
ORIGINAL RESEARCH
published: 19 February 2021

doi: 10.3389/fgene.2020.607798

Frontiers in Genetics | www.frontiersin.org 1 February 2021 | Volume 11 | Article 607798

Edited by:

Shuai Cheng Li,

City University of Hong Kong,

Hong Kong

Reviewed by:

Hugo Tovar,

Instituto Nacional de Medicina

Genómica (INMEGEN), Mexico

Minghui Li,

Soochow University, China

*Correspondence:

Yannan Bin

ynbin@ahu.edu.cn

Specialty section:

This article was submitted to

Systems Biology,

a section of the journal

Frontiers in Genetics

Received: 18 September 2020

Accepted: 30 December 2020

Published: 19 February 2021

Citation:

Zhang D and Bin Y (2021)

DriverSubNet: A Novel Algorithm for

Identifying Cancer Driver Genes by

Subnetwork Enrichment Analysis.

Front. Genet. 11:607798.

doi: 10.3389/fgene.2020.607798

DriverSubNet: A Novel Algorithm for
Identifying Cancer Driver Genes by
Subnetwork Enrichment Analysis
Di Zhang 1 and Yannan Bin 2*

1College of Information Engineering, Shaoguan University, Shaoguan, China, 2 Institutes of Physical Science and Information

Technology, Anhui University, Hefei, China

Identification of driver genes frommass non-functional passenger genes in cancers is still

a critical challenge. Here, an effective and no parameter algorithm, named DriverSubNet,

is presented for detecting driver genes by effectively mining the mutation and gene

expression information based on subnetwork enrichment analysis. Compared with the

existing classic methods, DriverSubNet can rank driver genes and filter out passenger

genes more efficiently in terms of precision, recall, and F1 score, as indicated by the

analysis of four cancer datasets. The method recovered about 50% more known cancer

driver genes in the top 100 detected genes than those found in other algorithms.

Intriguingly, DriverSubNet was able to find these unknown cancer driver genes which

could act as potential therapeutic targets and useful prognostic biomarkers for cancer

patients. Therefore, DriverSubNet may act as a useful tool for the identification of driver

genes by subnetwork enrichment analysis.

Keywords: cancer, driver gene, multi-omics data, neighbor network, TCGA

INTRODUCTION

Cancer is a globally prevalent threat to the overall survival of patients, and is driven by a few
important cancer genes, viz., driver genes (Dinstag and Shamir, 2019). Oncogenic mutations on
driver genes contribute to abnormal cell proliferation and tumor development. Most other genes
undergoing mutations due to genomic instability caused by driver genes, termed passenger genes,
are neutral, and do not lead to any cancerous growth (Di Zhang et al., 2016; Yue et al., 2018). Thus,
increasing efforts are being made to recognize these driver genes for developing a better elucidation
regarding cancer initiation and progression. There are some systemic cancer genomics research
projects, such as The Cancer Genome Atlas (TCGA), which is a public free platform and provides
data on 33 cancer types for cancer research.

Computational patterns have been developed to screen driver genes by distinguishing them from
passenger genes through mutation frequency. For instance, MuSiC adopts a statistical approach to
detect driver genes with significantly high mutative rates (Dees et al., 2012). DeepDriver employs
deep learning to identify driver genes by estimating the functional impact of mutations (Luo et al.,
2019). However, these methods are based on mutation frequency, and do not uncover driver genes
which carry few variants. Recently, researchers realize that genes cooperate with each other in
cancer progression through biological pathways, and detection of driver genes by pathway- or
network-based pipelines is emerging with a high speed (Hou et al., 2018). These studies revealed
that functional networks could be available for identifying driver genes without consideration of
mutation frequency. They concentrate on uncovering cancer associated core modules consisting
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of gene-sets rather than a single gene critical to tumor
progression. The lack of prioritization in this approach is
a shortcoming from the considerations of clinical treatment,
particularly when the predicted driver gene set contains more
than one gene.

