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Increasing lncRNA-associated competing triplets were found to play important roles in

cancers. With the accumulation of high-throughput sequencing data in public databases,

the size of available tumor samples is becoming larger and larger, which introduces new

challenges to identify competing triplets. Here, we developed a novel method, called

LncMiM, to detect the lncRNA–miRNA–mRNA competing triplets in ovarian cancer with

tumor samples from the TCGA database. In LncMiM, non-linear correlation analysis is

used to cover the problem of weak correlations between miRNA–target pairs, which

is mainly due to the difference in the magnitude of the expression level. In addition,

besides the miRNA, the impact of lncRNA and mRNA on the interactions in triplets

is also considered to improve the identification sensitivity of LncMiM without reducing

its accuracy. By using LncMiM, a total of 847 lncRNA-associated competing triplets

were found. All the competing triplets form a miRNA–lncRNA pair centered regulatory

network, in which ZFAS1, SNHG29, GAS5, AC112491.1, and AC099850.4 are the

top five lncRNAs with most connections. The results of biological process and KEGG

pathway enrichment analysis indicates that the competing triplets are mainly associated

with cell division, cell proliferation, cell cycle, oocyte meiosis, oxidative phosphorylation,

ribosome, and p53 signaling pathway. Through survival analysis, 107 potential prognostic

biomarkers are found in the competing triplets, including FGD5-AS1, HCP5, HMGN4,

TACC3, and so on. LncMiM is available at https://github.com/xiaofengsong/LncMiM.

Keywords: lncRNA, ceRNA, competing triplet, LncMiM, ovarian cancer

INTRODUCTION

Non-coding RNAs (ncRNAs) were once considered as junk RNAs; however, evidence has
increasingly shown that ncRNAs can perform diverse functions (Slack and Chinnaiyan, 2019; Yao
et al., 2019; Chen et al., 2020; Nair et al., 2020). Among ncRNAs, the most intensively studied
subclass are microRNAs (miRNAs, usually 19–24 nucleotides long), which can regulate gene
expression posttranscriptionally by destabilizing target mRNAs via the RNA-induced silencing
complex (RISC) (Bartel, 2009; Gebert and MacRae, 2019). The miRNA-based regulation has been
reported to be involved in many pathologies including cancer (Peng and Croce, 2016; Dhawan
et al., 2018; Huang et al., 2019). By contrast, the other class of abundant ncRNAs, lncRNAs
(>200 nucleotides long), are still less understood, although much larger numbers of lncRNAs have
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been identified using high-throughput sequencing techniques
in recent years (Fang et al., 2018; Frankish et al., 2019;
Volders et al., 2019). Nevertheless, the existing well-characterized
lncRNAs have demonstrated their important roles in various
critical biological processes, such as chromatin remodeling,
genomic splicing, cell proliferation, and cell differentiation
(Fatica and Bozzoni, 2014; Han and Chang, 2015; Romero-
Barrios et al., 2018; Rossi et al., 2019; Yao et al., 2019). In
addition, dysregulation of lncRNAs is implicated in various
human diseases (Schmitt and Chang, 2016; Bao et al., 2019; Gao
et al., 2019).

Recent studies prove that lncRNAs participate in the
posttranscriptional regulation by acting as competing
endogenous RNAs (ceRNAs) (Song et al., 2017; He et al.,
2019). The lncRNAs that share miRNA response elements
(MREs) with mRNAs can compete for miRNA binding, thereby
alleviating the inhibitory effect of miRNAs on their mRNA
targets. To date, considerable lncRNA-associated competing
triplets (lncRNA–miRNA–mRNA) have been reported to be
involved in cancer progression (Du et al., 2016; Cong et al., 2019;
Wang et al., 2019). For example, the lncRNA MEG3 functions
as a ceRNA of oncogenic miR-181 to regulate gastric cancer
progression (Peng et al., 2015, 3). The lncRNAUCA1 upregulates
the expression of ERBB4 through competitively “sponging” miR-
193a−3p and functions as an oncogene in non-small cell lung
cancer (NSCLC) (Nie et al., 2016, 1). The XIST/miR-92b/Smad7
triplet is found to play an important role in the progression of
hepatocellular carcinoma (Zhuang et al., 2016). Hence, lncRNA
associated competing triplets attract more and more attention in
cancer research.

