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Cancer, which refers to abnormal cell proliferative diseases with systematic pathogenic
potential, is one of the leading threats to human health. The final causes for
patients’ deaths are usually cancer recurrence, metastasis, and drug resistance
against continuing therapy. Epithelial-to-mesenchymal transition (EMT), which is the
transformation of tumor cells (TCs), is a prerequisite for pathogenic cancer recurrence,
metastasis, and drug resistance. Conventional biomarkers can only define and
recognize large tissues with obvious EMT markers but cannot accurately monitor
detailed EMT processes. In this study, a systematic workflow was established integrating
effective feature selection, multiple machine learning models [Random forest (RF),
Support vector machine (SVM)], rule learning, and functional enrichment analyses to find
new biomarkers and their functional implications for distinguishing single-cell isolated
TCs with unique epithelial or mesenchymal markers using public single-cell expression
profiling. Our discovered signatures may provide an effective and precise transcriptomic
reference to monitor EMT progression at the single-cell level and contribute to the
exploration of detailed tumorigenesis mechanisms during EMT.

Keywords: gene signature, expression pattern, epithelial-to-mesenchymal transition, single cell, classification

INTRODUCTION

Cancer, which refers to abnormal cell proliferative diseases with systematic pathogenic potentials,
is one of the leading threats to human health in the 21st century (McGuire, 2016). According
to the statistics provided by the World Health Organization (WHO) and the Cancer Research
United Kingdom organization, approximately 10 million people around the world died due to
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cancer in 2018, and 17 million people were diagnosed with
cancer (McGuire, 2016). More than 20% (approximately four
million) of these patients are diagnosed in China (McGuire, 2016;
Yao et al., 2017). More than 10,000 people are diagnosed with
cancer every day, implying the serious harm of cancer worldwide,
especially in China.

Although cancer has been widely regarded as a deadly disease,
patients with only primary sites can survive for a long time under
tumor-burdening conditions (Barbaric et al., 2010; Huang et al.,
2017; DeTroye et al., 2018). The final causes of patient death are
usually cancer recurrence, metastasis, and drug resistance against
continuing therapy (Fidler, 2003). Under these circumstances,
the rate of tumor progression could be accelerated dramatically
due to systematic pathogenic influences; no drugs can be used
to control such malignant proliferative disease, which may lead
to death. Epithelial-to-mesenchymal transition (EMT), which is
the major transformation of tumor cells (TCs), is the prerequisite
for pathogenic cancer recurrence, metastasis, and drug resistance;
and EMT is one of the most significant cancer behaviors
during pathogenesis (Rokavec et al., 2014; Chaffer et al., 2016;
Shibue and Weinberg, 2017).

Early in the 1980s, EMT was recognized and confirmed to
be a typical biological cellular transformation in embryogenesis
but not in tumorigenesis (Kong et al., 2011; Das et al.,
2019). EMT has been regarded as a specific biological
progression for differentiation of multiple tissue subtypes, whose
reverse progression is also known as mesenchymal-to-epithelial
transformation (MET) (Das et al., 2019). In 2000, EMT was
first confirmed to participate in cancer invasion and metastasis
progression (Hanahan and Weinberg, 2000). EMT is one of the
most substantially prerequisite for the formation of circulating
TCs in the bloodstream, revealing the specific role of EMT
during metastasis (Chaffer and Weinberg, 2011). In 2007, another
independent study confirmed that EMT is involved in drug
resistance against paclitaxel in ovarian carcinoma epithelial cell
lines (Kajiyama et al., 2007), thereby validating the specific
role of EMT during different stages of tumorigenesis. At
present, EMT has been gradually confirmed to be a unique
biological process that plays different functional roles during
different tumorigeneses.