To solve this situation, many algorithms have been developed
to rank the candidate genes (Hou and Ma, 2014; Dinstag and
Shamir, 2019; Hristov et al., 2020). For instance, HotNet2
identifies rare mutations across pathways and protein-protein
interaction (PPI) networks using the heat-diffusion theory
(Leiserson et al., 2015). DriverNet also consolidates PPI and
gene expression data to uncover driver genes (Bashashati
et al., 2012). DawnRank method adopts Google’s PageRank
algorithm and ranks an individual’s mutated gene profile by
means of measuring the effect of each mutated gene on the
differentially expressed genes (DEGs) (Hou and Ma, 2014).
MUFFINN algorithm evaluates the significance of mutations
on neighboring genes in the specific network, demonstrating
excellent predictive performance in a large number of patients
(Cho et al., 2016). MaxMIF tries to find driver genes by evaluating
the impact of single nucleotide variants on transcriptional
networks (Hou et al., 2018). Nevertheless, the false positive rates
of the current existing computational algorithms need to be
further reduced.

Here, we have designed an effective algorithm, called
DriverSubNet, which has the ability of prioritizing driver genes.
In this approach, the driver genes were scored by combining
their influence on DEGs in each neighbor subnetwork and their
mutation frequency. These pipelines are based on enrichment of
subnetworks, where each subnetwork may reflect the situation
of dysregulated biological process in tumor. Thus, the extent to
which a given driver gene explains multiple functional biological
process deregulations serves as a proxy for the likelihood that
this gene is indeed the driver. Our algorithm views that driver
genes affect the deregulations of other genes in the functional
biological processes. Besides, mutation recurrence makes a vital
contribution on detecting high frequency mutated drivers. In
fact, the true cancer drivers have good connectivity to these
functional biological processes, and our algorithm aims to
measure such connections directly via subnetwork enrichment
and the impact of mutations.

MATERIALS AND METHODS

Data Collection
For four cancer types, including thyroid carcinoma (THCA),
kidney renal clear cell carcinoma (KIRC), and breast cancer
(BRCA) and Head-Neck Squamous Carcinoma (HNSC), somatic
mutations, somatic copy number alterations (SCNAs), and
RNA-seq expression data belong to the TCGA (Weinstein
et al., 2013) platform, downloaded from the UCSC data portal

Abbreviations:TCGA, The Cancer GenomeAtlas; SCNAs, Somatic CopyNumber

Alterations; THCA, Thyroid Carcinoma; KIRC, Clear Cell Kidney Carcinoma;

BRCA, Breast Cancer; HNSC, Head-Neck Squamous Carcinoma; CGC, Cancer

Gene Census; FG, Functional Set; DEGs, Differentially Expressed Genes; PPI,

Protein-Protein Interaction.

(http://xena.ucsc.edu/) (Rosenbloom et al., 2015). Undirected
interaction network information was collected from the Human
Protein Reference Database (HPRD) release 9 (Keshava Prasad
et al., 2009). HPRD is a comprehensive resource for studying the
human proteome, and the proteins have been manually extracted
from the literature by expert biologists. In the mutation matrix,
where a row denotes a gene, and a column denotes a patient, if
a gene exists the mutations (e.g., SCNAs, small insertions, and
small deletions), which was marked as one, otherwise marked
as zero. Gene expression profiles from control samples were
also used for differential expression analysis. The details of the
data can be seen in Supplementary Table 1. To evaluate the
performance of our results, we obtained the set of all 723 entries
from the Cancer Gene Census (CGC, Accessed on: 01/30/2020)
(Tate et al., 2019). Functional gene sets were collected from
literature (Ge et al., 2018; Malta et al., 2018; Sanchezvega
et al., 2018) and the Atlas of Cancer Signaling Network website
(https://acsn.curie.fr/ACSN2/ACSN2.html), which includes data
for various pathways including ubiquitin pathway, DNA repair
pathway, TGF-beta signaling, and oncogenic signaling pathway.
Finally, we used the Functional Set (FG) with 3,681 functional
genes to represent the functional biological processes.

Evaluation Criteria
The performance of algorithms for prioritizing candidate genes
was widely adopted the following criteria: precision, recall,
and the F1 score (Bashashati et al., 2012; Hou and Ma,
2014). MUFFINN, Dawnrank, and DriverNet were the state of
art methods to be compared with other algorithms. We use
MUFFINN algorithm based on NDmax and HumanNet. One
hundred top-ranked candidate genes were selected to compare
the state-of-art methods (Hui et al., 2019). The following
evaluation criteria were used to assess the ability of a method to
identify real driver genes from the top-ranked candidates.