At present, several computational methods have been
proposed for identifying competing triplets (Le et al., 2017;
Hornakova et al., 2018). In general, people usually use linear
correlations between gene–gene and/or gene–miRNA pairs to
identify ceRNA triplets, since it requires a small sample size and
fewer computations (Wang et al., 2015). However, the linear
correlation-based methods do not measure the impact of the
miRNA on the gene–gene interaction within triplets, resulting in
reduced credibility of competing triplet identification results. In
order to overcome this problem, several methods based on partial
correlation (PC) or conditional mutual information (CMI) have
been developed. Among them, two typical methods are often
employed: sensitivity correlation and HERMES (Sumazin et al.,
2011; Paci et al., 2014). Sensitivity correlation calculates the
difference between linear correlation and partial correlation for
ceRNA pairs, while HERMES calculates the difference in mutual
information for each gene–gene interaction between high and
low miRNA expression levels. Despite the constant increase in
available methods (Wen et al., 2020), identification of competing
triplets through utilizing RNA-seq and miRNA-seq data remains
a challenging issue.

With the widespread application of high-throughput
sequencing technology, a great deal of data has been accumulated
in public databases (Lonsdale et al., 2013; Weinstein et al., 2013).
The increasing data lead to more competing triplets identified
by the existing methods (Wang et al., 2019); however, they also
introduce some new problems needed to be solved. First, the

bigger the data size, the fewer the number of linear correlated
miRNA–gene pairs we could find. It seems that the relationship
between the expression patterns of miRNA and its target gene
is not a linear correlation as assumed by the existing methods.
Second, it is noted that competing gene–gene interactions may
be regulated by several miRNAs, and thus, the increased data
size would make it harder to evaluate the impact of the miRNA
on gene–gene interactions by using PC and CMI. In addition,
besides the impact of the miRNA on gene pairs, the influence of
the gene on the relationship between miRNA and other target
genes should be also considered.

Here, for large data sets, we present a powerful method, named
LncMiM, to identify lncRNA-associated competing triplets with
a new framework addressing the above issues. From the large
scale of gene and miRNA expression profiles derived from the
TCGA database, 847 competing triplets were identified by using
LncMiM, while only a few triplets were identified as competing
ones by linear correlation-based methods. The enrichment
analysis shows that they are mainly involved in cell proliferation
process, cell division process, cell cycle, and ribosome pathways.
Among them, 18 competing triplets were found to be associated
with prognosis in high-grade serous ovarian cancer. Our method
will help in identifying more lncRNA-associated competing
triplets in cancer and may contribute to reveal the potential
post-transcriptional regulatory mechanism of lncRNAs.

MATERIALS AND METHODS

Data Collection and Pre-processing
As shown in Figure 1, paired RNA-seq and miRNA-seq data of
ovarian cancer (379 samples from 373 patients) are downloaded
from the Cancer Genome Atlas (TCGA) (Weinstein et al., 2013).
The RNA-seq data type is “Gene Expression Quantification,” and
its workflow type is “HTSeq-FPKM.” The miRNA-seq data type
is “Isoform Expression Quantification,” and its workflow type is
“BCGSCmiRNA Profiling.” The RPM (reads per millionmapped
reads) value was used to evaluate the expression level of miRNAs.
For different samples from the same patient, we merged them
by calculating the mean FPKM or RPM value for each lncRNA,
mRNA, and miRNA. Finally, we got 376 samples with both the
RNA-seq data and miRNA-seq data.

The annotation files of the protein-coding transcripts and
the long non-coding transcripts were downloaded from the
GENCODE (version 33) database (Harrow et al., 2012). With the
transcript annotation, we extracted the mRNA expression data
and the lncRNA expression data from the RNA-seq data, and the
mRNAs without 3′ UTR annotation were abandoned. Human
miRNA sequences and annotation were downloaded from the
miRBase (release 22.1) database (Kozomara et al., 2019), and the
seed and mature sequences of miRNAs in the miRNA-seq data
were both extracted. In order to reduce the computation burden
and avoid false-positive identification, we filtered out all the
lower expressed RNA (mRNA, lncRNA, and miRNA) based on
an artificial criterion. The remaining expressed RNAs need to be
satisfied with the following conditions: (a) RNA’s expressed value
should be >0 in more than 75% of the 376 samples; (b) RNA’s
expressed value should be >5 in more than 25% of the samples;
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FIGURE 1 | The workflow of LncMiM.

and (c) the expression variation across samples (log2IQR) should
be >0.58. As a result, the expression data of 8,076 mRNAs, 225
lncRNAs, and 387 miRNAs were used for further analysis.

