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Background: Pancreatic cancer (PC) remains one of the most lethal cancers. In
contrast to the steady increase in survival for most cancers, the 5-year survival remains
low for PC patients.

Methods: We describe a new pipeline that can be used to identify prognostic molecular
biomarkers by identifying miRNA-mediated subpathways associated with PC. These
modules were then further extracted from a comprehensive miRNA-gene network
(CMGN). An exhaustive survival analysis was performed to estimate the prognostic value
of these modules.

Results: We identified 105 miRNA-mediated subpathways associated with PC. Two
subpathways within the MAPK signaling and cell cycle pathways were found to be
highly related to PC. Of the miRNA-mRNA modules extracted from CMGN, six modules
showed good prognostic performance in both independent validated datasets.

Conclusions: Our study provides novel insight into the mechanisms of PC. We
inferred that six miRNA-mRNA modules could serve as potential prognostic molecular
biomarkers in PC based on the pipeline we proposed.

Keywords: pathway, gene, miRNA, pancreatic cancer, survival

INTRODUCTION

Pancreatic cancer (PC) is one of the most lethal digestive system tumors characterized by rapid
onset, high malignancy and high mortality (Lei et al., 2017). In contrast to the steady increase in
survival for most cancers, the 5-year survival of PC patients remains less than 5% (Siegel et al.,
2017); however, there has been substantial progress in both diagnostic and therapeutic techniques.
Prognosis for surgically treated patients is difficult, and detection of new biomarkers is urgently
required in order to accurately predict PC patient outcome and better understand the associated
molecular mechanisms.
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MicroRNAs (miRNAs) are short, endogenous non-coding
RNAs that participate in post-transcriptional gene regulation.
Increasing research on PC has revealed that, miRNAs play an
important role in the development of PC (Peng et al., 2015; Song
et al., 2015; Imamura et al., 2017). Recent literature indicates
miR-339-5p can suppress the invasion and migration of PC cells
via direct regulation of ZNF689 (Yu et al., 2019). MiR-137-3p,
as a direct target of circ-LDLRAD3k contributed to repressing
the proliferation, migration and invasion of PC cells when
circ-LDLRAD3 was downregulated (Yao et al., 2019). Although
an increasing number of disease-relevant genes and miRNAs
have been identified through microarray and next-generation
sequencing, the precise functional mechanism that contributes to
the pathology of this complex disease remains unclear.

Pathway analysis is the first choice to gain insight
into biological processes and understand the underlying
mechanisms of complex diseases. Several studies have shown
that subpathways, rather than complete biological pathways,
are abnormal in disease phenotypes (Li et al., 2009, 2013). As
such, many methods have been developed to identify biological
pathways or subpathways (Feng et al., 2016, 2019; Han et al.,
2018, 2020; Liu et al., 2019; Ning et al., 2019; Yamaguchi et al.,
2019; Li et al., 2020). For example, the Over-Representation
Analysis (ORA) method (Breitling et al., 2004) identifies
biological pathways by evaluating the extent to which the genes
in a gene set of interest appear in given predefined pathway
using a hypergeometric test. Another approach is topology
enrichment analysis framework (TEAK) (Judeh et al., 2013).
TEAK identifies linear and non-linear subpathways and scores
them. Emerging evidence suggests that miRNAs play important
roles in biological pathways, acting as regulators of pathway
output or as important pathway targets (Ooi et al., 2011).
Sidiropoulos et al. (2014) found Kallikrein-related peptidase
5 could induce miRNA-mediated anti-oncogenic pathways
in breast cancer. Al-Ghezi et al. (2019) demonstrated that
combination of 19-tetrahydrocannabinol and cannabidiol could
induce attenuation of neuroinflammation through miRNA-
mediated signaling pathway. A series of studies focused on
identifying miRNA-mediated subpathways for deciphering
disease mechanisms (Vrahatis et al., 2015, 2016; Ning et al.,
2019). The Subpathway-Gmir (Li F. et al., 2015) method
identifies miRNA-mediated metabolic subpathways relevant
to various diseases by integrating genes of interest, miRNAs,
and pathway topologies through building miRNA-regulated
metabolic pathways. Vrahatis et al. (2015) developed an effective
method for capturing miRNA-mediated signaling subpathways
by integrating paired miRNA/mRNA expression data. They
subsequently developed time-vaRying enriCHment integrOmics
Subpathway aNalysis tOol (CHRONOS) by integrating time
series mRNA/miRNA expression data with KEGG pathway
maps and miRNA-target interactions (Vrahatis et al., 2016).
These studies either focused on identifying miRNA-mediated
pathways/subpathways associated with complex diseases, or
focused on the impact of miRNA on diseases as regulators
or targets of these pathways/subpathways analysis of these
pathways/subpathways. However, few studies have analyzed
relationships between patient survival and modules extracted

from the special network constructed by miRNA-mediated
subpathways associated with complex diseases such as PC.