Precision =
(# Genes in CGC) ∩ (#Genes found in our method)

(#Genes found in our method)

Recall =
(#Genes in CGC) ∩ (#Genes found in our method)

(#Genes in CGC)

F1 sore = 2×
Precision× Recall

Precision+ Recall

Scoring Scheme of DriverSubNet
A schematic diagram of our DriverSubNet pipeline consists of
four steps (Figure 1). Firstly, differential expression analysis was
carried out statistical analysis by using the DEseq2 package in R
(version 3.6). All genes with adjusted p < 0.05 were considered
as DEGs. Secondly, DEGs and mutated genes were mapped to
HPRD interaction network. For each mutated gene in HPRD
network, mutated gene and its directly connected neighbor genes
consist of the adjacent neighbor subnetwork, and the central gene
is mutated gene in subnetwork. Thirdly, for each subnetwork,
we want to evaluate whether the subnetwork have an impact on
vital biological process. For DEGs in subnetwork, we measure
whether these DEGs were enriched the FG. If these DEGs were
significantly enriched FG, it represents that the subnetwork
tends to play a crucial role in cancer progression. In our result,

Frontiers in Genetics | www.frontiersin.org 2 February 2021 | Volume 11 | Article 607798

http://xena.ucsc.edu/
https://acsn.curie.fr/ACSN2/ACSN2.html
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Zhang and Bin DriverSubNet: Identifying Cancer Driver Genes

FIGURE 1 | The pipeline of DriverSubNet. Differential expression analysis was performed using the DESeq2 package. All genes with adjusted p < 0.05 were

considered as DEGs. DEGs and mutated genes were mapped to the network. We extract a neighbor subnetwork from the protein interaction network for each

mutated gene, where a gene and its neighbor genes together consisted of an adjacent neighbor subnetwork. We then evaluate whether the subnetwork is deregulated

subnetwork by enrichment analysis. An enrichment score ESg was obtained by evaluating the functional significance of the central gene in each neighbor subnetwork.

Each center gene with an enrichment score ESg was calculated. Finally, candidate genes were ranked according to their overall mutational influence scores and ESg.

enrichment p-value of DEGs was set as 5E-6 across four datasets
and the recall value of recognizing known cancer genes in the
top 100 genes achieved high. If the enrichment p-value of DEGs
<5E-6 and the subnetwork consist of more than two genes,
the subnetwork was regarded as a deregulated subnetwork. To
assess the impact of mutated gene in the deregulated subnetwork,
we calculated the mutated impact score ESg. We performed
the enrichment analysis using the fisher.test function in R
(version 3.6), and then transformed it using -log function. It was
computed as follows:

ESg = −log









1−

m−1
∑
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(
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i

) (

N −M
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)

(
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)









where N represents the total genes in each subnetwork,
n represents the number of DEGs in the subnetwork, M
represents the overlap with DEGs and functional gene set in
each subnetwork, and i represents the overlap with DEGs and
functional gene set.

Then, in view of combing the effect of gene expression and
gene mutations can improve the performance of algorithms
(Hou and Ma, 2014), and mutation recurrence makes a vital
contribution on detecting high frequency mutated drivers, we
also considered mutation frequency in our approach to uncover
the most functional drivers in a large number of patients.
We evaluated the significance of mutated genes based on the
mutation frequency. We calculate the number of mutations
according to the mutation matrix, then we normalized the
number of mutations, then the value is range 0–1. Finally, we
computed a score for every candidate gene by averaging the
normalized ESg gene score in the deregulated subnetwork and
the normalized gene mutational scores. Candidate genes were

ranked according to their overall scores. The score of candidate
driver gene score was calculated as follows:

Score = (
ESg − µESg

σESg
+

dMF − µMF

σMF
)/2

where µESg is the expected mean of ESg, and σESg is the standard
deviation of ESg, dMF is the number of patients with mutated
genes, µMF is the expected mean of dMF , and σMF is the standard
deviation of dMF .

Functional Enrichment Analysis
To understand the features detected in our results, we used the
R package and found significant enrichment of these uncovered
top 100 genes in terms of biological process. Briefly, biological
process termswere annotated according to statistical significance.
Enrichment was calculated through the hypergeometric test with
p< 0.05, and following which top 100 most significant categories
were selected.