Construction of Candidate Triplets
TargetScan, PITA, and miRanda are three commonly used
methods to predict miRNA–target interactions (Figure 1). Due to
their distinct miRNA-target predicting strategies, these methods
are exclusive to any single one alone (Chiu et al., 2015).
Thus, TargetScan (version 7.2) (Agarwal et al., 2015), PITA
(version 6) (Kertesz et al., 2007), and miRanda (v3.3a) (Miranda
et al., 2006) were all applied to predict miRNA–target genes.
The parameters of TargetScan and PITA were set to the
default values, while the score threshold of miRanda was set
to 120 to get a larger miRNA–target gene pool. In addition,
the experimentally validated miRNA–target interactions derived
from the miRTarBase database (release 8.0) were also added into
the miRNA–target gene dataset (Huang et al., 2020).

The lncRNA–miRNA–mRNA triplets were constructed based
on the interaction relationship of miRNA–lncRNA and miRNA–
mRNA; then the lncRNA and mRNA in each triplet were
extracted as lncRNA–mRNA pairs. The Spearman’s rank
correlation coefficient (SCC) was calculated for the miRNA–
lncRNA, miRNA–mRNA, and lncRNA–mRNA pairs to evaluate
the regulatory relationships between miRNA, mRNA, and
lncRNA in each triplet. Through a rigid screening, only 0.1%
pairs were remained as functional interactions, and the cutoff

values for the miRNA–lncRNA, miRNA–mRNA, and lncRNA–
mRNA pairs are −0.305, −0.311, and 0.520, respectively. Based
on the types of remaining interactions, candidate triplets are
grouped into three classes: I, “lncRNA-centered” triplets with
miRNA–lncRNA and lncRNA–mRNA interactions; II, “miRNA-
centered” triplets with lncRNA–miRNA and miRNA–mRNA
interactions; and III, “mRNA-centered” triplets with miRNA–
mRNA and mRNA–lncRNA interactions.

Workflow of LncMiM for Identifying
Competing Triplets
For identifying competing triplets from the three types of
candidate triplets, specific workflows were respectively built
to evaluate the centered miRNA, lncRNA, and mRNA on
the relationship between the other RNAs (Figure 1). In each
workflow, samples were firstly sorted in an ascending order
based on the expression of the centered RNA in the candidate
triplet. The SCC of the other RNAs was calculated on the
samples within the sliding window, whose size is set to 94
(25% of the total samples) and step is set to 1. And then,
the maximum and minimum SCCs were calculated. Based on
the type of candidate triplets, different filtering criteria were
set to identify competing triplets. For the “lncRNA-centered”
and “mRNA-centered” triplets, their minimum SCC should be
<−0.311 and −0.305, respectively. For the “miRNA-centered”
triplets, their maximum SCC should be more than 0.520. In
addition, the difference between the maximum and minimum
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SCC should be >0.300. Finally, all the candidate triplets
meeting their corresponding filtering criteria were identified as
competing triplets.

In addition, to assess the statistical significance of the
correlation coefficient difference (1Cor), a series of null
hypotheses were tested by measuring the 1Cor distribution over
random conditions. That is, for each candidate triplet, two non-
overlapping sample subsets were randomly chosen from the
complete dataset, rather than based on the expression of miRNA,
and then the correlation coefficient and1Cor were calculated for
these two random sample subsets. This process was repeated 100
times. The p-value is defined as the fraction of 1Cor in random
condition that was larger than that on the specified conditions
mentioned above; p-values were Bonferroni-corrected for the
total number of candidate triplets. The triplets with adjusted
p-values <0.01 are statistically significant.

Functional and Survival Analysis of the
Competing Triplet
With the competing triplets, the integrative regulatory network
was built and visualized by Cytoscape (Shannon et al., 2003). The
size of the node and the width of the line are determined by
the number of competing triplets containing them. The circular
layout was produced by using the yFiles layout Algorithms.
DAVID 6.8 (https://david.ncifcrf.gov) was used to perform the
enrichment analysis of biological processes and KEGG pathways
(Huang et al., 2009). For the enriched biological process terms,
their adjusted p-values should be <0.05.