Epithelial-to-mesenchymal transition progression has
been precisely regulated by various genes on different levels;
scholars have attempted to identify the biomarkers of epithelial
and mesenchymal TCs for a long time. According to recent
publications, various biomarkers for monitoring EMT
has already been identified including: cell-surface proteins:
N-cadherin, cytoskeletal markers: FSP1 and α-SMA, extracellular
matrix proteins: α1(I,III) collagens, transcription factors: Snail1
and Snail2, and nuclear markers: β-catenin. In 2015, researchers
from Shanghai Jiao Tong University have confirmed that
N-cadherin is a novel prognostic biomarker to monitor the EMT
progression of colorectal cancer (Yan et al., 2015). Similarly,
in 2018, another group of researchers from Nanjing, China
further validated that N-cadherin may also be a biomarker for
EMT in laryngeal squamous cell carcinoma (Zhu et al., 2018).
Therefore, reported in multiple cancer subtypes, N-cadherin is
definitely an effective biomarker for EMT monitoring. As for

FSP1, early in 1997, researchers confirmed the specific role of
FSP1 for triggering EMT at its early stage, implying FSP1 as an
effective biomarker for EMT (Okada et al., 1997). As for α-SMA,
in 2017, a systematic summary of EMT during pancreatic
cancer tumorigenesis revealed the specific role of α-SMA for
epithelial to mesenchymal transformations (Aiello et al., 2017).
For the extracellular matrix proteins, collagens like α1(I,III)
collagens have been reported to participate in the epithelial to
mesenchymal transformations during renal fibrosis (Zeisberg
et al., 2001) and squamous cell carcinoma (Scanlon et al.,
2013). Transcription factors: Snail1 and Snail2 have also been
reported to directly regulate E-cadherin related pathways, further
participating in epithelial to mesenchymal transformation. Apart
from that, nuclear markers, such as β-catenin (Gu et al., 2016),
have also been systematically identified to be associated with
EMT. Conventional studies focused on tumor EMT progression
on the whole tissue level. However, tissues comprise various cell
types, including epithelial and mesenchymal cells. Therefore,
such biomarkers can only define and recognize large tissues
with obvious EMT markers but cannot accurately monitor the
detailed EMT processes. With the development of single-cell
sequencing techniques, gene expression profiling at single-cell
resolution can be easily obtained. A previous study (Kiemer
et al., 2001) used a spontaneous cancer model to monitor EMT
progression. YFP + Epcam+ TCs are defined as epithelial-like
cells, and YFP+ Epcam- TCs are defined as mesenchymal-like
cells. In this study, we performed single-cell RNA sequencing on
these single cells and revealed their detailed expression profiling
to construct an expression profiling atlas for EMT progression at
the single-cell level.

In this study, using such public expression profiling data
and our newly constructed computational methods, we firstly
detected the typical expression patterns of epithelial and
mesenchymal TCs. We then identified signatures that can
distinguish two cell groups at the single-cell transcriptomic level.
In contrast to previous studies focusing on tissue characteristics,
we precisely identified new signatures for distinguishing single-
cell isolated TCs with unique epithelial or mesenchymal markers.
Therefore, our discovered gene signatures may provide an
effective and precise transcriptomic reference to monitor EMT
progression at the single-cell level. Results contribute to the
exploration of detailed tumorigenesis mechanisms during EMT.

MATERIALS AND METHODS

Dataset
We obtained the mouse single-cell gene expression profiles of
71 epithelial YFP + Epcam + skin squamous cell carcinoma
TCs and 312 mesenchymal-like YFP + Epcam − skin squamous
cell carcinoma TCs from the study of Pastushenko et al.
(2018) at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE110357. Epithelial YFP + Epcam + TCs and mesenchymal-
like YFP + Epcam − TCs represent different EMT states. Each
TC was encoded with the expression levels of 49,585 genes.
Expression differences may reveal the cascade mechanisms of
tumor migration and invasion.
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Feature Selection
Feature selection aims to obtain specific features (i.e., gene
signatures) for distinguishing epithelial TCs from mesenchymal
TCs by using single-cell data. In this study, we used Boruta
feature selection and minimum redundancy maximum relevance
(mRMR) method (Peng et al., 2005) to evaluate the importance
of each feature. We then selected key features, which were fed
into the incremental feature selection (IFS) (Zhang et al., 2016;
Lei et al., 2018; Li and Huang, 2018; Zhang et al., 2018; Chen
et al., 2019; Li et al., 2019; Pan et al., 2019) with supervised
classifiers to identify the optimal gene signatures for screening
different TCs.

