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Clustering is an efficient way to analyze single-cell RNA sequencing data. It is commonly

used to identify cell types, which can help in understanding cell differentiation processes.

However, different clustering results can be obtained from different single-cell clustering

methods, sometimes including conflicting conclusions, and biologists will often fail to get

the right clustering results and interpret the biological significance. The cluster ensemble

strategy can be an effective solution for the problem. As the graph partitioning-based

clustering methods are good at clustering single-cell, we developed Sc-GPE, a novel

cluster ensemble method combining five single-cell graph partitioning-based clustering

methods. The five methods are SNN-cliq, PhenoGraph, SC3, SSNN-Louvain, and

MPGS-Louvain. In Sc-GPE, a consensus matrix is constructed based on the five

clustering solutions by calculating the probability that the cell pairs are divided into

the same cluster. It solved the problem in the hypergraph-based ensemble approach,

including the different cluster labels that were assigned in the individual clustering

method, and it was difficult to find the corresponding cluster labels across all methods.

Then, to distinguish the different importance of each method in a clustering ensemble, a

weighted consensus matrix was constructed by designing an importance score strategy.

Finally, hierarchical clustering was performed on the weighted consensusmatrix to cluster

cells. To evaluate the performance, we compared Sc-GPE with the individual clustering

methods and the state-of-the-art SAME-clustering on 12 single-cell RNA-seq datasets.

The results show that Sc-GPE obtained the best average performance, and achieved

the highest NMI and ARI value in five datasets.

Keywords: single-cell clustering, cluster ensemble, consensus matrix, importance score, graph partitioning

INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) data measures the gene expression level in individual
cells instead of the average gene expression level in bulk RNA-seq cells (Stuart and Satija,
2019). So, it has advantages in accurately identifying the transcriptomic signatures for cell
types (Grün et al., 2015). Along with the rapid development of scRNA-seq technologies,
the cost of sequencing is reduced, and larger datasets are generated, carrying a higher
error rate (Vitak et al., 2017). The development brought some computational challenges
(Kiselev et al., 2019; Zhu et al., 2019a), for example, (1) high noise. The drop-out
rate from reverse transcription failure and sequencing depth would reach 80% (Soneson
and Robinson, 2018; Andrews and Hemberg, 2019); (2) high dimension. The dimension
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usually exceeds 10,000, making it difficult to measure the
similarity of cell pairs; (3) larger sample size. The sample size
increases from dozens to hundreds of thousands, which raises
the time and complexity involved in identifying cell types (Grun,
2020).

Clustering is an efficient way of analyzing scRNA-seq data
to identify novel cell types, and some single-cell clustering
methods are proposed (Xu et al., 2019; Yip et al., 2019). However,
it can be observed that the clustering results from various
clustering methods are different in the number of clusters and
cell assignments. Meanwhile, no method performs best on all
scRNA-seq datasets. The reason is that the existing methods
focus on a different step in identifying cell types, including
data denoising (Wang et al., 2018), dimensionality reduction
(Wang and Gu, 2018; Becht et al., 2019), similarity measurement
(Kim et al., 2019) and clustering (Qi et al., 2019; Zhu et al.,
2019b). Notably, the similarity measurement plays an important
role in identifying cell types. Some graph partitioning-based
clustering methods achieved better performance for the accurate
similarity measurement. For example, SNN-cliq (Xu and Su,
2015) constructed a weighted shared nearest neighbor (SNN)
graph; and clustered cells by partitioning the cliques on the
graph. PhenoGraph (Levine et al., 2015) performed another
weighted strategy to generate an SNN graph; and partitioned
the graph using the Louvain community detection method.
SSNN-Louvain (Zhu et al., 2020) integrated the structural
information to construct a structural SNN graph; and clustered
cells by modifying the Louvain community detection method.
The cells are sorted as per their importance in the initialization
step of Louvain community detection method. MPGS-Louvain
(Zhu et al., 2019c) constructed a novel global and path-based
similarity graph, and also partitioned it using a modified Louvain
community detection method. Therefore, it is a challenge to
enhance the accuracy of clustering by combining more efficient
clustering information in multiple views.

