
data was performed using Minimac3 (Das et al.,, 2016) after
pre-phasing the genotypes with Eagle v2.4.1. (Loh et al,, 2016).
Specifically, this entailed the imputation from the 50 k SNP chip
to high-density (HD) genotypes using a reference set of 1166
animals genotyped with Bovine HD BeadChip (777,962 SNPs),
which was subsequently followed by the imputation from HD
genotypes to sequence data (26,936,924 SNPs) using a reference
of 311 sequenced progeny tested Hanwoo bulls (Bhuiyan et al.,
2018). The imputation accuracy used in this study was derived
from the 7 value from Minimac3, which was the estimated value
of the squared correlation between true and imputed genotypes.
Similar to our previous studies (Bhuiyan et al., 2018; Srikanth
et al.,, 2020), SNPs with an imputation accuracy (r%) lower than
0.60 were removed for further analysis. After removing those
SNPs, the overall mean imputation accuracy was 0.87.

The imputed whole-genome variants were annotated based on
the bovine genome assembly UMD 3.1 (Elsik et al., 2016). SNPs
were annotated, filtered, and partitioned using SnpEff version 4.3
(Cingolani et al., 2012) and SnpSift software (Ruden et al., 2012).
SNPs were partitioned into five genomic regions: IGR, ITR,
regulatory (REG), SYN, and NSY. In addition, the combination
of regulatory, synonymous and non-synonymous (RSN) SNPs
was also considered in this study. Synonymous and NSY SNPs
are in protein-coding regions (i.e., exons of genes), in which
synonymous SNPs are those coding SNPs that does not modify
the resulting amino acid while NSY SNPs alter the encoded amino
acid. Regulatory SNPs are protein coding SNPs within 5-kb
upstream of a gene. Other details of the functional classifications
can be found in our previous works (Bhuiyan et al., 2018; Srikanth
et al., 2020). After partitioning, the same quality control criteria
employed for the 50 k panel described above were applied to each
genomic region and WGS data. In addition, random pair of SNPs
that were in high LD (r? > 0.95) in a 5000-kb sliding window with
100 variants were excluded using the same software. The number
of variants annotated in different genomic regions before and
after quality control and after LD pruning is shown in Table 2.

Pre-selection of Sequence Variants

Variant selection was based on their p-value from GWAS
conducted on the discovery set (7324 animals). GWAS was
performed both in WGS and each genomic region separately
(IGR, ITR, REG, SYN, NSY, and RSN). Thus, we ran a total of
seven GWAS for each trait using the mixed linear model based
association analysis (MLMA) in the package GCTA (Yang et al,,
2011). The model was:

Ve =1n +sjo5+Zg+e,
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TABLE 2 | Number of variants annotated in different genomic regions before and
after quality control and after LD pruning.

Genomic region’ Before quality After quality After LD
control control pruning
50 k 58,990 37,712 -
WGS 13,502,733 11,948,082 1,561,308
IGR 9,436,699 8,307,710 1,115,262
TR 3,936,080 3,436,573 523,494
REG 968,519 852,187 197,513
SYN 59,569 52,828 32,884
NSY 27,187 23,046 15,986
RSN 1,030,239 918,307 216,944

"Whole-genome sequence (WGS), intergenic (IGR), intron (ITR), regulatory
(REG), synonymous (SYN), non-synonymous (NSY), and combination of REG,
SYN and NSY (RSN).

where y, is a vector of corrected phenotypes; | is the overall
mean; 1 is a vector of ones; s; is a vector of genotypes for SNP;
(coded as 0, 1, or 2); a; is the size of the effect of the marker (allele
substitution effect); g is a vector of the GEBV of all individuals

[g ~ N (0, Gcé)] , where cg is the additive genetic variance

and G is the marker-based GRM (VanRaden, 2008) constructed
from different sets of genotypes (i.e., WGS, IGR, ITR, REG, SYN,
NSY and RSN); Z is an incidence matrix linking g to y,; and e is
the vector of random residual effect [e ~ N (0, I cg)].

We selected 1,000, 3,000, 5,000, and 10,000 SNPs with the
lowest p-values from both WGS and each genomic region. In
addition, we randomly select the same number of added SNPs
from WGS (RAN). Each set of pre-selected SNPs were added to
the 50 k panel separately and tested for genomic prediction. Pre-
selected SNPs that overlapped with those on the 50 k SNP chip
was retained in the 50 k set and replaced by others to keep the
same number of added SNPs.