In this study, we propose a novel pipeline that can be
used to identify prognostic molecular biomarkers by identifying
miRNA-mediated subpathways associated with complex diseases
and further extracting modules from a comprehensive miRNA-
gene network (CMGN). Briefly, 105 significant miRNA-mediated
subpathways were found to be associated with PC. The CMGN
was further constructed using these subpathways, and 10 miRNA-
mRNA modules were extracted. Functional analyses revealed that
the majority of these modules were enriched among cancer-
related gene ontology (GO) terms. Finally, an evaluation of
the association between survival and the level of gene and
miRNA expression in the modules found that six out of the
10 miRNA-mRNA modules were able to discriminate between
two groups of PC patients with different clinical outcomes.
Together, we provide an effective pipeline for analyzing the
relationships of patient survival and modules extracted from the
special network constructed by miRNA-mediated subpathways
associated with complex diseases. The findings of our study
provide novel insight into the mechanisms of PC and identify six
modules that may have prognostic significance for predicting the
survival of PC patients.

MATERIALS AND METHODS

The aim of this study was to identify significant subpathways
associated with PC and evaluate the prognostic value of
miRNA-gene modules in the CMGN constructed using these
subpathways. Firstly, differentially expressed genes (DE genes)
and miRNAs (DE miRNAs) in PC tissues were identified using
microarray gene expression profile data of PC. These DE genes
and DE miRNAs were subsequently mapped into undirected
pathway graphs embedded by miRNA (UPEMs) to detect
the miRNA-mediated subpathways associated with PC. The
statistically significant subpathways were obtained and defined
as PC-relevant subpathways. A comprehensive miRNA-gene
network was built by merging common nodes and edges based
on the PC-relevant subpathways. Finally, we detected functional
modules in the network and further evaluated their value in
relation to PC patient survival. An overview of the pipeline is
presented in Figure 1.

PC Dataset
The gene and miRNA expression profiles, including 14
solid-pseudopapillary neoplasms samples, six PC samples,
six neuroendocrine tumor samples and five non-neoplastic
pancreatic tissue samples, were initially analyzed by Park et al.
(2014). We downloaded the expression profile data from the
Gene Expression Omnibus (GEO) database (GSE43795 for
miRNAs and GSE43796 for mRNAs) (Park et al., 2014). PC and
non-neoplastic pancreatic tissue samples were used to identify
DE genes and DE miRNAs associated with PC, using the
significance analysis of microarrays (SAM) (Tusher et al., 2001)
method. An FDR < 0.001 as used for genes and FDR < 0.05 for
miRNAs. We identified 1,586 DE genes and 107 DE miRNAs.
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FIGURE 1 | Flow chart of the proposed pipeline.
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Additionally, two independent datasets were used to evaluate
the prognostic power of the miRNA-mRNA modules. For
independent validation dataset 1, a microarray dataset including
mRNA expression profiles and clinical information with early
stage PC (GSE57495) from 63 patients was downloaded from the
GEO database (Edgar et al., 2002). For independent validation
dataset 2, an RNA-seq dataset of mRNAs and miRNAs for
primary PC tumors, was retrieved from the Cancer Genome
Atlas (TCGA) database1. The same TCGA barcode structure was
used for both clinical data and RNA-seq data. A total of 177
samples with clinical follow-up information were retained for
further analysis.

Experimentally Validated miRNA-Target
Interactions
Experimentally validated miRNA-target interaction data were
collected from four databases: TarBase (version 6.0) (Vergoulis
et al., 2012); miRTarBase (release 2014) (Hsu et al., 2014);
mir2Disease (Jiang et al., 2009); and miRecords (release 2013)
(Xiao et al., 2009). After removing redundancies, 57,846
pairs of human specific experimentally validated miRNA-target
interactions (including 14,614 genes and 579 miRNAs) were
obtained. Of these pairs, 12,425 (including 4,347 genes and 371
miRNAs) had been validated by low-throughput experiments.

Disease-Associated Genes and miRNAs
Disease-associated coding genes were derived from OMIM
(Amberger et al., 2011) and GAD (Becker et al., 2004). Disease-
associated miRNAs were derived from the miRCancer (Xie et al.,
2013), miR2Disease (Jiang et al., 2009), and HMDD (Li et al.,
2014) databases. Genes and miRNAs of the significant miRNA-
mediated subpathways associated with PC were considered as
disease-associated coding genes and miRNAs according to the
associations between them and PC recorded in at least one of
these databases.

UPEM Construction
The UPEM was constructed based on KEGG pathways and the
experimentally validated miRNA-target interaction data. In this
study, 343 KEGG pathways involving 152 metabolic and 191 non-
metabolic pathways were used. First, each pathway was converted
into an undirected graph with the genes serving as nodes using
our previously developed R package “iSubpathwayMiner” (Li
et al., 2009). Second, we examined verified targets genes of each
miRNA whether appeared in the converted pathway graphs. If
its targets were contained in the pathway, we added the miRNA
node into the pathway and linked it to their validated targets.
Finally, we generated UPEMs that combined the miRNAs and
miRNA-target gene interaction edges. We used the 343 pathways
embedded by miRNAs to identify the PC risk subpathways.