An increasing number of research shows that the cluster
ensemble method is a good idea, which integrates the
information of each clustering method in a different view
(Kuncheva and Vetrov, 2006; Vega-Pons and Ruiz-Shulcloper,
2011; Liu et al., 2019). ISSCE (Yu et al., 2016) designed a
clustering ensemble strategy to cluster high dimensional data,
including three steps: firstly, the incremental approach was
implemented to select clustering members; secondly, the random
subspace division was applied to handle high dimensional
data; finally, the constraint propagation method was used to
integrate prior knowledge. Recently, some cluster ensemble
methods for scRNA-seq data have been proposed. SC3 (Kiselev
et al., 2017) ensembled several clustering results from k-means
algorithm into a consensus matrix; and clustered cells using
hierarchical clustering (HC). SAFE-clustering (Yang et al., 2019)
implemented a hypergraph-based strategy to ensemble CIDR,
Seurat, tSNE, and SC3 to construct a consensus matrix. k-means
was used to cluster cells. They also proposed the SAME-clustering
(Huh et al., 2020) methods by using a consensus matrix-based
strategy to ensemble the same four clustering methods and
combining the Expectation-Maximization algorithm to cluster
cells. We find that these cluster ensemble methods are based

on hypergraph-based or voting-based integrated learning and
do not consider the different importance of the individual
clustering method.

According to the principle that the minority is subordinate
to the majority, we assume that the more consistent the cluster
labels predicted by different clustering methods are, the more
accurate they will be. That is, the individual clustering method
with a higher similarity to others would be more important in the
cluster ensemble strategy. Base on this assumption, we propose a
novel graph partitioning-based ensemble method for single-cell
clustering (Sc-GPE), integrating SNN-cliq, PhenoGraph, SSNN-
Louvain, MPGS-Louvain, and SC3 by a weighted voting-based
method. To measure the importance of the individual clustering
method, we design a scoring strategy based on the adjusted
rand index (ARI) (Hubert and Arabie, 1985). Then we construct
a weighted consensus matrix, the weight is a score of the
importance of each method. Finally, HC is performed to cluster
cells. To prove the performance, Sc-GPE is compared to the
five original clustering methods and the state-of-the-art cluster
ensemble method “SAME-clustering.” The results demonstrate
that Sc-GPE outperforms other methods.

MATERIALS AND METHODS

According to the analysis above, we can find that integrating
multiple clustering results would merge more information in
different views. Moreover, different clustering methods play
different roles in integration. Inspired by these ideas, we propose
the Sc-GPE method by ensembling five graph partitioning-
based clustering methods which are SNN-cliq, PhenoGraph,
SSNN-Louvan, MPGS-Louvain, and SC3. The main reasons
for choosing the five clustering methods are as follows: firstly,
the first four clustering methods are graph partitioning-based
methods, and the last one is the consensus matrix-based method.
Their good performance provides the basis to improve the
accuracy of the cluster ensemble. Secondly, in the five clustering
methods, different strategies of similarity graph construction and
graph partitioning have been implemented, respectively. They
would enhance the generalization ability of clustering. Sc-GPE
has three following advantages: (1) it does not need to deal
with the problem of different cluster labels from different cluster
methods, so it is suitable for unsupervised clustering lacking the
true cluster labels; (2) It is easy to implement since no special
parameters need to be adjusted; (3) The weighted strategy is
comprehensible and effective.

Sc-GPE
In Sc-GPE, a gene expression matrix with m rows (genes) and n
columns (cells) is the input of the five clustering methods. The
five clustering results sets are achieved and ensembled into a
consensus matrix with n rows (cells) and n columns (cells). Then,
based on the consensus matrix, a weighted consensus matrix
is constructed by measuring the importance of the individual
clustering method. That is, the voting strategy in the original
consensus matrix is replaced as a weighted voting strategy, and
the weight is determined according to the similarity of the
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FIGURE 1 | The overview of the Sc-GPE method. (A) The gene expression matrix is input; (B) five individual clustering methods are performed to generate five

clustering solutions; (C) the original consensus matrix is constructed; (D) the weighted consensus matrix is produced by measuring the importance of the individual

clustering methods; (E) HC clustering is performed.

clustering result pairs. The overview of Sc-GPE method is shown
in Figure 1.

Cells are defined as set C= {c1, . . . , cn}, where n is the number
of cells. Let k be the number of individual clustering methods,
the clustering results set is defined as R= {R1, . . . , Rk}. So, in the
k clustering methods, the i-th cell ci is assigned to k predicted
cluster labels, denoted as R(ci)= {R1(ci), . . . , R

k(ci)}. The detail of
Sc-GPE is described as follows.

