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Fibroblast growth factor 23 (FGF23), which is involved in the regulation of vitamin D, is
an emerging independent risk factor for cardiovascular diseases. Previous studies have
demonstrated a positive association between FGF23 and stroke. In this study, we aimed
to assess the association of FGF23 with ischemic stroke and its subtypes by applying
a Mendelian randomization (MR) framework. Five genetic variants obtained from a
genome-wide association study involving 16,624 European subjects were used as valid
instruments of circulating FGF23 levels. MR was applied to infer the causality of FGF23
levels and the risk of ischemic stroke using data from the MEGASTROKE consortium.
Subsequently, several MR analyses, including inverse-variance weighted meta-analysis,
MR-Egger, weighted median estimate (WME), MR Pleiotropy Residual Sum and Outlier
were performed. The heterogeneity test analysis, including Cochran’s Q, I2 test and
leave-one-out analysis were also applied. Furthermore, potential horizontal/vertical
pleiotropy was assessed. Lastly, the power of MR analysis was tested. Three validated
variants were found to be associated with circulating FGF23 levels and were used for
further investigation. We found that high expression level of FGF23 was not associated
with any ischemic stroke. However, a causal association between genetically predicted
FGF23 levels and the risk of large-artery atherosclerotic stroke (LAS) was significant,
with an odds ratio of 1.74 (95% confidence interval = 1.08–2.81) per standard
deviation increase in circulating FGF23 levels. Our findings provide support for the
causal association between FGF23 and LAS, and therefore, offer potential therapeutic
targets for LAS. The specific roles of FGF23 in LAS and associated molecules require
further investigation.

Keywords: ischemic stroke, large-artery atherosclerotic stroke, Mendelian randomization, fibroblast growth
factor 23, MEGASTROKE consortium, vitamin D regulation

Abbreviations: AIS, any ischemic stroke; CES, cardioembolic stroke; CI, confidence interval; FGF23, fibroblast growth
factor 23; GWAS, whole-genome association studies; IS, ischemic stroke; IVW, inverse-variance weighted; LAS, large-artery
atherosclerotic stroke; MR, Mendelian randomization; MR-PRESSO, MR pleiotropy residual sum and outlier; OR, odds ratio;
SNPs, single-nucleotide polymorphisms; SVS, small-vessel stroke; WME, weighted median estimate.
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INTRODUCTION

Stroke is one of the major causes of death and long-term
disability worldwide (GBD 2016 Stroke Collaborators, 2019).
Approximately 70% of strokes are ischemic stroke (IS), which is
usually caused by the occlusion of the middle cerebral artery (The
GBD 2016 Lifetime Risk of Stroke Collaborators et al., 2018). The
increasing global burden and limited therapy options for stroke
have led to urgent demands for more effective preventive and
therapeutic measures (Avan et al., 2019).

Fibroblast growth factor 23 (FGF23), a bone-derived
hormone, plays an important role in the regulation of calcium,
phosphate, and active vitamin D levels (Vervloet, 2019). Recently,
increasing evidence has indicated a strong relationship between
FGF23 and cardiovascular diseases (Panwar et al., 2018). Several
studies have demonstrated that an increased circulating FGF23
level was correlated with a higher risk (Wright et al., 2014) and
a poorer outcome (Seiler et al., 2010) for stroke. Other studies
have indicated that plasma FGF23 was associated with carotid
atherosclerosis in patients who suffered from stroke as well as in
the normal population (Shah et al., 2015; Yan et al., 2017; Chang
et al., 2020). Meanwhile, higher FGF23 level also correlated with
increased instability of carotid plaques (Biscetti et al., 2015).
However, a case–cohort study indicated that there was a graded
association of FGF23 with the risk of cardioembolic stroke, but
there was no significant association between FGF23 and other
IS subtypes or with hemorrhagic strokes in community-dwelling
adults (Panwar et al., 2015). In addition, a Multi-Ethnic Study of
Atherosclerosis (MESA) showed that FGF-23 was not associated
with carotid intima-media thickness or stroke (Kestenbaum et al.,
2014). Until now, it is unclear whether FGF23 levels are causally
associated with risk of IS. Therefore, in this study, we aimed to
investigate the possible causal relationships of FGF23 with IS and
its subtypes and the potential research value of FGF23.

Recently, with the development of whole-genome association
studies (GWAS), an increasing number of single-nucleotide
polymorphisms (SNPs) related to human diseases have been
identified (Pei et al., 2019; Liu et al., 2020a,b). Meanwhile,
Mendelian randomization (MR) has been widely used for causal
inference (Davies et al., 2018; Larsson et al., 2019). Since genetic
variants such as SNPs are randomly allocated during conception
and the genotypes are determined in the zygote stage, the MR
framework can detect causality by minimizing the impacts of
confounders and reverse causality (Davies et al., 2018). In this
study, an MR design was used to investigate the association of
circulating FGF23 levels with IS and its subtypes.