Boruta Feature Selection
Boruta feature selection (Kursa and Rudnicki, 2010) is a wrapper
method based on random forest (RF) for detection of all relevant
features associated with target outputs. This method iteratively
identifies relevant features by comparing the importance scores
of real and shuffled features. Boruta first copies the training
dataset and shuffles the values of individual features, in which
the new dataset is called shuffled dataset. A RF classifier is
trained on this shuffled dataset, and the importance score for
each feature is calculated. Boruta evaluates the importance score
of individual features in the original training dataset and keeps
the real features with remarkably higher importance scores than
shuffled features. After multiple iterations, Boruta finally selects
all the relevant features, and these features are further analyzed
by the mRMR method.

Minimum Redundancy and Maximum Relevance
To select a refined feature set with good classification effects,
mRMR (Peng et al., 2005) tries to balance the relevance
between feature and target and the redundancy between
features.

Considering that the features can be highly correlated, the
combination of individual good features does not increase the
classifier performance, leading to the redundancy of features.
The solution proposed by mRMR involves measurement
of feature correlation and resolve the redundancy between
features. mRMR can maximize the correlation between
features and target variable (maximum relevance), while
minimizing the correlation between features (minimum
redundancy). Mutual information (MI) is utilized to evaluate the
correlation between features or target variable, and it is defined
as follows:

I(x, y) =
x

p(x, y) log
p(x, y)

p(x)p(y)
dxdy (1)

where the marginal probabilistic density of x and y is defined as
p(x) and p(y), and the joint probabilistic density of x and y is
represented by p(x, y). Accordingly, a ranked feature list obeying
the criteria of mRMR can be constructed. In detail, several
selection rounds are performed. Each round selects a feature
with maximum correlation to target variable and minimum
correlation to already-selected features. The ranked feature list
sorts features according to their selection orders.

Incremental Feature Selection
Incremental feature selection is a feature selection method with a
supervised classifier to detect optimal features, which are used to
accurately distinguish the class labels corresponding to different
samples (Cai et al., 2012; Zhang et al., 2015; Zhou et al., 2016;
Chen et al., 2017a,b). To perform IFS in the above mRNR-ranked
feature list, we first created a series of feature subsets by iteratively
adding top-ranked features into the candidate feature subsets and
then testing all feature subsets by building their classifiers. The
subset of features with the optimal classification performance was
finally obtained.

Classification Learning
Support Vector Machine
Support vector machine (SVM) is a supervised learning
algorithm based on statistical learning theory. It uses kernel
techniques to map data from low-dimensional non-linear space
to high-dimensional linear space, and then fits linear functions
for new data in such high-dimensional space. The SVM infers
the hyperplane with the largest margin between the two classes
of samples. In this study, we used the sequence minimization
optimization (SMO) algorithm to train the SVM, and the popular
machine learning algorithm software, Weka, was employed for
the classifier “SMO.”

Random Forest
Random forest is a supervised classifier constructed by a large
number of decision trees, and it is mainly used to establish
a classification prediction model and has been widely used in
biological data (Pan et al., 2010). By summarizing votes from
different decision trees, tree classifiers in the RF can determine
their output categories, although each decision tree might
have some differences from other decision trees. Considering
the overfitting problem, the average prediction values of all
decision trees are applied to avoid over-learning, which can
reduce the prediction variance although it slightly increases the
prediction bias.

Rule Learning
In this study, repeated incremental pruning to produce error
reduction (RIPPER) was applied to produce classification rules
for classifying samples from different TCs, where RIPPER can
learn interpretable classification (e.g., IF-ELSE rules) for making
prediction on new data.

SMOTE
As mentioned in section “Dataset,” the abundance of
mesenchymal TCs is much more than the epithelial TCs by
approximately 4.4 times. Results indicated that the dataset
consisting of these cells was imbalanced. When building
the classifier, we used the synthetic minority over-sampling
technique (SMOTE) to tackle this problem. This method
generates new samples and pours them into the minor class.
In detail, one sample, say x, is randomly selected from the
minor class, its Euclid distance to other samples in this class
is calculated, and the k nearest neighbors are selected. Then,
one neighbor, say y, is randomly selected. A new sample is
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produced by the linear combination of x and y. After generating
a predefined number of samples, the size of minor class can
be equal to that of major class. In this study, we used the tool
“SMOTE” in Weka to generate new samples and poured them
into the class of epithelial TC. Finally, the numbers of epithelial
tumor and mesenchymal TCs are equal.