Firstly, the original consensus matrix is constructed. The
consensus matrix Ix,y is calculated based on Equations (1) and
(2). In Equations (1) and (2), when the cell cx and cell cy are
assigned into the same cluster in the l-th method, the value
of δ(Rl(cx),R

l(cy)) is equal to 1, otherwise is 0. The element
of the consensus matrix presents the probability of cell pairs
divided into the same cluster by each method. For example,
when k is 5, the element of the consensus matrix Ix,y equals the

sum of δ(Rl(cx),R
l(cy)) in the five methods multiplying by the

same weight 1/5. Because this represents the probability of the
occurrence of cell pairs in the same cluster, this strategy does not
need to solve the problem that each cell achieves different cluster
labels from the individual clustering methods.

Ix,y =
1

k

k
∑

l=1

δ(Rl(cx),R
l(cy)) (1)

δ(X,Y) =

{

0, if X 6= Y
1, if X = Y ,

(2)

where cx and cy are cell pairs in cells set C. k is the number of

individual clustering methods. Rl is the clustering results in the
l-th method.
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Next, based on the assumption that the more consistent
cluster labels predicted by all the clustering methods are more
accurate, we design an importance score of the individual
clustering methods. As ARI is a popular index for measuring the
consensus of two clustering solutions, we use ARI to measure the
importance of the individual clustering method. The importance
score is defined as Equations (3) and (4). In Equations (3) and
(4), ωl denotes the importance of the l-th clustering method in all
kmethods. rl represents the similarity between the l-th clustering
method and other methods, which is calculated by averaging the
ARI between predicted clusters in the l-th clustering method and
the ones in each of the other methods.

ωl =
rl
k

∑

j=1
rj

(3)

rl =
1

k− 1

k
∑

j=1,j 6=l

ARI(Rl,Rj), (4)

where ωl is the importance score of the l-th clustering method.
rl is the average of ARI between predicted clusters from the l-th
method and other methods, and k is the number of individual
clustering methods.

Then, the weighted consensus matrix is constructed by
introducing the importance score of the individual clustering
method to the original consensus matrix. The weighted
consensus matrix Ix,y’ is defined as Equation (5). In Equation
(5), the weighted consensusmatrix Ix,y’ multiplies the importance
score ωl of the individual clustering methods, instead of the
constant 1/k in the original consensus matrix.

Ix,y
′

=

k
∑

l=1

ωl × δ(Rl(cx),R
l(cy)), (5)

Finally, the HC method is performed to cluster cells on the
weighted consensus matrix.

Evaluation Indices
We use two popular indices to evaluate the performance of
clustering methods, including Normalized Mutual Information
(NMI) (Estévez et al., 2009) and Adjusted Rand Index (ARI)
(Hubert and Arabie, 1985). The two criteria are statistic-based
indicators, showing the consensus of the predicted labels and the
true ones in different views. NMI demonstrates the difference by
calculating Mutual Information and Entropy between the two
clustering solutions, with the range of values from 0 to 1. ARI
presents the probability that a data pair will appear in the same
cluster in the true clusters and the predicted clusters, with the
range of values from −1 to 1. The higher the NMI or ARI value
obtained, the better performance the method has.

NMI(P,Q) = 2
I(P;Q)

H(P)+H(Q)
, (6)

where I(P; Q) is the mutual information between P and Q. H(P)
and H(Q) is the entropy of P and Q, respectively.

ARI =

∑

i,j

(

nij
2

)

−

[

∑

i

(

ai
2

)

∑

j

(

bj
2

)

]/

(

n

2

)

1
2

[

∑

i

(

ai
2

)

+
∑

j

(

bj
2

)

]

−

[

∑

i

(

ai
2

)

∑

j

(

bj
2

)

]/

(

n

2

)

,

(7)

where n is the number of cells. In the contingency table resulting
from the overlap between true clusters and predicted ones,
nij is the element in the i-th row and the j-th column, ai is
the summation of the elements in the i-th row, and bj is the
summation of the elements in the j-th column.

Datasets
We collected 12 published scRNA-seq datasets. Generally,
they serve as gold standard datasets with true labels. They
are available from Gene Expression Omnibus (GEO) and
European Bioinformatics Institute (EMBL-EBI), respectively.
These datasets have been normalized to various units, such as
Transcripts Per Million reads (TPM), Fragments Per Kilobase of

TABLE 1 | The detail of scRNA-seq datasets.