Identification of miRNA-Mediated
Subpathways and CMGN Construction
The “lenient distance” similarity method (Li et al., 2013; Li
F. et al., 2015) was used to identify the miRNA-mediated

1http://tcga-data.nci.nih.gov/tcga/

subpathways in the UPEMs according to coding genes and
miRNAs as the input. Notably, the DE miRNAs and DE genes
were mapped into UPEMs at the same time as the signature
nodes. The shortest path between any two signature nodes in
the mapped pathway was computed. Next, the two signature
nodes and the molecules contained in the shortest path between
them were divided into the same candidate node set, with the
requirement that the length of the shortest path be less than or
equal to n. The corresponding subgraph was extracted according
to each candidate node, and set as a subpathway if the node
number was no less than s. The parameters were set to n = 1 and
s = 10. Statistically significant subpathways were further extracted
by performing a hypergeometric test with a p-value < 0.001. The
p-value was calculated according to the following equation:

P = 1−
rg+rmir−1∑

x=0

(
tg + tmir

x

)(
mg + mmir − tg − tmir

ng + nmir − x

)
(

mg + mmir
ng + nmir

)
where mg (mmir) represents the number of coding genes
(miRNAs) in the entire human genome, of which tg (tmir)
represents the number of miRNAs involved in a given
subpathway, and ng (nmir) represents the number of DE genes
(DE miRNAs), of which rg (rmir) represents the number of
DE miRNAs involved in the same subpathway. The CMGN
was constructed using all the genes/miRNAs extracted from
the statistically significant subpathways and all inherited edges.
Finally, for each miRNA in the network, a Pearson correlation
between the level of miRNA expression and all genes in the
network were computed, and the edges representing the strong
negative correlation (r <−0.7) between the miRNA and its target
genes were specially marked.

Identification of Disease Related
Modules in the miRNA-Gene Network
We extracted the modules from the miRNA-gene network using
the Clique Percolation Method (CPM) implemented by CFinder
(Adamcsek et al., 2006) software with a value of parameter
k = 4 (k-clique size) for the richest modular structure. CFinder
is a program that can rapidly locate and visualize overlapping,
densely interconnected groups of nodes in undirected graphs. We
interpreted a community constructed from adjacent cliques of
the same size k in the CPM as a module. A k-clique represented
a complete subgraph on k nodes, and two k-cliques were
considered to be adjacent if they shared k−1 nodes. A community
comprised a set of k-cliques in which all nodes could be reached
via chains of adjacent k-cliques from each other.

GO and Cancer Hallmark Analysis
Gene ontology analyses were performed using an R package
clusterProfiler (Yu et al., 2012) for the coding genes of a
given module. A p-value threshold of 0.01 was used to indicate
statistical significance. The GO categories obtained from a
previous study (Plaisier et al., 2012) were used as proxies for the
characteristic hallmark traits of cancer.
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Functional Analysis of Modules With a
Hypergeometric Test
A hypergeometric test was performed on each module to evaluate
the extent to which the genes and miRNAs in the module
overlapped with the nodes of statistically significant subpathways.
The p-value was calculated according to the following equation:

P = 1−
r−1∑
x=0

(
t
x

)(
m− t
n− x

)
(

m
n

)
where m is the total number of unique nodes in the subpathways
located by simultaneously mapping DE miRNAs and DE genes
into UPEMs as the signature nodes; t is the number of nodes in
the chosen subpathway of interest; n is the number of nodes in
a given module; r is the number of common nodes between the
chosen subpathway and the given module. A p-value threshold of
0.001 was used to indicate statistical significance.

Survival Analysis
For the specific molecules (genes/miRNAs) in a given module,
a univariate Cox regression analysis was carried out to evaluate
the association between survival and the expression levels of
molecules in the module. A risk score formula was used
to evaluate the association between survival and molecule
combinations in the given module and calculated using a linear
combination of the expression levels of molecules weighted
according to their respective Cox regression coefficients from the
univariate Cox regression analysis as follows:

Risk score =
n∑

i=1

biExp (i)

where bi is the Cox regression coefficient of molecule i from
the given module, n is the number of molecules in the given
module, and Exp(i) is the expression value of molecule i in
the corresponding patient. Cancer patients were classified into
high and low-risk groups according to the median risk score.
For single gene survival prediction, the median expression value
of each gene was used as a cut-off to distinguish two groups
of PC patients as having either a low or high relative gene
expression. A Kaplan–Meier survival analysis was performed
for the two patient groups using the R survival package, and
statistical significance was assessed using a two-tailed log-rank
test. A p-value threshold of 0.05 was used to indicate significance.

RESULTS

Identification of PC-Relevant
Subpathways Mediated by miRNAs
Using the SAM method to test the PC and non-neoplastic
pancreatic tissue samples, 1,586 DE genes and 107 DE miRNAs
were identified at the FDR level of 0.001 and 0.05, respectively.
After mapping these DE genes and DE miRNAs into UPEMs at

the same time as signature nodes, 105 significant subpathways
were identified at a strict cut-off value of FDR < 0.001 (see
section “Materials and Methods”). These significant subpathways,
referred to as PC-relevant subpathways, varied from 10 to 85
genes/miRNAs (mean: 24 genes/miRNAs), and were associated
with 105 distinct complete pathways (Supplementary Table 1).
The top 20 PC-relevant subpathways are listed in Table 1. The
coverage rate of known cancer-associated genes and miRNAs
were tested for each PC-relevant subpathway. These known
cancer-associated genes and miRNAs were derived from the
OMIM, GAD, miRCancer, miR2Disease, and HMDD databases.
As a result, it was found that each PC-relevant subpathway
was associated with an average of 36.7% known cancer-
associated genes and miRNAs, some of which even reached 73.7%
(Supplementary Table 2).