Survival and Drug Analysis
We used the online tool for analyzing patient survival via
its standard processing pipeline GEPIA (Zefang et al., 2017).
The drug information for genes was obtained from the Drug
Gene Interaction database (DGIdb) (Cotto et al., 2018). DGIdb
is comprehensive catalog of druggable genes (i.e., genes with
directed pharmacotherapy) and drug-gene interactions database,
which integrates existing 30 sources (DrugBank, PharmGKB,
Chembl, Drug Target Commons, TTD, and others) and collects
56,309 drug-gene interactions. Drug-gene interactions represents
that genes or gene products are known or predicted to interact
with drugs, and the genemight be targeted therapeutically. In our
study, we use DGIdb to analyze whether these identified genes are
clinically relevant genes.
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FIGURE 2 | Performance comparison with CGC in terms of precision, F1 score, and recall of Dawnrank and DriverNet methods on (A) BRCA, (B) HNSC, (C) KIRC,

and (D) THCA datasets.

RESULTS

Performance Evaluation for Known
Cancer-Related Genes
Here, we adopt a subnetwork analysis with PPI information. The
core of algorithm is a local subnetwork model, which views that
a driver gene can be detected by aggregating its involvement in
functional biological process from a central gene and its direct
neighbor DEGs. We applied DriverSubNet to four datasets from
BRCA, THCA, KIRC, and HNSC, respectively, which the cancer
type is randomly chose. Then, we evaluate the effectiveness of our
method, MUFFINN, Dawnrank, and DriverNet algorithms.

The performances of DriverSubNet, MUFFINN, Dawnrank,
and DriverNet methods were compared on the basis of
precision, recall, and F1 scores for the top 100 genes. In
general, DriverSubNet outperformed MUFFINN, Dawnrank,
and DriverNet methods in all four cancer datasets with
gold standard CGC dataset (Figure 2). Especially the most of
candidate genes were overlapped with CGC in the top 100 driver
genes using the DriverSubNet method across four datasets. It
suggests that DriverSubNet is robust and has an excellent ability
of identifying driver genes. Although the Dawnrank method
performed better ability than other algorithms in ranking the
top 12 genes in THCA, it had a poorer ability in KIRC. The
reason for this phenomenonmay be the different number of gene
mutations and the variety of gene expression levels across the

four cancer types. DriverSubNet is easier to evade the number of
mutation noise and expression than other methods. For example,
DriverSubNet was able to recover most of known cancer driver
genes in the top 100 detected genes across four datasets, while the
percentage of known cancer driver genes in the top 100 detected
genes using Dawnrank and DriverNet is sensitive to cancer
type. This may lead to Dawnrank have a good performance
in THCA, while bad performance in KIRC. In KIRC, although
some known drivers were found by these three methods,
DriverSubNet uncovered significant famous driver genes, such as
EGFR, which was ranked the 16th, and it were not detected by
either Dawnrank or DriverNet or MUFFINN method as the top
ranking drivers.

Novel Candidate Genes Predicted by
DriverSubNet
To evaluate the performance of algorithm, precision, recall, and
F1 score are widely used to analyze the top 100 genes. In our
result, we identified some genes that were not known cancer
driver genes. It is essential to explore whether these genes have a
potential relationship with cancer. Previous study has suggested
that high-ranking unknown cancer driver genes have a potential
to be novel driver genes (Hou and Ma, 2014). In our study, we
used the top 10 genes to detect some unknown cancer driver
genes which have a potential to be novel driver genes.
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FIGURE 3 | Prognostic value of six genes in cancer patients. (A) PTK2 in BRCA. (B) GNB2L1 in KIRC. (C) PRKCD in KIRC. (D) FYN in KIRC. (E) NR3C1 in KIRC.

(F) GRB2 in KIRC.

For the BRCA dataset, 48 genes overlapped with CGC for the
top 100 candidate driver genes (Supplementary Table 2). Among
the top 10 ranking genes in BRCA, CREBBP, EP300, MYC, SRC,
and TP53 overlapped with the cancer genes in CGC, whereas the
other five genes, (CDK1, GRB2, YWHAZ, SHC1, and PTK2) did
not include in CGC. These five genes were differentially expressed
in BRCA. To investigate whether these five genes were involved in
BRCA, we explored the correction between these five genes and
overall survival in BRCA. Through Kaplan-Meier analysis using
an online GEPIA, PTK2 showed high expression was corrected
with a shorter overall survival in BRCA patients (Figure 3A).
CDK1, GRB2, and PTK2 were the druggable genes in DGIdb. We
concluded that CDK1, GRB2, and PTK2 were more likely to be
involved in pathogenesis of BRCA, simultaneously, which have a
great potential to be therapeutic targets. Through analysis, PTK2
can be applied to predict survival of BRCA patients.