Genomic Prediction

The GEBVs of all genotyped individuals in the cross-validation
dataset were predicted with the genomic best linear unbiased
prediction (GBLUP) model using MTG2 (Lee and Van der Werf,
2016). Genomic relationship matrices (GRM) were constructed
for each of the genotype sets: 50 k, 50 k + WGS, 50 k + IGR,
50 k + ITR, 50 k + REG, 50 k 4 SYN, 50 k + NSY, 50 k 4 RSN,
and 50 k + RAN. The added variants to the 50 k panel have
different densities of 1,000, 3,000, 5,000, or 10,000. A single-trait
animal model was fitted as follows:

Yo =10 +Zg+e,

where the terms are as defined in the GWAS model above.
Variance components were estimated with restricted maximum
likelihood algorithm as employed in MTG2.

A 10-fold cross-validation scheme was utilized to determine
prediction accuracy. The cross-validation dataset (9,568 animals)
was randomly partitioned into 10 groups without overlapping
of samples. In each cross-validation, one group (~956) was
treated as the validation set and the remaining groups were
used as the training set (~8,612). Phenotypes of animals in

the validation set were assumed as unknown. The accuracy of
genomic prediction was calculated as the correlation between
the GEBV of the validation set and their corrected phenotypes,
divided by the square root of heritability of the trait (estimated
using a 50 K SNP data). Furthermore, the unbiasedness of
genomic prediction was evaluated using the regression coefficient
of corrected phenotypes on GEBV.

RESULTS
Heritability Estimates

Heritability estimates for carcass traits were obtained by fitting
the different GRM constructed from various SNP sets as shown
in Table 3. These estimates for the four carcass traits investigated
were medium to high ranging from 0.32 to 0.40 based on
the GRM from the regular 50 k panel. After the inclusion of
pre-selected SNPs from different sets of markers, heritability
estimates were generally similar for all traits compared to the
50 k genotypes. However, while we observed that the heritability
estimates for BFT, LMA, and MS showed no notable change
when more pre-selected SNPs were added from the WGS, a small
decrease was noted for CWT. Meanwhile, the addition of 10,000
pre-selected SNPs to the 50 k set slightly increase the heritability
for MS especially those from REG, SYN, or RSN.

Genomic Prediction Using Trait-Specific

Pre-selected Variants

The accuracy of genomic prediction using the regular 50 k SNP
panel and 50 k with trait-specific pre-selected variants from WGS,
IGR, ITR, REG, SYN, NSY, RSN, or RAN is shown in Figure 1.
In general, the results showed that the predictive performance
of the regular 50 k SNP panel can be improved by adding pre-
selected variants from imputed sequence data. However, this
improvement in prediction accuracy varied among traits. When
using GRM constructed on a 50 k panel, genomic prediction
accuracies for BFT, CWT, LMA, and MS were 0.55, 0.63, 0.58,
and 0.56, respectively. These values further increased to 7.1 to
11%, 7.2 to 10%, 3.4 to 6.7%, and 3.2 to 9.1% for BFT, CWT, LMA,
and MS, correspondingly when 1,000 to 10,000 pre-selected SNPs
from WGS were added to the 50 k set. However, it should be
noted that there was only a slight improvement in prediction
accuracy when adding either 3000 or 5000 variants for most
traits, though in most cases, the addition of a higher number of
pre-selected variants to 50 k tended to increase the prediction
accuracy for all traits.

Using pre-selected variants from a specific genomic region
based on their functional annotation did not show a clear
advantage compared to using the whole genome. Hence,
prediction accuracy based on 50 k + WGS remained the most
accurate among SNP sets considered in this study. Nonetheless,
prediction accuracies achieved by each of the genomic regions
were substantially higher than those of randomly pre-selected
SNPs from WGS for all traits. Moreover, we observed that the
impact of genomic regions on the prediction accuracy differed
between traits. The prediction accuracies based on 50 k + IGR
were the most similar to those of 50 k + WGS for BFT, CWT, and
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TABLE 3 | Estimates of heritability for carcass traits of Hanwoo cattle based on different SNP sets.