Performance Measurement
To estimate the performance measurement, we employed
Matthew’s correlation coefficient (MCC), which is calculated by
the discretization of binary variable. In the application of 10-
fold cross-validation, the MCC formula used to evaluate the
performance of the training model is as follows:

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(2)

where TP and FP represent the number of true-positive and false-
positive predictions, respectively. TN represents the number of
true-negative predictions, and FN represents the number of false-
negative predictions.

Functional Enrichment Analyses
For systematically investigate the set of genes that separate
epithelial and mesenchymal cell status, we performed functional
enrichment analyses (gene ontology enrichment analyses and

KEGG pathway enrichment analyses) for the optimal predicted
genes (237 genes obtained by optimal feature selection)
using DAVID website1. The threshold for Benjamini–Hochberg
adjusted p-value (FDR) was set at 0.05.

RESULTS

In this study, we first used Boruta to select relevant features,
resulting in 237 features, which are listed in Supplementary
File 1. The 237 remaining features were used as input
into the mRMR method to generate a ranked feature list
(Supplementary File 1).

We then ran the IFS with SVM, RIPPER, and RF, respectively,
on the generated candidate subset of features in terms of the
feature list to determine the optimal features for classifying
different TCs (Figure 1). As shown in Table 1 and Figure 2,
SVM yielded the largest MCC value of 0.967. For RF, the largest
MCC value obtained was 0.934. If we used IFS with RIPPER,
we could obtain the largest MCC value of 0.942. Hence, SVM
exhibits the best performance. However, SVM and RF are “black-
box” methods. Although RIPPERT yields a slightly lower MCC
than SVM, it can generate the interpretable classification rules.

1https://david.ncifcrf.gov/

FIGURE 1 | Flow chart of computational analysis. A systematic workflow integrating feature selection, machine learning models, and rule learning was applied to
identify potential biomarkers for distinguishing single-cell isolated tumor cells (TCs). Optimal classifiers, genes and rules were identified based on the performance of
different machine learning, rule learning models and the importance of features in each model.
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TABLE 1 | Performance of incremental feature selection (IFS) with support vector
machine (SVM), random forest (RF), and repeated incremental pruning to produce
error reduction (RIPPER) for classifying different tumor cells.

Classifier Number of features SN SP ACC MCC

SVM 169 1.000 0.987 0.990 0.967

RF 159 0.986 0.978 0.979 0.934

RIPPER 38 0.986 0.981 0.982 0.942

The performance corresponding to individual feature subsets by
different classifiers is provided in Supplementary File 2.

As previously mentioned, although the classification rules
generated by RIPPER provide lower performance than the two
other classifiers, these rules can provide more interpretable
information. By checking the trend of MCC yielded by the IFS
with RIPPER, when the top eight features are used, the rules
yielded by RIPPER can result in a satisfactory MCC of 0.908,
which is only 3.4% lower than the best MCC of RIPPER. Thus, we
used these eight features to generate rules by using RIPPER, thus
obtaining three classification rules, which are listed in Table 2.

For functional enrichment analyses, we found multiple
GO terms and KEGG pathways like GO:0007155 (cell
adhesion), GO:0005576 (extracellular region), and ECM-
receptor interaction (KEGG pathways). Complete results for
functional enrichment analyses were shown in Tables 3–6.

DISCUSSION

As previously mentioned, by using our newly presented
computational approaches, we screened out a group of
effective genes and their expression rules that can distinguish

epithelial and mesenchymal TCs at the single-cell transcriptomic
level. Such optimal genes and rules have already been
validated by recent publications, and their detailed analyses are
summarized below.

Optimal Genes for EMT Cell Clustering
The first identified gene in our prediction list was Vim
(ENSMUSG00000026728). It is a protein-coding gene
that participates in cellular signaling transduction and cell
proliferation (Pekny et al., 1999; Malanchi et al., 2011). For its
specific role in distinguishing epithelial and mesenchymal cells,
a specific study published in 2015 reported that the expression
level of our predicted gene, Vim, is significantly upregulated after
EMT processes (Fischer et al., 2015). Therefore, epithelial and
mesenchymal TCs may have quite different expression levels
of such gene, corresponding with our prediction. Moreover,
this gene is a biomarker of EMT (Seton-Rogers, 2016; Wang
et al., 2016), thereby validating its specific expression pattern in
epithelial and mesenchymal cells.