The clinical profiles of 373 patients with high-grade serous
ovarian cancer were downloaded from the TCGA database. The
patients’ ID, age at initial pathologic diagnosis, vital status, days
to death, days to last follow-up, neoplasm histologic grade, and
clinical stage were extracted from the clinical profiles. Based on
data integrity, 369 patients’ clinical data were screened out for
the following survival analysis. The days to death together with
the days to last follow-up make up the overall survival time of
patients. Both the single variate andmultivariate survival analyses
used the Cox proportional hazards (PH) regression. In addition,
to investigate the impact of specific genes on the survival
time, patients were classified into different groups through four
ways based on their expression levels. The survival analysis
and visualization were performed by using the “survminer”
R package.

RESULTS

Investigation of the Expression
Relationship Between miRNA and Target
Gene
In general, miRNAs are assumed to be linearly correlated with
their target genes. Thus, the Pearson correlation coefficient
(PCC) was initially used to identify negatively correlated
miRNA–mRNA and miRNA–lncRNA pairs. With the threshold
of −0.30, from the 74,086 miRNA–lncRNA pairs and 2,608,237
miRNA–mRNA pairs (Figures 2A,E), only 3 miRNA–lncRNA
pairs and 443 miRNA–mRNA pairs were found to be negatively

correlated, which are far less than expected. As shown in
Figure 2B, there is a negative regulatory relationship between
miR-509-3p and POSTN, but the PCC is only −0.234. Similarly,
miR-224-5p is also shown to be negatively correlated with
MIR100HG; their PCC is −0.263 (Figure 2E). If the expression
values were normalized by a logarithmic transformation,
however, the PCCs of miR-509-3p–POSTN and miR-224-
5p–MIR100HG change to −0.638 and −0.374, respectively
(Figures 2C,F). As shown in Figures 2G,I, after the logarithmic
transformation, more negatively correlated miRNA–target gene
pairs were detected. In addition, with the increase in the sample
size, the number of negatively correlated miRNA–lncRNA
pairs (PCC < −0.3, P-value < 0.05) significantly decreases
(Figure 2H). These results implied that PCC is not appropriate
for the evaluation of the regulatory relationship between miRNA
and target gene, especially for large sample data.

Here, we assumed that the relationship between miRNA
and the target is not linear. As shown in Figures 2B,C,E,F,
as compared with the PCC, the SCC is more accurate for
assessing the relationship between miRNA and the target. In
addition, the SCC is less affected by the sample size (Figure 2H)
and can detect more negatively correlated miRNA–target gene
pairs (Figure 2I). Thus, the SCC was used to screen negatively
correlated miRNA–target pairs. From the 74,086 miRNA–
lncRNA pairs and 2,608,237 miRNA–mRNA pairs, only 0.1%
were respectively screened out as the negatively correlated
miRNA–target pairs. A total of 72 negatively correlated miRNA–
lncRNA pairs and 2,608 negatively correlated miRNA–mRNA
pairs were selected, respectively, with the thresholds −0.311 and
−0.305. Besides the miRNA–target pairs, with threshold 0.52,
1,806 positively correlated mRNA–lncRNA pairs were screened
out from 1,816,605 candidate mRNA–lncRNA pairs.

Investigation of the Impact on Pairwise
Interaction by the Other One in Triplets
With the strictly selected negatively and positively correlated
interactions, 256 competing triplets can be found by using the
traditional strategy. If a miRNA is negatively correlated to two
positively correlated target genes, then they form a competing
triplet. As this traditional strategy ignores the mediating effect of
miRNA on the positive relationship between target genes, several
competing triplets may be fake ones. For example, miR-185-3p
is negatively correlated to the two positively correlated target
genes (Figures 3A–C); however, the positive correlation between
SNHG29 and RPLP0 is not related to miR-185-3p (Figure 3D).
According to the ceRNA hypothesis, SNHG29–miR-185-3p–
RPLP0 is a fake competing triplet. Thus, the impact of miRNA
on the interaction between ceRNA pairs should be considered.