Accessed ID Datasets Data unit #Cells #Genes #Cell types References

GSE38495 Ramskold RPKM 33 21042 7 Ramsköld et al., 2012

GSE57249 Biase FPKM 49 25384 3 Biase et al., 2014

GSE36552 Yan RPKM 90 20214 6 Yan et al., 2013

E-MTAB-3321 Goolam RPM 124 40315 5 Goolam et al., 2016

GSE70657 Grover RPKM 135 15158 2 Grover et al., 2016

GSE70605 Liu RPKM 145 18855 25 Liu et al., 2016

GSE51372 Ting RPM 187 21583 7 Ting et al., 2014

GSE85908 Yeo TPM 214 27473 4 Song et al., 2017

E-MTAB-2805 Pollen TPM 249 6982 11 Pollen et al., 2014

GSE45719 Deng RPKM 259 22147 10 Deng et al., 2014

GSE52529 Trapnell FPKM 372 35988 4 Trapnell et al., 2014

GSE67835 Darmanis CPM 466 22085 9 Darmanis et al., 2015
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transcript per Million fragments mapped (FPKM), and Reads Per
Kilobase per Million mapped reads (RPKM), etc. The details of
the datasets are presented in Table 1.

EXPERIMENTS AND RESULTS

Implementation of the Five Clustering
Methods
For optimal performance, we performed the five clustering
methods with the default parameters in the references. The details
of the parameters are described as follows.

For SNN-cliq, the nearest neighbor parameter k is set to 3;
the connectivity parameter of quasi-cliques r is set to 0.7; the
threshold of the overlap of quasi-cliquesm is set to 0.5.

For PhenoGraph, the surface marker expression data is
normalized based on dividing by the maximum values. To
construct the SNN graph, the nearest neighbor parameter k is set
to 50.

For SC3, the log-transformed normalized log2(x+1)
is performed.

For SSNN-Louvain and MPGS-Louvain, SIMLR is performed
with the default parameters in the initial similarity measurement
step. The width parameter of the Gaussian kernel function
σ is set to 1.0, 1.25, 1.5, 1.75, and 2. The nearest neighbor
parameter k is set to 10, 12, 14. . . 30. (σ , k) pair resulting
in 55 Gaussian kernels. In SSNN-Louvain, to construct the
structural SNN graph, the nearest neighbor parameter k is
set to 0.1n (n is the number of nodes). In MPGS-Louvain,

FIGURE 2 | The similarity of the individual clustering methods. (A) Liu dataset; (B) Ramskold dataset; (C) Yan dataset; (D) Yeo dataset.
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the path length l is set to 2 for high performance and low
time complexity.

Furthermore, in SNN-cliq, PhenoGraph, SSNN-Louvain,
and MPGS-Louvain, the number of categories can be
automatically estimated by using quasi-clique partition
or Louvain community detection, without a priori
true categories.

Similarity Measurement of the Individual
Clustering Methods
To analyze the difference of predicted results between the
individual clustering methods, we calculate the ARI between the
different clustering results and provide the consensus matrix
heatmap. We select four scRNA-seq datasets: Ramskold, Yan,
Yeo, and Liu, in which the Ramskold dataset is easy to partition

FIGURE 3 | The performance of Sc-GPE, MPGS-Louvain, SSNN-Louvain, SSNN-cliq, PhenoGraph, and SC3. (A) NMI; (B) ARI.
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while the Liu dataset is hard to cluster. The first three datasets
have a smaller number of true categories from four to seven, and
the latter dataset has the true categories 25. The heatmaps are
shown in Figure 2.

From Figure 2, it is observed that some faint similarity exists
among the solutions of the individual clustering methods, which
is consistent with the results from Yang et al. (2019). In different
datasets, the similarities between the results of the individual
clustering methods vary. For example, SSNN-Louvain shows
relatively high similarity with SC3 and PhenoGraph on the Liu

dataset. MPGS-Louvain shows a higher similarity than other
clustering methods to the Ramskold dataset. SC3 is observed in
the high similar to PhenoGraph on the Yan dataset. SNN-cliq
shows a low similarity with other methods on the Yeo dataset.
The difference between SC3 and PhenoGraph varies greatly in
different datasets. The similarity between SC3 and PhenoGraph is
close to one on the Yan and Yeo datasets, but the opposite results
are achieved on the Liu and Ramskold datasets.

Furthermore, we can observe big differences between SNN-
cliq and SC3, PhenoGraph on the four datasets. Therefore, we can

TABLE 2 | The comparison of the number of clusters from seven methods.