Another predicted gene, namely, Bgn
(ENSMUSG00000031375), is differentially expressed before

TABLE 2 | Three classification rules learned by repeated incremental pruning to
produce error reduction (RIPPER).

Index Rule Tumor cell type

Rule 1 ENSMUSG00000045394 (Epcam) < = 47.481 Mesenchymal
tumor cell

Rule 2 ENSMUSG00000031565 (Fgfr1) > = 130.294 and
ENSMUSG00000051397 (Tacstd2) < = 14.977

Mesenchymal
tumor cell

Rule 3 Others Epithelial tumor cell

FIGURE 2 | Incremental feature selection (IFS) curve of different classifiers. For each curve corresponding to one method, two performance peaks are annotated to
indicate the number of optimal features selected and the accuracy of their classification model.
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TABLE 3 | Gene ontology enrichment results, biological processes (BP).

GO term Description P-value FDR GO
cluster

GO:0007155 Cell adhesion 1.1E-15 1.5E-12 BP

GO:0042060 Wound healing 5.6E-11 0.000000039 BP

GO:0043588 Skin development 1.1E-09 0.00000049 BP

GO:0043616 Keratinocyte proliferation 2.3E-07 0.000075 BP

GO:0030199 Collagen fibril organization 2.7E-07 0.000075 BP

GO:0030198 Extracellular matrix
organization

7.9E-07 0.00018 BP

GO:0061436 Establishment of skin
barrier

0.000002 0.00039 BP

GO:0001501 Skeletal system
development

0.000004 0.0007 BP

GO:0002009 Morphogenesis of an
epithelium

0.0000085 0.0013 BP

GO:0035987 Endodermal cell
differentiation

0.000013 0.0018 BP

GO:0007156 Homophilic cell adhesion
via plasma membrane
adhesion molecules

0.00012 0.015 BP

GO:0001568 Blood vessel development 0.00017 0.019 BP

GO:0010482 Regulation of epidermal cell
division

0.00039 0.039 BP

GO:0060672 Epithelial cell
morphogenesis involved in
placental branching

0.00039 0.039 BP

GO:0001775 Cell activation 0.0005 0.046 BP

TABLE 4 | Gene ontology enrichment results, cellular components (CC).

GO term Description P-value FDR GO cluster

GO:0005576 Extracellular region 6.3E-20 8E-18 CC

GO:0031012 Extracellular matrix 6.4E-20 8E-18 CC

GO:0070062 Extracellular exosome 9.8E-20 8.2E-18 CC

GO:0031012 Proteinaceous extracellular
matrix

4.5E-16 2.8E-14 CC

GO:0005615 Extracellular space 8E-11 3.8E-09 CC

GO:0005604 Basement membrane 9.1E-11 3.8E-09 CC

GO:0005581 Collagen trimer 3E-09 0.00000011 CC

GO:0030057 Desmosome 0.000011 0.00033 CC

GO:0009986 Cell surface 0.000014 0.00039 CC

GO:0005912 Cell–cell adherens junction 0.00002 0.00049 CC

GO:0030054 Cell junction 0.000032 0.00073 CC

GO:0005925 Focal adhesion 0.000053 0.0011 CC

GO:0005882 Intermediate filament 0.00042 0.0081 CC

GO:0005610 Laminin-5 complex 0.00078 0.014 CC

GO:0005887 Integral component of
plasma membrane

0.0013 0.022 CC

GO:0016020 Membrane 0.0014 0.022 CC

GO:0016323 Basolateral plasma
membrane

0.0025 0.037 CC

and after EMT. This gene mainly participates in carbohydrate
derivative binding and metabolisms (Bartlett and Park, 2010).
During tumorigenesis, this gene participates in EMT both
in human beings and mouse models (Summers et al., 2010;

TABLE 5 | Gene ontology enrichment results, molecular functions (MF).