We further focused on the two most significant PC relevant
subpathways. The first was path: 04010_1 (FDR = 0), an
important sub-region within the MAPK signaling pathway
(Figure 2A), which was previously reported to be a highly
conserved pathway that transfers extracellular signals into
cellular proliferation signals (Aguirre-Ghiso et al., 2003). The
mitogen-activated protein kinase (MAPK) is one such complex
interconnected signaling cascade with frequent involvement in
oncogenesis, tumor progression and drug resistance. One study
demonstrated the role of MAPK signaling during the initial
steps of pancreatic carcinogenesis (Collins et al., 2014). Based
on the topological structure, miR -320a was a DE miRNA
with a higher degree in this subpathway. Moreover, the over-
expression of miR-320a strongly contributes to PC pathogenesis,
including the characteristics of increased proliferation, invasion,
metastasis, drug-resistance and the epithelial-to-mesenchymal
transition (Wang et al., 2016). In addition, several DE genes were
enriched in this subpathway, among which MYC, NRAS, RAC2
were known PC related genes, and most of them play key roles
in PC. The study by Adrian et al. suggested that individuals
with constitutively decreased TGFBR1 expression may have a
decreased risk of PC (Adrian et al., 2009). MAPK9 has also been
identified as a potentially promising biomarker in exploratory
studies of PC (Bracci et al., 2012). More importantly, SNPs in
the inflammatory pathway genes MAPK8IP1 and SOCS3 were
associated with increased overall survival in patients undergoing
potentially curative resection and may be used as markers to
predict PC patient survival (Reid-Lombardo et al., 2013).

The second significant subpathway was path: 04110_1
(FDR = 0), which is one of the most important cell cycle
signaling pathways (Figure 2B) that regulates both cell division
and apoptosis. DNA damage readily leads to dysregulation of
the cell cycle, which is an essential step in the initiation and
development of human cancer (Nan et al., 2016). The 04110_1
subpathway consisted of 64 genes/miRNAs, 15 of which were
known PC-associated genes/miRNAs and 30 of which were DE
genes/miRNAs. According to the topological structure of the
pathway, miRNAs with a higher degree are more important in the
subpathway region. It was found that miR-34a, a non-differential
and disease-associated miRNA, exhibited the highest degree.
Moreover, this miRNA has been reported to serve as a diagnostic
biomarker for PC (Long et al., 2017). Hu et al. (2013) proposed
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TABLE 1 | The top 20 PC-relevant subpathways.

Sudb pathway ID Pathway name AnnMoleculeRatio AnnBgRatio FDR

Path:04010_1 MAPK signaling pathway 23/1693 46/31954 0

Path:04110_1 Cell cycle 30/1693 64/31954 0

Path:04151_1 PI3K-Akt signaling pathway 35/1693 62/31954 0

Path:05034_1 Alcoholism 30/1693 52/31954 0

Path:05152_1 Tuberculosis 23/1693 45/31954 0

Path:05164_1 Influenza A 22/1693 41/31954 0

Path:05168_1 Herpes simplex infection 22/1693 39/31954 0

Path:05200_2 Pathways in cancer 38/1693 85/31954 0

Path:05322_1 Systemic lupus erythematosus 19/1693 29/31954 0

Path:04630_1 Jak-STAT signaling pathway 16/1693 22/31954 2.33E-15

Path:04066_1 HIF-1 signaling pathway 20/1693 38/31954 3.18E-15

Path:04020_1 Calcium signaling pathway 18/1693 30/31954 3.89E-15

Path:05166_1 HTLV-I infection 22/1693 49/31954 7.17E-15

Path:05203_2 Viral carcinogenesis 24/1693 61/31954 1.33E-14

Path:04510_1 Focal adhesion 20/1693 43/31954 5.67E-14

Path:04115_1 p53 signaling pathway 17/1693 32/31954 3.28E-13

Path:04060_1 Cytokine-cytokine receptor interaction 15/1693 24/31954 3.52E-13

Path:05161_1 Hepatitis B 21/1693 53/31954 5.16E-13

Path:04810_1 Regulation of actin cytoskeleton 20/1693 49/31954 9.69E-13

Path:04722_1 Neurotrophin signaling pathway 16/1693 30/31954 1.35E-12

FIGURE 2 | MiRNA-mediated subpathways associated with PC. Circle, triangle nodes represented genes and miRNAs, respectively. DE genes and miRNAs are
colored blue and purple, respectively, and non-DE genes and miRNAs are colored gray and yellow, respectively. The red border indicates known PC-associated
genes/miRNAs. The edges represented a strong negative correlation (r < –0.7) between the miRNA and its target genes marked in green. (A) MAPK signaling
subpathway (path: 04010_1, FDR = 0). (B) Cell cycle subpathway (path: 00561_1, FDR = 0).