To determine whether the interaction between target genes is
derived from their relationship with miRNA, a commonly used
method is to compare the correlation coefficients of target gene
pairs under conditions of high and low miRNA expression levels.
Accordingly, the differences of lncRNA–mRNA pairs’ SCCs on
the first and last quarter of samples sorted by miRNA expression
were calculated, and 15 of the 256 competing triplets were
identified to be true. A hidden hypothesis of this method is that
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FIGURE 2 | Investigation of the correlation between miRNA and the target. (A) The Venn diagram of miRNA–mRNA pairs. (B) The scatter plot of miR-509-3p and

POSTN. (C) The scatter plot of miR-509-3p and POSTN after logarithmic transformation. (D) The Venn diagram of miRNA–lncRNA pairs. (E) The scatter plot of

miR-224-5p and MIR100HG. (F) The scatter plot of miR-224-5p and MIR100HG after logarithmic transformation. (H) The density distribution of the correlation

between miRNA and lncRNA. PCC, Pearson correlation; PCC(log), Pearson correlation after logarithmic transformation; SCC, Spearman correlation. (G) The influence

of the sample size on the identification of the negatively correlated miRNA–lncRNA pairs. Negative correlation: cor(miRNA,lncRNA) <−0.3, p-value <0.05. (I) The

counts of correlated miRNA–lncRNA, miRNA–mRNA, and lncRNA–mRNA calculated on 376 ovarian cancer samples.

the strength of the interaction between lncRNA and mRNA is
linearly correlated with the miRNA expression level. However,
according to the ceRNA hypothesis, both extremely high and
extremely low miRNA expressions would impair the interaction
between ceRNA pairs and even make them unrelated with
each other. For example, miR-151a-3p is negatively correlated
to the two positively correlated target genes (Figures 3E–G).
The SCC between TRAPPC1 and SNHG29 is not linearly
correlated with the expression level of miR-151a-3p (Figure 3H).
The SCC achieves the maximum value at about the median

miRNA expression level. Therefore, in LncMiM, all the miRNA
expression levels, rather than only the highest and lowest ones,
are considered when evaluating the impact of miRNA on the
interaction between target gene pairs.

Besides the impact of miRNA on the lncRNA–mRNA
interaction, lncRNA andmRNA can also affect themiRNA–target
interactions. As shown in Figure 4, miR-151a-3p is negatively
correlated to the two positively correlated target genes (RPS6 and
SNHG29). The SCC between RPS6 and SNHG29 is significantly
changed with the rise of miR-151a-3p expression levels
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FIGURE 3 | The impact of miRNA on the interaction between ceRNA pairs in triplets. (A) The scatter plot of miR-185-3p and RPLP0. (B) The scatter plot of SNHG29

and RPLP0. (C) The scatter plot of miR-185-3p and SNHG29. (D) The impact of miR-185-3p on the SNHG29–RPLP0 interaction. (E) The scatter plot of

miR-151a-3p and TRAPPC1. (F) The scatter plot of SNHG29 and TRAPPC1. (G) The scatter plot of miR-151a-3p and SNHG29. (H) The impact of miR-151a-3p on

the SNHG29–TRAPPC1 interaction.

(Figure 4E). Moreover, the correlation relationship between
RPS6 and miR-151a-3p is impacted by the SNHG29 (Figure 4D),
and the interaction between SNHG29 and miR-151a-3p is
influenced by the RPS6 (Figure 4F). As the pairwise interactions
are impacted by the other one in the triplets, it is not enough
to assess the real relationship between each pair only based
on their own expression profiles, especially when the sample
size is very large. The triplet with two correlated pairs may
also be a competing triplet; thus, three types of candidate
triplets were analyzed in LncMiM. Using the selected miRNA–
target and lncRNA–mRNA pairs, 2060 “miRNA-centered”
triplets, 1944 “lncRNA-centered” triplets, and 1537 “mRNA-
centered” triplets were assembled. By using LncMiM, 231
“miRNA-centered” triplets, 339 “lncRNA-centered” triplets, and
439 “mRNA-centered” triplets were identified as competing
triplets (Supplementary Table 1). In total, 847 competing
triplets were found, including 38 miRNAs, 36 lncRNAs, and
236 mRNAs.