*

Trait! Number of added variants 50 k 50 k+
WGS IGR ITR REG SYN NSY RSN RAN
BFT 1000 0.32 0.33 0.33 0.33 0.33 0.33 0.32 0.33 0.32
3000 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.32
5000 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33
10,000 0.33 0.33 0.33 0.33 0.34 0.33 0.33 0.33
CWT 1000 0.33 0.32 0.32 0.33 0.33 0.34 0.34 0.33 0.33
3000 0.31 0.31 0.33 0.33 0.34 0.34 0.34 0.34
5000 0.31 0.31 0.32 0.33 0.34 0.34 0.34 0.34
10,000 0.30 0.31 0.33 0.34 0.34 0.34 0.34 0.34
LMA 1000 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32
3000 0.32 0.32 0.32 0.33 0.32 0.32 0.33 0.32
5000 0.32 0.32 0.32 0.33 0.33 0.33 0.33 0.32
10,000 0.32 0.32 0.32 0.33 0.33 0.33 0.33 0.32
MS 1000 0.40 0.41 0.41 0.41 0.42 0.41 0.41 0.42 0.41
3000 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.41
5000 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.41
10,000 0.42 0.42 0.42 0.43 0.43 0.42 0.43 0.42

Whole-genome sequence (WGS), intergenic (IGR), intron (ITR), regulatory (REG), synonymous (SYN), non-synonymous (NSY), combination of regulatory, synonymous,

non-synonymous (RSN) and randomly selected from WGS (RAN).

" Backfat thickness (BFT), carcass weight (CWT), longissimus muscle area (LMA), and marbling score (MS).

*Standard error of heritability was between 0.015 and 0.018.

LMA while 50 k + IGR, 50 k 4+ ITR, 50 k + REG, or 50 k + RSN
for MS. Meanwhile, 50 k plus the pre-selected variants from
SYN or NSY consistently yielded the lowest prediction accuracy
among the genomic regions.

Figure 2 shows the unbiasedness of genomic prediction
assessed as the regression coefficient of the corrected phenotypes
on GEBV in the validation population. The regression coefficients
for all traits based on the 50 k SNP panel were very close to 1,
ranging from 1.00 to 1.02, which indicates unbiased prediction.
When pre-selected variants were added to the 50 k from any
set of genotypes considered in this study, regression coeflicients
were similar with those of the 50 k set for all traits. Moreover, we
observed that increasing the number of added variants to the 50 k
genotypes did not have a considerable effect on the prediction
bias estimates. These results then suggest that the estimates of
prediction bias were not affected by the strategy used for the
pre-selection of sequence variants.

Genomic Prediction Using Combined
Pre-selected Variants

Since the pre-selected variants differed among traits, we evaluated
the predictive performance by combining such variants from
all traits with 50 k genotypes. We only used the pre-
selected variants from WGS since they improve the prediction
accuracy more than those from a specific genomic region. The
overlapping of pre-selected variants between traits is provided
in Supplementary Figure 1. Figure 3 shows the prediction
accuracy and unbiasedness of using the combined pre-selected
variants from all traits. After the inclusion of 4,000 pre-selected
variants (1,000 variants from each trait) to the 50 k set, the
average prediction accuracy across traits improved by 5.9%. The

prediction accuracy was further increased by including more
variants, but the additional gain was only marginal after the
addition of 12,000 more variants for most traits. Specifically,
the average across traits improvement was 7.5, 8.1, and 8.7%
when 12,000, 20,000, and 40,000 combined pre-selected variants
were added to the 50 k genotypes, respectively. In terms of
prediction bias, the results were similar to those presented above
for 50 k + WGS, where regression coefficients for all traits were
very close to 1.

DISCUSSION

In this study, we investigated the use of variants that were
selected from imputed WGS data with the hope of improving
the predictive performance of regular 50 k SNP panel for carcass
traits in commercial Hanwoo population. We also evaluated
the variants pre-selected based on their functional annotation
information. The heritability estimates, genomic prediction
accuracy, and unbiasedness based on 50 k plus pre-selected
variants from different genomic regions (WGS, IGR, ITR, REG,
SYN, NSY, or RSN) were compared to those of the standard 50 k
genotypes for all traits.