GO term Description P-value FDR GO
cluster

GO:0050840 Extracellular matrix binding 2.5E-08 0.0000083 MF

GO:0048407 Platelet-derived growth factor
binding

1.5E-07 0.000022 MF

GO:0008201 Heparin binding 0.0000002 0.000022 MF

GO:0005201 Extracellular matrix structural
constituent

0.0000074 0.00061 MF

GO:0005509 Calcium ion binding 0.000023 0.0014 MF

GO:0098641 Cadherin binding involved in
cell–cell adhesion

0.000024 0.0014 MF

GO:0005198 Structural molecule activity 0.0001 0.0049 MF

GO:0050839 Cell adhesion molecule
binding

0.00018 0.0073 MF

GO:0005515 Protein binding 0.00023 0.0077 MF

GO:0005044 Scavenger receptor activity 0.00023 0.0077 MF

GO:0005518 Collagen binding 0.00061 0.018 MF

GO:0005507 Copper ion binding 0.00071 0.02 MF

GO:0030169 Low-density lipoprotein
particle binding

0.00078 0.02 MF

GO:0016641 Oxidoreductase activity,
acting on the CH-NH2 group
of donors, oxygen as
acceptor

0.0013 0.031 MF

TABLE 6 | KEGG pathway enrichment results.

Description P-value Benjamini FDR

ECM-receptor interaction 5.9E-10 8.4E-08

Protein digestion and absorption 0.0000012 0.000083

Focal adhesion 0.0000081 0.00038

Amoebiasis 0.000013 0.00045

PI3K-Akt signaling pathway 0.000093 0.0026

Ribosome 0.0004 0.0095

Proteoglycans in cancer 0.00086 0.017

Anastassiou et al., 2011). In mouse models, during EMT,
Bgn stimulates the synthesis of fibrillin-1 and participates
in connective tissue regulation (Schaefer et al., 2004), thus
remodeling the related microenvironment. Although no direct
reports have confirmed that Bgn contribute to the remodeling
of the tumor microenvironment and participate in EMT for
tumorigenesis, various evidence of Bgn in multiple mouse disease
models (Chen et al., 2000; Schaefer et al., 2004; Cheng et al.,
2012; Sugg et al., 2014) have confirmed its different pathological
significance. This finding indicates that Bgn has a distinctive
expression pattern before and after EMT, thereby validating our
prediction. As for the specific contribution of such gene at single
cell level, according to a recent publication on Cancer Cell (Zhou
et al., 2020), such gene has also been shown to participate in EMT
during tumorigenesis of colorectal cancer at a single cell level.

Epcam (ENSMUSG00000045394) is the major distinctive
marker for initial cell sorting. The identification of such gene in
our optimal prediction list not only validated the efficacy of the
original cell sorting processes but also confirmed the accuracy
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of our prediction. As a famous cell surface marker, Epcam
participates in the regulation of cell differentiation, proliferation,
and death (Munz et al., 2004, 2009). For the distinctive expression
pattern of Epcam in epithelial and mesenchymal TCs, its protein
product is the EPCAM cellular surface protein, which is one
of the most classical molecular biomarkers for distinguishing
epithelial and mesenchymal cells. Therefore, at the transcriptome
level, such a gene definitely has different expression levels
in epithelial and mesenchymal TCs (Thiery and Lim, 2013;
Pastushenko et al., 2018; Pastushenko and Blanpain, 2019).

We also identified Serinc2 (ENSMUSG00000023232) as
distinctive marker, which participates in lipid metabolism (Lee
et al., 2008; Sanderson et al., 2010). This gene has alternative
expression patterns during tumorigenic degeneration and EMT
(Alibardi, 2019). This gene is also functionally connected to a
famous regulator for EMT and TGF-beta (Kasai et al., 2005; Shen
et al., 2015). Therefore, considering the specific role of TGF-beta
during EMT (Kasai et al., 2005), the expression level of Serinc2 as
the downstream of TGF-beta (Kasai et al., 2005) may be altered
during EMT progression, validating the efficacy and accuracy
of our prediction.