Functional Analysis of the
lncRNA-Associated Competing Triplets in
Ovarian Cancer
In the competing triplets, a considerable number of lncRNAs,
miRNAs, and mRNAs have been reported to be associated with

ovarian cancer. By searching related literature and databases,
about 30% lncRNAs have been verified to play roles in the
regulation of proliferation, invasion, and migration of ovarian
cancer cells, including ZFAS1, SNHG1, GAS5, EMX20S, GIHCG,
TP53TG1, EPB41L4A-AS1, SNHG8, SNHG6, and HCP5 (Zhan
et al., 2018; Gao et al., 2019; Wu et al., 2019; Miao et al.,
2020; Wang et al., 2020). In addition, some lncRNAs (e.g.,
SNHG29, FGD5-AS1, TRIM52-AS1, EPB41L4A-AS1, RNASEH1-
AS1, SNHG7, SPINT1-AS1, MAPKAPK5-AS1, and PITPNA-
AS1) are reported to be involved in other types of cancers
(Wang et al., 2018; Gao et al., 2019, 2; Han et al., 2019;
Zhou et al., 2020). Through retrieving the miRCancer database
(version june2020) (Xie et al., 2013), 60.5% miRNAs in the
competing triplets have been proved to be associated with
ovarian cancer. In the mRNAs, 29 ovarian cancer oncogenes
were found by searching the OCGene database (Liu et al.,
2015). These results indicate that the lncRNA-associated
competing triplets play important roles in the progression of
ovarian cancer.

To analyze the regulatory relationship between lncRNA,
miRNA, and mRNA in ovarian cancer, a comprehensive
network was established through combining the 847 lncRNA-
associated competing triplets (Figure 5A). In the network,
310 nodes are connected by 1,182 edges, including 132
miRNA–lncRNA edges, 539 miRNA–mRNA edges, and 511
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FIGURE 4 | The pairwise interaction impacted by the other one in triplets. (A) The scatter plot of miR-151a-3p and RPS6. (B) The scatter plot of SNHG29 and RPS6.

(C) The scatter plot of miR-151a-3p and SNHG29. (D) The impact of SNHG29 on the miR-151a-3p–RPS6 interaction. (E) The impact of miR-151a-3p on the

SNHG29–RPS6 interaction. (F) The impact of RPS6 on the miR-151a-3p–SNHG29 interaction.

lncRNA–mRNA edges. Among them, the top 10 nodes with
most connections are miR-151a-3p, ZFAS1, SNHG29, miR-185-
5p, GAS5, AC112491.1, let-7e-5p, miR-664a-3p, AC099850.4,
and miR-15b-3p. The top 10 edges connected with most nodes
are miR-151a-3p–AC112491.1, miR-185-5p–ZFAS1, miR-185-
5p–SNHG29, miR-151a-3p–GAS5, let-7e-5p–ZFAS1, miR-664a-
3p–AC026401.3, miR-151a-3p–SNHG29, miR-151a-3p–ZFAS1,
miR-664b-3p–AC099850.4, andmiR-15b-3p–GAS5. Based on the
connections, the nodes are divided into two groups. The small
group is mainly regulated by the miR-664a-3p and AC026401.3
pair, while the ribosome protein-related mRNAs are all located in
the large group.

Among the mRNAs, there are 39 RPL and 27 RPS genes,
which indicates that the triplets are involved in the ribosome
biogenesis. Except the RPs, the GO biological process enrichment
analysis of the other genes shows that the competing triplets
are also involved in cell division, cell proliferation, regulation
of cell cycle, anaphase-promoting complex-dependent catabolic
process, cytokinesis, chromosome segregation, and other nine
processes related with cell mitosis (Figure 5B). In addition, the
competing triplets are found to be mainly enriched in five
KEGG pathways, including cell cycle, oocyte meiosis, oxidative
phosphorylation, p53 signaling pathway, and progesterone-
mediated oocyte maturation (Figure 5C). All the results suggest
that the lncRNA-associated competing triplets mediate ovarian
cancer progression through regulating ribosome biogenesis, cell
cycle, cell division, and cell proliferation, and they may be

associated with survival in patients with high-grade serous
ovarian cancer.