For the HNSC dataset, 51 genes overlapped with the
genes in CGC for the top 100 candidate driver genes
(Supplementary Table 2). Among the top 10 ranking genes in
HNSC, CREBBP, CTNNB1, EGFR, EP300, MAPK1, SMAD2,
SMAD3, SRC, and TP53 overlapped with the genes in CGC,
whereas the other one GRB2 did not. To investigate whether
GRB2was involved inHNSC, we explored the correction between
GRB2 and overall survival in HNSC. Through Kaplan-Meier
analysis, GRB2 was not corrected with shorter overall survival

in HNSC patients. GRB2 was the druggable gene in DGIdb and
more likely to be involved in the pathogenesis of HNSC.

For the KIRC dataset, 48 genes overlapped with CGC for
the top 100 candidate driver genes (Supplementary Table 2).
Among the top 10 ranking genes in KIRC, CTNNB1, EP300,
SRC, and TP53 were found in CGC. Other six genes (PRKCA,
PRKCD, GNB2L1, FYN, NR3C1, and GRB2) did not present in
CGC. To investigate whether these genes were involved in KIRC,
we explored the correction between these six genes and overall
survival in KIRC. Through Kaplan-Meier analysis, five out of the
six genes (PRKCD, GNB2L1, FYN, NR3C1, and GRB2) showed
high expression were corrected with shorter overall survival
in KIRC patients (Figures 3B–F). It was concluded that these
five genes had a great ability to participate in pathogenesis of
KIRC, and were possible therapeutic targets. Besides, through the
analysis, these five genes can be applied to predict the overall
survival of KIRC patients.

For the THCA dataset, 48 genes overlapped with the genes in
CGC for the top 100 candidate driver genes. The top 10 ranking
genes in THCA were accessed in the Supplementary Table 2.
Among these genes, BRAF, CREBBP, EGFR, EP300, MAPK1,
SMAD3, SRC, andTP53 overlappedwith the genes in CGC. These
eight genes were known to participate in cancer progression. The
other two genes (FYN and GRB2) did not match with the CGC
database. GRB2 belongs to druggable genes according to DGIdb.
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FIGURE 4 | The top 10 gene ontology (GO) terms enrichment of (A) BRCA, (B) HNSC, (C) KIRC, and (D) THCA by significant genes with p < 0.05 in DriverSubNet.

We concluded that GRB2 had a great ability to participate in the
pathogenesis of THCA, and was a possible therapeutic target.

Enrichment Analysis
KEGG and GO enrichment analysis displayed that the top 100
uncovered genes of cancers were significantly enriched in vital
KEGG and GO terms, as shown in Supplementary Figure 1,
Figure 4, respectively.

In BRCA, the most significantly enriched KEGG term
was “Proteoglycans in cancer” (Supplementary Figure 1).
Proteoglycans are implicated in regulating cellular growth and
differentiation (Filmus et al., 2008). Other enriched terms (e.g.,
Viral carcinogenesis, ErbB signaling pathway, chronic myeloid
leukemia, and prostate cancer) are also related to cancer. The top
ranked significantly enriched GO term was peptide associated
(Figure 4A). Peptide hormone can negatively regulate iron
efflux and is crucial for modulating the growth of breast tumors
(Blanchette-Farra et al., 2018). Other enriched terms (e.g., Fc
receptor signaling pathway, adhesion) are also related to cancer.

Fc receptor can be acted as an indicator for prognosis in many
cancers, such as colorectal and lung cancer (Cadena Castaneda
et al., 2020). The roles of Fc receptor signaling pathway in BRCA
brings forward the need for further studies.