the use of miR-34a-delivering therapeutic nanocomplexes as an
effective treatment for PC. Notably, nine target genes of miR-
34a were identified in this subpathway, including TP53, MYC,
MCM2, MCM4, MCM6, CDC20, SFN, CCNE2, and E2F3. Four
out of the nine target genes (TP53, MYC, MCM2, and MCM4)

were known PC-associated genes, and eight were differentially
expressed. Among these differentially expressed target genes,
cell division cycle 20 (CDC20), an anaphase-promoting complex
activator, has been observed to be over-expressed in a variety of
human cancers and to play an oncogenic role in tumorigenesis
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(Wang et al., 2015). E2F3, as the target gene regulated by
miR-217, has been shown to be involved in PC cell growth,
invasion and apoptosis (Yang et al., 2017). In addition, miR-
215 exhibited the second highest degree and is dysregulated
in several human malignancies, including PC. It is speculated
that miR-215 may act as a tumor suppressor in PC, and could
serve as a novel therapeutic target for miRNA-based therapy
(Li Q.W. et al., 2015). Interestingly, we found that a miRNA
set consisting of miR-92a, miR-24, let-7a, let-7b, let-7c, miR-
193b, and miR-31 was closely correlated with PC. Each of these
miRNAs regulates at least one differentially expressed cell cycle-
related gene, involving cyclin B1 (CCNB1), cyclin B2 (CCNB2),
and cyclin-dependent kinase 1 (CDK1). Among them, let-7b, let-
7c, and miR-31 are known PC-associated miRNAs, and others
have also been associated with PC in previous studies (Listing
et al., 2015; Xiao et al., 2017). Our results demonstrate that the
PC-relevant subpathways identified by integrating DE genes, DE
miRNAs and pathway topologies were closely related to PC.

Global Properties of the CMGN
Since key genes and miRNAs might participate in multiple
subpathways, the CMGN was constructed by merging common
nodes and edges of PC-relevant subpathways (see section
“Materials and Methods”). In the network, there were 3,030
edges between 91 miRNA nodes and 640 gene nodes, of
which 48 edges had a strong negative correlation between
the level of miRNA and target gene expression (r < −0.7)
(Figure 3A). We evaluated the degree of node distribution
in the network and observed a power-law and exponential
distribution, respectively (Figure 3B). Therefore, the CMGN
displayed scale-free characteristics, indicating that it was not
random but organized according to a core set of principles in
its structure that distinguished it from randomly linked networks
(Barabasi et al., 2011).

The known PC-associated miRNAs and genes were further
mapped to the network, and 93 PC-associated molecules (39
known PC-associated miRNAs and 54 known PC-associated
genes) were found to be involved in the network. The topological
characteristics of the network were examined, revealing that
these known PC-associated miRNAs and genes showed a
significantly higher degree and betweenness centrality than
the other miRNAs and genes (Figures 3C,D). The specific
topological patterns reflected the functional importance of the
known PC-associated miRNAs and genes in the CMGN. A higher
degree indicated that the nodes were likely to be hubs and
had high probabilities of engaging in essentially biological
functions. A higher betweenness centrality implied that they
acted as bridges connecting different network components and
controlling communication.

All of the nodes’ topological features of the network were
ranked and the top 10 genes and miRNAs of each dimension
are listed in Table 2. It was observed that all top 10 genes were
differentially expressed, three of which (NRAS, MYC, and EGFR)
have been well-described as known PC-associated genes. MAPK3
(also known as ERK1/2) is a member of the MAP kinase family
that exhibited the highest degree, and appeared in 55 PC-relevant
subpathways. MAPK3 is activated by upstream kinases, which

results in its translocation to the nucleus where it phosphorylates
nuclear targets. Moreover, MAPK3 plays an important role in the
MAPK/ERK cascade. Indeed, MAPK3 inhibitors can inhibit the
growth of PC cells through the RAS-RAF-MEK-ERK pathway
(Walters et al., 2013). MAPK9 exhibited the second highest
degree and was inversely correlated with the expression of seven
miRNAs in our study, including four known PC-associated
miRNAs (miR-93, miR-20a, miR-17, and miR-320a). MAPK9 has
previously been identified as a potentially promising biomarker
in exploratory studies, and was observed to be overexpressed
in PC patients (300 cases, 300 controls) (Bracci et al., 2012). In
addition, miR-320a had the highest degree among miRNAs and
appeared in 92 PC-relevant subpathways. The study by Wang
et al. (2016) found that miR-320a over-expression promoted
PC cell proliferation, migration and invasion, and demonstrated
that miR-320a suppressed PDCD4 mRNA expression in 5-
Fluorouracil-resistant human PC cells. These findings suggest
that miR-320a may serve as a potential target for PC therapy
(Wang et al., 2016). When applied to clinical serum samples,
miR-320a could accurately predict late chronic pancreatitis (Xin
et al., 2017). Together, these results demonstrate that the CMGN
based on PC-relevant subpathways can provide insight into
cancer-associated transcriptional regulatory networks. Thus, the
CMGN may be able to identify key factors that participate in
multiple pathways.

The Identification of Key Functional
miRNA-mRNA Modules in the CMGN
Analysis of the CMGN can provide a global view of the regulatory
relationships involved in PC-relevant subpathways. To reveal
the detailed modular organization of the CMGN, the functional
modules in the network were mined using the Clique Percolation
Method implemented by CFinder software with a value of
parameter k = 4 (see section “Materials and Methods”). A total
of 30 modules were detected, among which greater attention was
paid to the miRNA-mRNA modules. There were 12 modules
that contained at least one miRNA and mRNA, two of which
were absolutely included in the other modules. Therefore, the
larger modules were retained. Ultimately, 10 non-redundant
miRNA-mRNA modules were obtained, consisting of 4 ∼ 23
genes/miRNAs (Figure 4A).