We also identified the Fgfr1 gene (ENSMUSG00000031565),
which has different expression patterns in epithelial TCs
compared with mesenchymal TCs. As a regulator for cell
differentiation, proliferation, and adhesion, the Fgfr1 gene is
one of the major regulatory genes for EMT in multiple cancer
subtypes (Nguyen et al., 2013; Ware et al., 2013; Jiao et al., 2015).
For its detailed expression alteration during EMT, regulated by
microRNA-198, the upregulation of Fgfr1 and its ligand FgF1 may
promote the EMT processes (Mori et al., 2015). Therefore, Fgfr1
may have quite different expression levels before and after EMT
(Mori et al., 2015).

We also identified the Fxyd3 gene (ENSMUSG00000057092),
which is functionally related to cell adhesion as a part of
TGF-beta signaling pathway (Okudela et al., 2009; Widegren
et al., 2009). This gene has different expression levels in breast
cancer cells with different proliferative and differential potentials,
validating the distinctive expression levels of Fxyd3 in different
cancer cell subtypes (Xue et al., 2019). Moreover, some studies
on TGF-beta signaling pathway confirmed that Fxyd3, as a
negative TGF-beta signaling regulator, induces EMT (Yamamoto
et al., 2011), indicating its potential distinctive expression levels
before and after EMT.

We also identified the Fstl1 gene (ENSMUSG00000022816),
which is a regulator of embryo development and cell
differentiation (Geng et al., 2011; Xu et al., 2012). During
the transformation of TCs from epithelial status to mesenchymal
status, Fstl1 regulates the complexity of cellular junctions,
thereby promoting EMT (Zuo et al., 2011). For the differential
expression pattern of Fstl1 in epithelial and mesenchymal TCs,
the expression level of this gene is positively related to the
pathogenic results of EMT (Gu et al., 2018). Hence, Fstl1 may be
upregulated in mesenchymal TCs. Apart from that, such gene
has also been shown to be a single-cell level EMT biomarker.
Although no other single cell level studies identified such gene as
EMT biomarkers, such gene has been detected to be associated
with EMT transformation based on breast cancer cells in vitro

cultured from single-cell suspension, indicating that the EMT of
some cells in breast cancer may be associated with this gene.

The last predicted gene in our optimal gene list is
Tacstd2 (ENSMUSG00000051397). As a specific calcium
signal transducer, this gene participates in cell differentiation
(Eisenwort et al., 2011). Similar to Epcams, Tacstd2 is a typical
biomarker for cells with epithelial phenotypes (Eisenwort
et al., 2011). In addition, Tacstd2 is a typical marker for TCs
with epithelial characteristics different from EMT-transformed
mesenchymal TCs (Chen et al., 2013). Therefore, Tacstd2 can
be screened as a specific signature to distinguish epithelial
and mesenchymal cells, validating the efficacy and accuracy of
our prediction. Specifically, such gene has been identified as a
single cell level EMT biomarker in pancreatic cancer stem-like
cells, which cannot be directly identified using bulk sequencing
(Bao et al., 2014).

Optimal Rules for EMT Cell Clustering
Apart from the above qualitative analyses on optimal genes
that may distinguish epithelial and mesenchymal TCs at the
single-cell transcriptome level, we also identified a group of
quantitative rules that may further accurately distinguish and
interpret such two cell groups on the basis of the detailed cell
clustering and establishment of related measurement standards.
According to our prediction results, the top three rules can
distinguish two groups of TCs with the best performance.
Two rules can distinguish two clusters of mesenchymal TCs
from epithelial TCs. The first rule we screened only involved
Epcam (ENSMUSG00000045394). According to the rule, cells
with Epcam expression level lower than 47.481126 FPKM are
mesenchymal TCs. This finding is reasonable because Epcam
is the golden standard for identification of epithelial and
mesenchymal cells. As for the threshold, according to the mouse
genome database (Bult et al., 2019), in most epithelial tissues, the
expression level of such gene is higher than 50 FPKM. Hence, we
can easily distinguish epithelial and mesenchymal cells with such
threshold, validating the efficacy and accuracy of our prediction.

For the second rule, cells with high level of Fgfr1
(ENSMUSG00000031565) and low level of Tacstd2
(ENSMUSG00000051397) are mesenchymal TCs. The
high level of Fgfr1 promotes the EMT and remains in the
mesenchymal status (Thiery and Lim, 2013; Pastushenko et al.,
2018; Pastushenko and Blanpain, 2019), while Tacstad2 is
downregulated similar to Epcam, indicating that such cells
may be mesenchymal cells (Chen et al., 2013), validating the
accuracy of our prediction. Therefore, the combination of the
two supporting parameters can accurately identify mesenchymal
cells, validating the accuracy of our prediction.