Heritability estimates based on standard 50 k genotypes for
BFT (0.32), LMA (0.32), and MS (0.40) in this study were
in agreement with those observed by Lee et al. (2018) for a
population of 119,545 Hanwoo cattle. On the other hand, the
estimated heritability for CWT was 0.33 in this study and 0.42 in
the work of Lee et al. (2018). High heritability estimates (except
CWT =0.31) were also observed by Mehrban et al. (2019) for BFT
(0.50), LMA (0.44), and MS (0.61) using 5,824 Hanwoo steers.
The observed differences between the heritability estimates in this
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FIGURE 1 | Accuracy of genomic predictions using the 50 k SNP panel with trait-specific pre-selected variants from different genomic regions. The added variants
to the 50 k panel have different densities of 1,000, 3,000, 5,000, or 10,000. The black dashed line indicates the accuracy of prediction using the 50 k SNP panel
only. The traits were backfat thickness (BFT), carcass weight (CWT), longissimus muscle area (LMA), and marbling score (MS). Whole-genome sequence (WGS);
intergenic (IGR); intron (ITR); regulatory (REG); synonymous (SYN); non-synonymous (NSY); combination of regulatory, synonymous, non-synonymous (RSN); and
randomly selected from WGS (RAN).

present and other previous studies might be attributed to factors
such as different number of animals and fixed effects used.

The effect of adding pre-selected SNPs to the 50 k array
on the heritability estimate varied among traits and SNP sets
within traits. According to Jensen et al. (2012), the amount
of additive genetic variance that genomic markers can explain
depends on several aspects such as (1) number of markers on
causative sites, (2) markers in LD with causative genes due to
close “historical” linkage at the population level, and (3) LD
among markers and genes at the family level, due to the family
structure in the population. The slight increase in heritability
estimates of MS after the addition of 10,000 pre-selected SNPs
to the 50 k set could conceivably be due to the potential linkage
of the additional markers to causal variants. This finding is
comparable to a previous study in sheep (Moghaddar et al.,
2019) that also reported a slight increase in heritability when pre-
selected variants were added to the 50 k set. Meanwhile, Raymond
et al. (2018b) reported no increase in heritability estimates after
adding pre-selected SNPs to the 50 k set for stature in dairy

cattle breeds. In case of CW'T, the minimal decrease in heritability
was likely due to those added SNPs (e.g., WGS) that were
more concentrated in some regions as shown in Supplementary
Figure 2B. This is because the estimation of heritability is
primarily driven by (higher) relationships between animals, in
which case markers not distributed across the whole genome
could less precisely capture the family relationships between
individuals. Contrastingly, added SNPs (e.g., SYN or NSY) that
were less concentrated in some regions and distributed across the
whole genome can contribute in estimating heritabilities more
accurately. Raymond et al. (2018b) pointed out that the selected
variants may explain only a small amount of the genetic variation
due to their small effects, but rather can contribute considerably
to genomic prediction.

The prediction accuracy for all carcass traits increases with the
addition of pre-selected SNPs to the 50 k panel. Previous works
have also described that integrating these pre-selected markers
derived from sequence data into a medium (50 k or 80 k) density
panel data can improve the accuracy of genomic prediction
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and randomly selected from WGS (RAN).
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50K + 10,000 = === 50k

(Brondum et al., 2015; Al Kalaldeh et al., 2019; Liu et al., 2019).
Moreover, the additional gain in prediction accuracy also varied
among traits as shown in Figure 1. This is expected due to the
differences in the genetic architecture of each trait, i.e., if a trait
is affected by relatively few QTL (each with a relatively large
effect), using pre-selected SNPs would be more advantageous.
Our previous study (Lopez et al., 2019) showed that CWT is
controlled by few QTLs with large effects, thus benefitting the
most when pre-selected SNPs were used.

Compared to using pre-selected SNPs from specific genomic
regions, utilizing WGS data resulted in higher prediction
accuracy for all traits of Hanwoo cattle. In commercial chicken
population, Morota et al. (2014) also demonstrated that the
predictive performance of the WGS remained more accurate
compared to that of specific genomic regions. However, they used
a different number of markers when comparing those sets of
genotypes that might have affected their predictive performance
results. Contradictory to this, Xu et al. (2020) reported higher
prediction accuracies using functional annotation information
of the gene class (coding regions) with a haplotype-based
model as compared to using all markers for three carcass
traits in Chinese Simmental beef cattle. These discrepancies
with our results can be due to the different methodologies
employed across studies. In this study, we only used the GBLUP
method because this is the routinely applied genetic evaluation
procedure in national and commercial breeding programs of
Hanwoo cattle. However, further work is recommended for
the inclusion of functional annotation data into the genomic

prediction using a more complex model such as the haplotype-
based model.