For each miRNA-mRNA module, a GO analysis of the
coding genes from a given module was carried out based
on the GO terms (see section “Materials and Methods”),
and each module was annotated with the enriched functions
of the corresponding gene set (Supplementary Figure 1).
Processes for the maintenance of cell homeostasis (e.g., cell
cycle regulation and cytosolic calcium ion homeostasis) and
cancer development-related processes (e.g., cell-matrix adhesion
and JAK-STAT cascade and glycolysis) were highly represented.
Cancer is a complex disease characterized by select hallmarks
of cancer, including resistance to cell death, tissue invasion and
metastasis, as well as the induction of angiogenesis (Hanahan
and Weinberg, 2011). These hallmarks provide a framework
for understanding the remarkable diversity of various cancers.
Thus, through comparing the GO categories used as proxies for
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FIGURE 3 | The view and topological features of the CMGN. (A) The view of the CMGN. The CMGN consisted of 640 genes and 91 miRNAs with 3,030 edges
between them. Of these, 48 edges represented a strong negative correlation (r < –0.7) between the miRNA and its target genes marked in green.
Disease-associated genes/miRNAs in the CMGN exhibited specific topological characteristics compared to the other nodes. (B) The network revealed a power law
distribution with a slope of –1.343 and R2 = 0.816. The X-axis indicates the degree of node distribution. The Y-axis indicates the number of nodes according to the
X-axis. (C) and (D) Disease-associated nodes had a higher degree and betweenness centrality than the other nodes. Data are shown as the mean ± SEM.
Disease-associated and other nodes are indicated in red and blue along the X-axis. The average degrees of the two groups of nodes are indicated by the Y-axis.

TABLE 2 | The top 10 genes/miRNAs with high degree and betweenness.

Gene Degree Gene Betweenness MiRNA Degree MiRNA Betweenness

MAPK3 51 MAPK9 0.05485797 miR-320a 120 miR-320a 0.16631591

MAPK9 45 MAPK3 0.04162308 miR-335-5p 104 miR-335-5p 0.15280337

ACTB 44 MYC 0.03048808 miR-92a-3p 100 miR-92a-3p 0.08100672

NRAS 34 ACTB 0.03012864 miR-16-5p 91 miR-16-5p 0.06466747

MYC 32 NRAS 0.02392137 miR-615-3p 84 miR-34a-5p 0.063773

MAPK1 30 RHOA 0.02192821 miR-34a-5p 82 miR-615-3p 0.05594317

RHOA 29 EGFR 0.01991883 miR-26b-5p 74 miR-26b-5p 0.04664383

GNB1 28 IGF1R 0.0190645 miR-98-5p 61 miR-155-5p 0.04227725

GNG5 28 RXRB 0.01895021 miR-193b-3p 59 miR-124-3p 0.04179475

EGFR 26 PKM 0.01830244 miR-155-5p 54 miR-193b-3p 0.03668304
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FIGURE 4 | Modular analysis of the CMGN. (A) A total of 10 miRNA-mRNA modules were derived from the CMGN, ranging between 4 and 23 nodes, with an
average of 8.1 nodes per module. The modules are encircled with an ochre dotted oval. The circle and triangle nodes represent genes and miRNAs, respectively. DE
genes and miRNAs are colored blue and purple, and non-DE genes and miRNAs are colored gray and yellow, respectively. Disease associated genes/miRNAs are
indicated with red circles. (B) GO terms enriched for modules M5, M8, and M10.

hallmark cancer traits (see section “Materials and Methods”),
we found that modules M1, M5, M8, and M10 were involved
in five hallmark traits, including positive regulation of signal
transduction, cell adhesion, glycolysis and positive regulation of
cell growth. Module M5 was enriched in cell-matrix adhesion
and mesodermal cell differentiation. Module M8 was enriched
in canonical glycolysis and glycolytic processes. Module M9 was
enriched in cell proliferation related processes (Figure 4B).

We tested the extent to which the molecules overlap between
each miRNA-mRNA module and PC-relevant subpathways using
a hypergeometric test with a p-value < 0.0001 and annotation
proportion ≥ 70% (see section “Materials and Methods”). As a
result, nine out of 10 miRNA-mRNA modules were annotated in
at least one PC-relevant subpathway (Supplementary Table 3).
We found that the modules, that overlapped with other modules,
were enriched in more PC-relevant subpathways, indicating
that these modules may have multiple functions. For instance,
module M5, which overlapped with M3, M4, and M6, was
enriched in six PC-relevant subpathways: (1) path: 04510_1 that
belonged to focal adhesion; (2) path: 05410_1 that belonged to
hypertrophic cardiomyopathy; (3) path: 05414_1 that belonged
to Dilated cardiomyopathy; (4) path: 05412_1 that belonged
to arrhythmogenic right ventricular cardiomyopathy; (5) path:
04810_1 that belonged to regulation of actin cytoskeleton;
and (6) path: 04520_1 that belonged to adherens junction.
Interestingly, three of these subpathways enriched by module
M5 were associated with cardiomyopathy. To our knowledge,
advanced cancer can induce fundamental changes in metabolism
and promote cardiac atrophy and heart failure. Thackeray et al.
(2017) discovered systemic insulin deficiency in cachectic cancer

patients and demonstrated that cancer-induced systemic insulin
depletion contributes to cardiac wasting and failure. In addition,
low-dose insulin supplementation was found to attenuate these
processes in mice with advanced melanoma or colon carcinoma.