Datasets Sc-GPE MPGS-Louvain SSNN-Louvain SNN-cliq PhonoGraph SC3 SAME-clustering

Ramskold 7 3 8 7 2 2 2

Biase 3 3 4 6 2 3 3

Yan 6 6 8 18 3 3 3

Goolam 5 5 6 25 4 2 3

Grover 2 2 3 12 3 3 2

Liu 25 15 7 26 3 6 4

Ting 7 8 7 21 5 11 4

Yeo 4 5 3 28 3 5 3

Pollen 11 11 7 9 7 11 NA*

Deng 10 10 7 43 6 6 5

Trapnell 4 5 6 56 6 10 4

Darmanis 9 8 5 38 6 12 5

*SAME-Clustering method achieves NA on the Pollen dataset for that the clustering member Seurat in SAME-Clustering failed to run on this dataset.

FIGURE 4 | The box plot of performance for the seven methods. (A) NMI; (B) ARI.
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find that different clustering methods would capture information
about scRNA-seq data from different perspectives.

Comparisons With the Individual
Clustering Methods and SAME-Clustering
To test the performance of our proposed Sc-GPE method, we
compare it with both the five clustering methods and the state-
of-the-art clustering ensemble algorithm SAME-clustering on
12 scRNA-seq datasets in terms of NMI and ARI. The results
are shown in Figure 3. SAME-Clustering achieves the NA value
of NMI and ARI on the Pollen dataset, because the clustering
member Seurat in SAME-Clustering failed to run on this dataset.

From the experimental results, Sc-GPE achieves the highest
average of NMI and ARI in all methods. Sc-GPE outperforms
the six methods on five scRNA-seq datasets: Yan, Grover, Liu,
Yeo, and Ramskold, while SC3 achieves the best performance on
five scRNA-seq datasets: Biase, Deng, Pollen, Ting, and Goolam.
The averages of NMI and ARI obtained by Sc-GPE are 6.92 and
17.79% higher than those of SC3, respectively. SAME-Clustering
works best on three datasets: Biase, Darmanis, and Trapnell. The
averages of NMI and ARI obtained by Sc-GPE are 21.84 and
20.19% higher than those of SAME-clustering, respectively. A
large difference in clustering performance can be observed on the
Grover, Liu, and Goolam datasets. The results show that Sc-GPE
performs well and outperforms other methods.

Moreover, we compare the number of clusters in the seven
methods, shown in Table 2. It can be observed that the number
of predicted clusters has an obvious influence on the clustering
solutions. For example, the clustering number of SNN-cliq and
PhonoGraph is quite different from that of other methods, which
is in consensus with their relatively poor performance on most
datasets. SNN-cliq achieves the clustering numbers commonly
more than the true categories except for the pollen dataset,
PhonoGraph is just the opposite.

To further demonstrate the performance of Sc-GPE, we
provide a box plot of the sevenmethods for 12 datasets, measured
by NMI and ARI, shown in Figure 4. The box plot clearly shows
that Sc-GPE outperforms the other six methods. The worse ARI
value of 0.249 in Sc-GPE is from the Trapnell dataset, where
some cells are misallocated resulting from two poor clustering
solutions. SNN-cliq achieves the worst results in terms of ARI,
and PhenoGraph performs worst on the NMI.

CONCLUSIONS

Currently, various single-cell clustering algorithms have been
proposed with the advantage of accurately representing cell
heterogeneity. However, there is a problem that the predicted
cluster results from different clustering methods are quite
different, which would limit the generalization capabilities.
Combining the information from different cluster results would
be a good resolution to improve the performance of clustering.

So, we propose a novel cluster ensemble method Sc-GPE, which
integrating five clustering methods: SNN-cliq, PhenoGraph,
SSNN-Louvain, MPGS-Louvain, and SC3.

In Sc-GPE, a consensus matrix-based ensemble model
is performed. It is a good statistics approach that can
solve the problem of the different cluster labels generated
in the individual clustering methods making it difficult to
determine the correspondence cluster labels across all methods,
which usually exists in the hypergraph-based cluster ensemble
method. Furthermore, a weighted strategy is designed to
measure the importance of individual clustering methods
according to the similarity with other methods. A weighted
consensus matrix is constructed based on the weighted
strategy, which can distinguish the role of the individual
clustering methods.

Sc-GPE provides close-to-the-best clustering solutions
by combing the clustering methods that perform various
similarity measurements and graph partitioning algorithms.
The experimental results from twelve scRNA-seq datasets show
that Sc-GPE outperforms the five individual clustering methods
and state-of-the-art SAME-clustering method. However, the
relatively small number of individual clustering methods may
provide insufficient information and limit the performance of the
Sc-GPE, and how to choose more optimal individual clustering
methods should be researched in future work.
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