Identification of Potential Prognostic
Competing Triplets
The Cox PH analysis was used to identify survival time associated
miRNAs, mRNAs, and lncRNAs in the competing triplets. The
result of univariate Cox PH analysis indicates that the lncRNA
FGD5-AS1 (p = 0.0008) is a potential prognostic biomarker
for all patients with ovarian cancer. For patients in grade G2,
C12orf45, NDUFB8, POLR2J, SNRPE, and SNRPF are found to
be associated with survival time (p < 0.001). By multivariate
analysis with patient age at diagnosis, more potential prognostic
biomarkers are found, including FGD5-AS1, GABPA, MRPS27,
NR1D2, and NR2C2. For patients in grade G2, only SNRPF is
related to the survival time with the diagnosis age. For patients
in grade G3, FGD5-AS1, LETMD1, MAPKAPK5-AS1, MRPS27,
and SDHC are screened out as prognostic biomarkers with the
diagnosis age. FGD5-AS1 andMRPS27 are found to be associated
with the survival time of patients in stage IIIC, while B9D1,
RNASEH1-AS1, SPINT1-AS1, and ZWINT are associated with
the survival time of patients in stage IV. The association between
the survival time and the triplet was also evaluated by using
multivariate Cox PH analysis.With the threshold p< 0.001, miR-
224-5p/AL354892.2/ZBTB12 is found to be survival associated
competing triplets. Considering the age of the patient at the
initial pathologic diagnosis, 18 competing triplets are found to
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FIGURE 5 | Comprehensive analysis of the lncRNA-associated competing triplets. (A) The regulatory network consists of all the competing triplets. (B) GO biological

process enrichment analysis. (C) KEGG pathway enrichment analysis.

be associated with the overall survival time of patients in ovarian
cancer, including miR-224-5p/AL354892.2/ZBTB12, miR-3653-
3p/FGD5-AS1/NR1D2, miR-224-5p/AC112491.1/NDUFB8, and
so on (Supplementary Table 2).

In addition, the Kaplan–Meier survival analysis was also
performed to evaluate the potential prognostic power ofmiRNAs,
lncRNAs, and mRNAs in the competing triplets. Considering the
large data size, for each gene, the tumor samples were divided into
two or three groups according to their expression levels by four
ways (Figure 6A). By different grouping modes, a total of 107
RNAs are found to be associated with survival time, including 13
miRNAs, 10 lncRNAs, and 84 mRNAs (Supplementary Table 3).
As show in Figure 6B, each grouping mode has its unique results.
Especially, the grouping mode b has the least common results
with the other modes, which indicates that there is a more
complicated relationship between the patient survival time and
the gene expression value. For each grouping mode, the most
significant genes are HMGN4, TACC3, RNF111, and VGLL4
(Figures 6B,C,E,F). The survival associated genes are involved in
368 competing triplets, which are found to be enriched in cell
division, cell proliferation, ribosome, and cell cycle.

DISCUSSION

In this study, TargetScan, PITA, miRanda, and miRTarBase
were used together to predict miRNA–target pairs, and a
total of 2,608,237 miRNA–mRNA and 74,086 miRNA–lncRNA

interactions were found (Supplementary Table 4). As shown
in Figures 2A,D, each tool exclusively predicted a fraction
of miRNA–target interactions. Although a vast number of
miRNA–target interactions were predicted by TargetScan, PITA,
and miRanda, there are still several experimentally validated
miRNA–target interactions predicted by none of these tools.
miRNA–mRNA pairs together with miRNA–lncRNA pairs could
construct a huge number of triplets (∼1.69E+9). Considering
the computation and time cost, miRNA–target pairs were firstly
filtered by correlation relationships.

Through the miRNA–target relationship, 1,816,605 indirect
interactions betweenmRNA and lncRNAwere established. Based
on the linear relationship calculated by the PCC, 3 negatively
correlated miRNA–lncRNA pairs (PCC = −0.3), 443 negatively
correlated miRNA–mRNA pairs (PCC = −0.3), and 27,897
positively correlated lncRNA–mRNA pairs (PCC > 0.3) were
screened out. With the linearly correlated pairs, 64 competing
triplets were established. The impact of miRNA on the linear
relationship between lncRNA and mRNA was only found in
seven competing triplets. In contrast, based on the non-linear
relationship assessed by the SCC, 89 negatively correlated
miRNA–lncRNA pairs (SCC=−0.3), 3,586 negatively correlated
miRNA–mRNA pairs (SCC < −0.3), and 33,267 positively
correlated lncRNA–mRNA pairs (SCC > 0.3) were screened out.
Comparing with the PCC, more negatively correlated miRNA–
target pairs are found by the SCC.