Module M9 contained four molecules (ERBB2, EGFR,
PDGFD, and miR-21), three of which are known PC-associated
genes and miRNAs. Studies have shown that increasing EGFR
activity can over-activate downstream pro-oncogenic signaling
pathways (e.g., RAS-RAF-MEK-ERK MAPK, and AKT-PI3K-
mTOR pathways), which can then activate many biological
outputs that may contribute to cancer cell proliferation (Wee
and Wang, 2017). EGFR was also identified as a hub in the
CMGN, indicating that EGFR is able to crosstalk with other
molecules. Studies have demonstrated that a shorter EGFR intron
1 CA repeat length is associated with a worse PC clinical
prognosis (Tzeng et al., 2007). ERBB2, also known as HER2, was
functionally characterized by an extraordinarily strong catalytic
kinase activity, and represents a key oncoprotein that can trigger
cornerstone intracellular signaling events for cell growth and
survival, further leading to increased signal transduction and
activation of the MAPK and PI3K/Akt pathways (Wong and
Hurvitz, 2014). Moreover, Cheng et al. (2017) identified the
ERBB2 exon17 mutation as an independent factor associated
with overall survival among metastatic PC patients. Dillhoff
et al. (2008) demonstrated that miR-21 was significantly over-
expressed in PC. Although we could not find any direct evidence
to support an important role of PDGFD in PC, we found
that PDGFD could regulate many cellular processes, including
cell proliferation, apoptosis, transformation, migration, invasion,
angiogenesis and metastasis (Wang et al., 2010). Recent studies
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(Walters et al., 2013; Ogawa et al., 2015) have also shown that
PDGFD is closely related to various cancers.

miRNA-mRNA Modules Are Potential
Prognostic Biomarkers for PC
To assess the prognostic performance of these miRNA-mRNA
modules, a survival analysis was performed on each of the 10
miRNA-mRNA modules. After testing all the coding genes of the
given module with the risk score model (see section “Materials
and Methods”), eight out of 10 modules were found to be
significantly related to the prognosis in independent validation
dataset 1 (Figure 5A). In each of the eight modules, the patients in
independent validation dataset 1 were divided into either a high-
risk score or low-risk score group. Patients in the high-risk-score
group had a significantly shorter overall survival than those in the
low-risk score group. To test whether the whole miRNA-mRNA
module showed better prognostic performance than a single
coding gene, we calculated the Kaplan–Meier p-value of every
single coding gene of the modules in independent validation
dataset 1. Five out of eight modules (module M1, M3, M5,
M7, and M9) showed better prognostic performance than any
single coding gene in the module (Figure 5B). More interesting,
each coding gene of module M3, M7, and M9 was almost non-
significantly related to prognosis; however, the three modules
were all significantly related to the prognosis in independent
validation dataset 1. For example, each coding gene of module M3
showed bad prognostic performance according to non-significant
Kaplan–Meier p-value. But the whole miRNA-mRNA module
of M3 showed better prognostic performance. Another survival
analysis was also carried out on each of the 28 non-redundant
modules to test whether their expression levels were associated
with PC prognosis. A total of 17 out of 28 non-redundant
modules were related to the prognosis of the PC patients based on
the level of gene expression. Furthermore, 13 out of 17 modules
showed better prognostic performance with the whole module
than any individual coding gene (Supplementary Table 4). These
findings indicate that the miRNA-mRNA modules in the CMGN
provide clinical guidance for cancer prognosis.

To test the reproducibility of the 10 miRNA-mRNA modules’
prognostic performance, all coding genes of the given module
in independent validation dataset 2 were tested using the same
model and criteria as validation dataset 1. Two modules (modules
M1 and M4) were excluded due to a matching of the genes to
the mRNA expression profiles of less than 60% (Supplementary
Figure 2). Seven out of eight modules (M2, M3, M5, M6,
M8, M9, and M10) were related with the prognosis of the
PC patients. Six out of seven modules (M3, M5, M6, M8,
M9, and M10) showed good prognostic performance in both
validation datasets 1 and 2, indicating good reproducibility.
To test whether the combination of the miRNAs and mRNAs
could predict the survival of PC patients, the relationship of
the PC patients’ outcome and 10 miRNA-mRNA modules were
further evaluated both coding genes and miRNAs using based
on the same model and criteria. We observed a smaller Kaplan–
Meier p-value based on the level of coding gene and miRNA
expression levels compared to only the level of coding gene

expression (Supplementary Figure 3). These findings indicate
that the majority of miRNA-mRNA modules exhibit good
reproducibility, and the involvement of miRNA expression levels
may improve the prognostic performance of these modules for
PC patients. Furthermore, the six good reproducible modules
could serve as potential prognostic molecular biomarkers in PC.