Comparable with the findings of previous studies (Morota
et al., 2014; Xu et al.,, 2020), some genome regions provided
higher prediction accuracy than the others. Among genomic
regions, pre-selected SNPs from the IGR gave the highest
prediction accuracy for most of the traits. Besides, the prediction
accuracies achieved by IGR were very close to those of
WGS. Contrary to our expectations, selected SNPs from the
coding regions (REG, SYN, or NSY) did not show better
predictive performance over SNPs from other genomic regions.
Heidaritabar et al. (2016) had also found lower prediction
accuracy in commercial chicken population with coding SNPs
SYN compared to the non-coding (IGR) when a similar number
of SNPs were used for prediction. On the other hand, Morota
et al. (2014) revealed that the predictive performance of coding
SNPs for the ultrasound area of breast meat was better than that
of IGR SNPs with IGR being better than the coding regions for
body weight and hen house egg production traits. To further
evaluate the contribution of variants from the IGR in this study,
the functional classifications of pre-selected variants from WGS
were determined. As shown in Figure 4, a high percentage of pre-
selected SNPs were located in the IGR for all traits; specifically,
around 60% of the 10,000 pre-selected SNPs from each trait
were found in this region. With this, explorations should not be
limited to variants within the coding regions alone as non-coding
genomic regions are also equally important as they also affect
some traits of interest (Abdollahi-Arpanahi et al., 2016).
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In this study, prediction bias was assessed as regression
coefficients of corrected phenotypes on GEBV. Results showed
that all regression coefficients were around 1 for any set of

of animals for the discovery set having low genetic relationships
with those in the cross-validation set. Previous work reported
an increased prediction bias due to the overlaps between the
validation and discovery datasets (Veerkamp et al., 2016).

In contrast to other studies (Raymond et al, 2018a;
Moghaddar et al., 2019), we did not set any specific threshold
for the p-value of marker effects for the selection of sequence
variants because setting a specific p-value threshold resulted in
unequal numbers of selected variants between genomic regions,
and a previous study indicated that the density of the SNP panel
influences the accuracy of genomic prediction (Daetwyler et al.,
2010). Instead, we ranked the SNPs based on p value, selected
the top 1,000, 3,000, 5,000, or 10,000 SNPs, and investigated the
optimum number of selected variants to be used. In general,
the prediction accuracy continuously increased as the added
SNPs increased. However, we observed that the additional gain
in prediction accuracy between 3,000 and 5,000 SNPs was very
close for most of the traits. Also, the improvement in prediction
accuracy between 3,000 and 10,000 SNPs was only 0.01 (2%) on
the average. Thus, we conclude that adding at least 3,000 SNPs to
the Hanwoo 50 k SNP panel from each trait is sufficient enough
to improve the prediction accuracy. This was further confirmed
after evaluating the prediction accuracy of the combined pre-
selected variants from whole-genome data from all traits wherein
the prediction accuracies upon the addition of ~12,000 pre-
selected variants (3,000 variants from each trait) were similar
to those of 20,000 or 40,000 pre-selected variants for most of
the traits (Figure 3). Previous studies have demonstrated that
moderate marker density is adequate to accurately estimate the
relationship between animals in the population compared to
higher-density genotypes (Su et al., 2012; VanRaden et al., 2013;
Heidaritabar et al., 2016).

In conclusion, our results indicate that the predictive
performance of the customized Hanwoo 50 k SNP panel can be
improved by integrating highly predictive sequence variants of
3000 SNPs from each trait from the WGS data. A substantial
improvement in the prediction accuracy was observed for CWT
and BFT while only a slight improvement was noted for LMA and
MS, implying that the extra gain in prediction accuracy from the
pre-selected variants appears to be trait-dependent. Moreover,
the strategy in selecting variants based on their functional
annotation did not show any clear advantage compared to
using WGS data. However, further research is recommended for
the inclusion of functional annotation data into the genomic
prediction using a more complex model such as the haplotype-
based model.
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