In HNSC, the significantly enriched KEGG term was cancer

related, such as proteoglycans in cancer, viral carcinogenesis,

and pancreatic cancer. In Figure 4B, “Response to reactive
oxygen species” was the enrichment GO term, which can
induce oxidative stress (Ma, 2013). Increased reactive oxygen
species production involved in multiple cancers through various
mechanisms, for example, they can express pro-tumorigenic
signaling, and lead to tumor abnormal survival and proliferation,
and avail to DNA damage and genetic instability (Moloney
and Cotter, 2017). Oxidative stress can contribute to the
maintenance of genomic instability during the progression
phase of cancer (Hassani et al., 2019) remove. This suggests
that oxidative stress has a clinical significance in cancer
remove. Moreover, the cellular response to oxidative stress
plays crucial roles in cellular adaptation to hypoxic stress
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remove. Other terms including immune response-activating
cell surface receptor signaling pathway, phosphatidylinositol-
mediated signaling, Fc receptor signaling pathway, and so on.
Moreover, Fc receptor plays a crucial role in NK cell maturation
and tumor immunosurveillance (Cadena Castaneda et al., 2020).
Immune system play a vital role in HNSC (Mirza et al., 2019).
Thus, the top 100 genes in HNSC that we identified were
significantly related to cancer.

In KIRC, KEGG pathway annotation indicated that the
pathways most enriched in chemokine signaling pathway,
neurotrophin signaling pathway, ErbB signaling pathway
(Supplementary Figure 1). The top ranked GO term in KIRC
was “immune response-activating cell surface (Figure 4C). The
top 100 genes identified in KIRC were significantly related to
cancer. Other terms including regulation of apoptotic signaling
pathway, and Fc receptor signaling pathway, regulation of MAP
kinase activity, positive regulation of protein serine/threonine
kinase activity were also recorded. Deregulation in apoptotic is
a hallmark of cancer (Pistritto et al., 2016). Apoptosis alteration
is responsible for tumor development and progression (Pistritto
et al., 2016). Other terms, such as response to oxidative stress,
cell-cell adhesion, and Fc-gamma receptor signaling pathway,
were involved in cancer progression. Through above analysis,
these top 100 genes identified in KIRC were related to cancer.

In THCA, KEGG pathway analysis revealed that the
top 100 genes were linked with proteoglycans in cancer,
chemokine signaling pathway, ErbB signaling pathway, and so
on (Supplementary Figure 1). The most significantly enriched
GO term was “immune response-activating cell surface receptor
signaling pathway” (Figure 4D). This means that the top 100
genes in THCAmake a contribution tomodulate immune system
in cancer. Other enriched terms, such as regulation of cell-cell
adhesion and Fc receptor signaling pathway, regulation of MAP
kinase activity are associated with cancer progression. Thus,
the top 100 genes that we identified were significantly related
to cancer.

Actionable Druggable Genes
DriverSubNet’s rankings can guide scientists to decide on drug
development and clinical treatment. The top 100 driver genes for
BRCA, HNSC, KIRC, and THCA, respectively, were looked-up
in DGIdb. Genes with target drug information were considered
as druggable driver genes, and the others as undruggable driver
genes. The results (Figure 5) indicated that most of the identified
driver genes were druggable driver genes. In Figure 5, it was
obvious that the proportions of druggable genes increased
substantially when the number of genes were increased. Hence,
DriverSubNet has the ability of uncovering potential therapeutic
targets, tailored to the clinical treatment.

DISCUSSION

Many methods have been designed to screen driver genes by
distinguishing them from passenger genes, but almost all of
them have limited sensitivity and specificity. To solve this
shortcoming, we constructed the DriverSubNet, which effectively
mined the mutation and expression information in PPI network.

The algorithm takes into effect of central gene on neighboring
DEGs, and mutated frequency. Comparing DriverSubNet with
Dawnrank and DriverNet on the four cancer datasets, our
results reveal that DriverSubNet achieves better performance
than Dawnrank and DriverNet methods in the top 100 gene set.
DriverSubNet was able to find well-known genes, such as EGFR.
In addition, DriverSubNet could also found functional driver
genes which have a low mutation rate.