Since the module consisted of connected genes and miRNAs
in the network, there may be redundant genes/miRNAs in the
module for predicting the survival of PC patients. To select the
best prognostic signature, we compared the performances of
all the gene combinations in each good reproducible module.
A survival analysis was subsequently performed on every
combination of genes in each good reproducible module using
the same model as independent validation dataset 1. Considering
the Kaplan–Meier p-value of all combinations in each module,
one of these selected combinations was defined as the best
signature. The most significant molecule combinations of the
six good reproducible modules are listed in the Supplementary
Tables 5–10. As expected, four out of six good reproducible
modules (modules M3, M5, M9, and M10) exhibited the best
signature, which could be represented by fewer molecules, for
predicting the PC patients’ survival. For example, module M5
could be used to separate PC patients into high and low-
risk groups using all genes and miRNAs to a greater extent
than any single coding gene. In addition, a combination of
two genes (ITGB4 and VCL) was associated with a better
prognostic performance. Studies have shown that high levels of
ITGB4 expression are significantly correlated with the hallmarks
of epithelial-mesenchymal transition, high tumor grade, and
the presence of lymph node metastasis, and also exhibit an
independent prognostic effect (Masugi et al., 2015). Moreover,
VCL has been identified as a potential novel oncogene in
pancreatic adenocarcinoma (Loukopoulos et al., 2007). Taken
together, four modules (modules M3, M5, M9, and M10) among
the six good reproducible modules were found to play an
important role for the prognosis of PC patients.

DISCUSSION

The dysregulation of miRNA expression has been widely
observed in the development and progression of complex
human diseases, such as cancer. In this study, DE genes
and miRNAs were mapped into undirected pathway graphs
embedded by miRNA as signature nodes. We obtained 105
significantly miRNA-mediated subpathways associated with PC
as PC-related subpathways using a hypergeometric test. The
PC-related subpathways provide biological insight for dissecting
PC pathology. The key genes or miRNAs may participate in
multiple pathways. Therefore, a comprehensive miRNA-gene
network was built by merging common nodes and edges. Next,
the topological characteristics of the network were analyzed
and functional modules were detected. Finally, the functions
of modules containing miRNAs were analyzed and their effect
on the outcome of PC patients was evaluated. As a result,
105 subpathways were identified to be significantly associated
with PC, in which more than a third of the nodes were
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FIGURE 5 | Survival analyses of PC patients for miRNA-mRNA modules. (A) Kaplan–Meier survival analyses of all patients with clinical follow-up information based
on the 10 miRNA-mRNA modules. Survival months are shown along the X-axis. The overall survival rates are shown along the Y-axis. A p-value threshold of 0.05
was used. (B) The miRNA-mRNA module as a whole could better distinguish the two groups of patients compared to any individual coding gene within it, especially
modules M3, M7, and M9. The whole module and associated coding genes are presented along the X-axis. The log value (base 10) of the overall survival rates are
shown along the Y-axis.

found to be known cancer-associated genes and miRNAs. We
focused on two PC-relevant subpathways belonging to the
MAPK signaling pathway and cell cycle. The network analysis
of the CMGN built by the PC-related subpathways revealed that
the known PC-associated genes/miRNAs showed a significantly
higher degree and betweenness centrality than other the nodes,
indicating their functional importance. A total of 30 modules
were detected in the CMGN using CFinder software, of which
10 miRNA-mRNA modules were further examined. A GO
enrichment analysis revealed that the miRNA-mRNA modules
were highly enriched in processes involved in the maintenance
of cell homeostasis and cancer development. The survival
analysis was performed on 10 miRNA-mRNA modules in two
independent validation datasets. Of these, six of the modules
showed good prognostic performance in both validation dataset
1 and 2. In particular, while each coding gene of modules
M3, M7, and M9 was not significantly related with prognosis,

the three modules were all significantly related to prognosis in
independent validation dataset 1. These results revealed that
the six good reproducible modules could serve as potential
prognostic molecular biomarkers in PC.

The findings of our study provide a novel pipeline that
can be used to identify prognostic molecular biomarkers
from a comprehensive miRNA-gene network based on the
identified miRNA-mediated subpathways associated with PC.
However, the regulation between miRNA and mRNA is complex.
The expression of miRNAs or mRNAs might be affected
by other ncRNAs, including circRNAs and lncRNAs. For
example, Zhao et al. (2017) demonstrated that lncRNA TUG1
could competitively sponge miR-382, thereby regulating EZH2.
Their experiments further revealed that TUG1 overexpression
promoted cellular proliferation and migration, and contributed
to epithelial-mesenchymal transition (EMT) formation in
PC cell lines (Zhao et al., 2017). Similar studies have
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demonstrated that lncRNA H19 could partially promote PC cell
invasion and migration by increasing HMGA2-mediated EMT
through antagonizing let-7 in PC cell lines (Ma et al., 2014).
Hsa_circ_0005785 was down-regulated in 20 sets of PC tissues
and was inferred to interact with miR-181a and miR-181b based
on the sequence analysis. MiR-181a plays an important role in
regulating PC cell growth and migration and miR-181b has been
shown to be related to PC cell resistance to gemcitabine (Li
et al., 2016). Identification of the upstream regulatory pathways
of miRNAs contributes to research into the functional of miRNAs
in various diseases. Information about the regulatory elements
involved in the regulation of miRNA transcription is stored
in recently published databases, including ENdb (Bai et al.,
2020) and SEdb (Jiang et al., 2019). Moreover, the information
associated with these regulatory elements (Qian et al., 2019)
can be integrated to construct a miRNA transcription regulatory
network for a specific disease. Finally, the pipeline we proposed
can work flexibly in practices. It supports other methods for
identifying differentially expressed subpathways in complex
diseases. Similarly, it also supports other methods for mining
modules in the network formed by identified subpathways. In
parallel, the pipeline is suitable for analyzing integrated networks
and can be applied to other complex diseases.
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