GO Enrichment and KEGG Pathway
Analyses on Optimal Genes for EMT Cell
Clustering
For systematically investigation on the functional distribution
of optimal genes, we performed GO enrichment and KEGG
pathway enrichment analyses on such optimal genes. As
we have described in Tables 3–6, with the FDR threshold
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as 0.05, we identified 15 biological processes, 17 cellular
components, 14 molecular functions, and seven KEGG pathways
with our optimal genes enriched. Here, we chose the top
enriched GO terms and KEGG pathways in each cluster for
detailed analyses.

For GO enrichment results of biological process levels, the
first identified GO term, GO:0007155 (cell adhesion) has been
shown to enrich optimal genes. According to recent publications,
cell–cell adhesion has been shown to be linking Wnt/β-catenin
signaling pathway with EMT (Basu et al., 2018) and interacting
with extracellular matrix, promoting EMT (Kumar et al., 2014).
Therefore, it is reasonable for our optimal genes to enrich in
such GO term. Apart from that, GO:0042060 (wound healing)
and GO:0043588 (skin development) have also been shown
to enrich optimal genes associated with EMT. According to
recent publications, both wound healing which involves cell–
cell and cell-extracellular matrix interactions (Kalluri, 2009; Yin
et al., 2013) and skin development which associates with TGF-β
signaling pathways (Liarte et al., 2020) have been reported to be
functionally related to the transformation between epithelial and
mesenchymal cells (Kalluri, 2009; Yin et al., 2013; Liarte et al.,
2020), validating our prediction.

As for GO enrichment results of cellular components level,
apart from general terms like GO:0016020 (membrane) and
GO:0009986 (cell surface), we also identified some specific
terms that may reflect the functional enrichment pattern of
the optimal genes. GO:0005912 (cell–cell adherens junction)
and GO:0005925 (focal adhesion) are two enriched GO terms
in this cluster, both of which are directly related with cell
adhesion that we have discussed above to be associated with
EMT. The top five GO terms GO:0005576 (extracellular region),
GO:0031012 (extracellular matrix), GO:0070062 (extracellular
exosome), GO:0031012 (proteinaceous extracellular matrix),
and GO:0005615 (extracellular space) are all associated with
extracellular components and their interactions with cells. As
we have discussed above, cell-extracellular interactions are quite
fundamental for EMT (Sangaletti et al., 2008; Gibbons et al.,
2009). Therefore, the enrichment of our optimal genes in
such cluster may further validate the efficacy and accuracy
of our prediction.

Multiple molecular function GO terms have also enrich our
optimal genes. Apart from cell adhesion and extracellular matrix
associated GO terms like GO:0050840 (extracellular matrix
binding), GO:0050839 (cell adhesion molecule binding), and
GO:0098641 (cadherin binding involved in cell–cell adhesion),
we also identified functional GO terms GO:0008201 (heparin
binding) and GO:0005507 (copper ion binding). According to
recent publications, heparin binding has been shown to EMT
by linking the TGF-β signaling pathways (Kantola et al., 2008).
As for copper ion binding, as reported in 2012, researchers
have confirmed that iron chelators have regulated the TGF-
β signaling pathways via copper binding associated biological
processes (Chen et al., 2012), validating the enrichment results.

As for KEGG pathways, ECM-receptor interactions and focal
adhesions have been enriched. As we have described above,
focal adhesion and extracellular matrix has been validated
to be associated with EMT, further validating our results.

Apart from that, PI3K-Akt signaling pathway has also been
confirmed to enrich EMT associated genes. According to recent
publications, such results have also been validated (Xu et al., 2015;
Wei et al., 2016).

CONCLUSION

All our identified key features (genes and rules) were validated
to participate in the qualitative and quantitative clustering of
different TCs, reflecting different stages of EMT progression.
Therefore, our computational approach may be an effective
method to identify specific gene signatures for clustering different
TC subgroups at the single-cell level. This work provides a new
tool for elucidating the detailed regulatory mechanisms of tumor
EMT progression.
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