Indeed, to explore the non-CGC candidate genes in the top
100 candidate driver genes by DriverSubNet, we performed
literature search, and found that most of non-CGC candidate
genes with experimental evidence revealing their relation with
cancer. Among the top 10 driver genes identified in BRCA,
HNSC, KIRC, and THCA (Supplementary Table 2), overall,
seven unique genes (CDK1, GRB2, YWHAG, SHC1 and PTK2,
FYN, and TRAF2) were detected as non-CGC genes. YWHAG
is critical for maintaining several canonical pathways. miRNAs
can directly target YWHAG, which has been reported as a
tumor suppressor, and participates in the progression in breast
cancer, glioblastoma, and lung cancer (Yoo et al., 2016; Wang
et al., 2017a,b). GRB2 encodes protein can activate cell surface
receptors in signaling transduction (Giubellino et al., 2008).
GRB2 signaling is associated with cell motility, angiogenesis, and
vasculogenesis (Giubellino et al., 2008). These functions make
GRB2 a potential target biomarker to hinder tumor metastasis
and local invasion (Giubellino et al., 2008). SHC1 encoding
protein is recruited to tyrosine kinases, which is essential for
breast cancer initiation, progression, and metastasis (Ahn et al.,
2017). It has implicated that SHC1 mediate several key signaling
pathways in breast cancer (Wright et al., 2019). PTK2 is a highly
phosphorylated kinases in breast cancer (Mertins et al., 2016).
Substantial evidence has shown that activated PTK2 expression
level links to tumor progression (Fan et al., 2019). In our
result, PTK2 is highly expressed (Fold Change = 1.39) in BRCA
samples, which suggests that high PTK2 expression leads to
BRCA growth and metastasis. FYN is differentially expressed in
multiple cancers, and has a correction with cancer progression
by controlling cellular motility, cell growth, and death (Elias
and Ditzel, 2015). FYN is a promising candidate therapeutic
marker and may be applied to Fyn-targeted therapy (Elias
and Ditzel, 2015). TRAF2 is reported as an NF-κB-activating
oncogene (Shen et al., 2015). CDK1 can regulate cell cycle
progression by executing the G2/M phase transition (Asghar
et al., 2015). CDK1 is the central regulator of cell proliferation
and a promising therapeutic target for BRCA (Galindomoreno
et al., 2017). Knockout of CDK1 in mouse experiments revealed
thatCDK1 contributed to cellular proliferation (Santamaría et al.,
2007). DLG1 expression associates with the progress of cervical
disease (Cavatorta et al., 2017). Through the above analysis, we
may find that cancer is heterogeneity that the same driver gene
has differential function across cancers, for example, GRB2 is
identified driver gene in four dataset, and GRB2 expression has a
significant survival rate in KIRC, while not in other three cancer
types. The findings from this analysis indicate that six genes
(Figure 3) which are not in CGC or the independent predictor
of poor survival or therapeutic target genes, may contribute to
cancer through other mechanisms. Namely, DriverSubNet was
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FIGURE 5 | Distribution of top 100 candidate-driver genes from the four cancer gene databases in druggable genes databases. (A) BRCA, (B) HNSC, (C) KIRC, and

(D) THCA.

able to find these unknown cancer driver genes which could act
as potential therapeutic targets and useful prognostic biomarkers
for overall survival of patients.

Through performing the KEGG and GO enrichment of these
top 100 ranked genes in BRCA, HNSC, KIRC, and THCA,
respectively, these drivers were involved in oxidative stress,
immune response-regulating cell surface receptor signaling
pathway, apoptotic signaling pathway, and immune response-
activating cell surface receptor signaling pathway. All of the
KEGG and GO terms play important roles in the response
to cancer.

Although the present study shows various positive results, it
has certain limitations as well. Future validation using multiple
cancer types is warranted. In addition, the present study did not
attempt to use the synonymous mutations (Wen et al., 2016) and
indels (insertions and deletions) (Yue et al., 2019), which have
been found to regulate tumorigenesis via various mechanisms
(Yue et al., 2019; Zhang and Xia, 2020). We will attempt to
integrate these somatic mutation data in our future work.

In conclusion, we have designed an effective and no parameter
algorithm, termed DriverSubNet, for prioritizing cancer driver
genes by integrating somatic mutational, expression, and PPI
network. As indicated by the evaluation of four cancer
datasets, DriverSubNet consistently outperformed Dawnrank

and DriverNet methods in terms of precision, recall, and F1
score. Further, it was able to identify potential driver genes that
have not been documented, but might be important driver genes.
Thus, DriverSubNet acted as a useful tool for the identification
of driver genes by subnetwork enrichment analysis. However,
studies with larger multiple cancer types and by including
synonymous mutations and indels will be helpful in further
development of this method.
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