In most of the scatter plots of the negatively correlated
miRNA–target pairs, the points are mainly located in the
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FIGURE 6 | Survival analysis of competing triplets. (A) Four grouping modes. (B) The Kaplan–Meier curve of HMGN4 with mode a. (C) The Kaplan–Meier curve of

TACC3 with mode b. (D) The Venn diagram of survival associated genes with four grouping modes. (E) The Kaplan–Meier curve of RNF111 with mode c. (F) The

Kaplan–Meier curve of VGLL4 with mode d.

bottom left corner, which looks like a triangle other than a
line (Figure 2E). By comparison, after normalizing expression
values by a logarithmic transformation, the points become more
dispersed and scatter around a line. This result indicates that the
linear correlation between miRNA and the target is impacted by
the large span of the expression values, which is brought by the
large sample size. In addition, the different orders of magnitude
of the expression value between miRNA and the target gene
are also an impact factor. The expression value of miRNA is
calculated by RPM (max value: 8.23E5), while the expression
values of mRNA and lncRNA are calculated by FPKM (max value
of mRNA: 2.15E4, max value of lncRNA: 1.85E3). Therefore, it is
better to assess the relationship betweenmiRNA and the target by
the non-linear correlation, especially on the large scale of data.

The bigger the size of the patient data, the more complex the
relationships between ceRNAs we can observe. According to the
ceRNA hypothesis, the strength of the competing relationship
between ceRNAs is not constant but depends on the amount
of miRNA (Figures 3H, 4E). Similarly, the strength of the
interaction between miRNA and ceRNA is also impacted by the
amount of the other ceRNA (Figures 4D,F). In 231 competing
triplets, miRNAs are negatively correlated to the mRNAs and
lncRNAs. Although the positive correlation between mRNA and
lncRNA is not significant on the whole samples, their correlation
is changed with the expression level of miRNA, and a significant
positive correlation can be observed on a specific subset of
samples. In 778 competing triplets, the negative correlation
between miRNA and ceRNA is not significant on the whole

samples, but there is a significant negative correlation on a
specific subset of samples, and the correlation is influenced
by the other ceRNA. Thus, besides the impact of miRNA on
the interaction between ceRNAs, the impact of ceRNA on the
correlation between miRNA and other ceRNAs should also
be considered.

However, there is still no method considering the impact of
both the miRNA and the ceRNAs when identifying competing
triplets. The method, sensitivity partial Pearson correlation
(SPPC), only estimates the impact (sensitivity) of miRNA on
the interactions between ceRNAs (Paci et al., 2014). However,
when using SPPC on “miRNA-centered” candidate triplets, no
competing triplets were identified. JAMI is a conditional mutual
information-based method, which can only estimate the impact
of ceRNA on the interaction between miRNA and other ceRNAs
(Hornakova et al., 2018). With JAMI, 87 competing triplets were
filtered out from 1,507 “mRNA-centered” candidate triplets, and
385 competing triplets were identified from 1,944 “lncRNA-
centered” candidate triplets. The JAMI results only show that the
centered ceRNA has a significant influence on the relationship
between miRNA and the other RNA in a candidate triplet,
but it is still unknown if the other RNA is a ceRNA that
should be negatively correlated with miRNA. In addition, the
SNHG29/miR-151a-3p/RPS6 competing triplet is not identified
by JAMI (Figure 4).

Considering the drawbacks of the existing tool, we developed
a novel method named LncMiM to identify lncRNA-associated
competing triplets in ovarian cancer. Besides the impact
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of miRNA on the interaction between ceRNA pairs, the
impact of ceRNA on the interaction between miRNA and the
other ceRNA is also used to identify competing triplets. As
compared with other tools, LncMiM shows better performance
(Supplementary Table 5). By using LncMiM, 231 competing
triplets were identified from 2,060 “miRNA-centered” candidate
triplets, 339 competing triplets were identified from 1,944
“lncRNA-centered” triplets, and 439 competing triplets were
identified from 1,507 “mRNA-centered” triplets. In final, a
total of 847 lncRNA-associated competing triplets were found.
The functional enrichment analysis shows that the competing
triplets are mainly involved in cell division, cell proliferation,
and regulation of cell cycle. The KEGG pathway analysis
shows that they are associated with ribosome, cell cycle, oocyte
meiosis, oxidative phosphorylation, p53 signaling pathway, and
progesterone-mediated oocyte maturation. Among them, 18
competing triplets are found to be significantly correlated with
the overall survival in ovarian cancer.
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