MATERIALS AND METHODS

Study Design
MR was performed based on three primary assumptions as
described previously (Yang et al., 2019; He et al., 2020).
The first assumption was that the SNPs identified to be the
instrumental variables (IVs) should be significantly related to
the exposure (FGF23) (Figure 1). The second assumption was
that genetic variants should be unrelated to the confounding

factors of an outcome (IS) (Liu et al., 2018). The third
assumption was that the genetic variants must only affect the
risk of the disease (IS) through the exposure (FGF23) but
not via other routes. Meanwhile, both the second and third
assumptions were identified to be independent of pleiotropic
effects. As the large-scale datasets from the published genome-
wide meta-analysis were publicly available, no additional ethical
approval was required.

Selection of SNPs and Validation
The circulating FGF23-associated variants were collected from
a meta-analysis comprising 16,624 individuals of European-
descent after excluding those whose estimated glomerular
filtration rate was less than 30 mL/min/1.73 m2 (Robinson-Cohen
et al., 2018). The selected genetic instruments from the GWAS
of FGF23 were composed of top five significant (P < 5 × 10−8)
SNPs near CYP24A1, ABO, RGS14, LINC01506, and LINC01229
genes, and were located in five genomic regions, accounting for
approximately 3% of FGF23 variation. Detailed information is
provided in Supplementary Table 1. The strength of the IVs
was evaluated using the mean F-statistic, defined as the ratio of
the mean square of effect size to the mean square of standard
error for each genetic instrument (Bowden et al., 2016b). The
rule of thumb threshold of F value is greater than 10 to avoid
potential bias from weak instruments (Burgess and Thompson,
2011). The F statistics for each of the five instruments was greater
than 10 (Supplementary Table 1). Subsequently, we verified
the independence among these SNPs by linkage disequilibrium
(R2 < 0.1) through the 1000 Genomes Phase 3 (European)
reference panel.

Data Sources
The summary-level data for IS and its subtypes were obtained
from the MEGASTROKE consortium. Any ischemic stroke (AIS)
group (n = 34,217), regardless of the subtype of European
ancestry, was selected and compared with 406,111 control
subjects. The three main subtypes of IS were acquired mainly on
the basis of the Trial of ORG 10172 in Acute Stroke Treatment
criteria, including LAS (n = 4,373), cardioembolic stroke (CES;
n = 7,193), and small-vessel stroke (SVS; n = 5,386) (Malik
et al., 2018). As all the five genetic instruments associated with
FGF23 levels were available in the MEGASTROKE consortium,
no proxy variant was needed. The MEGASTROKE-matched data
are shown in Supplementary Table 2.

Statistical Analysis
The principal analyses assessing the causal associations of FGF23
with IS and its subtypes were performed using the inverse-
variance-weighted (IVW) method (Davies et al., 2018). For each
of the five SNPs, we computed an Wald’s ratio estimates by
dividing the beta-coefficients (log odds ratio) for the SNP–stroke
association by the beta coefficient for the SNP–FGF23 association.
Moreover, to improve the reliability of causal effect estimates, we
also carried out the MR Pleiotropy Residual Sum and Outlier
(MR-PRESSO) test (Verbanck et al., 2018).

To further evaluate the impact of potential pleiotropy on
causal estimates, we performed sensitivity analyses using several
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FIGURE 1 | Assumptions for the Mendelian randomization (MR) and study design. The MR was based on three principal assumptions, including: (1) the genetic
variants selected to be instrumental variables should be correlated with the exposure [fibroblast growth factor 23 (FGF23) levels]; (2) the genetic variants should be
unrelated to confounding factors; (3) genetic variants must influence the risks of the outcome [ischemic stroke (IS)] only through the exposure (FGF23 levels).

other methods. First, we used the MR-Egger regression to assess
the presence of directional pleiotropy (Bowden et al., 2015).
A statistically significant intercept term from the MR-Egger
regression suggests the possibility that genetic variants may
not affect the outcome via the exposure of interest. We also
conducted the weighted median estimate (WME) (Bowden et al.,
2016a), which provides an effective estimate of causality when
at least 50% of genetic IVs is valid. Furthermore, to evaluate
the potential heterogeneity due to pleiotropy or other causes, we
conducted the Cochran’s Q-test (together with the I2 statistic),
as reported in a previous study (Liu et al., 2013). In addition,
we selected the leave-one-out sensitivity method to sequentially
remove each SNP from the MR analysis and assess the impact
of single-gene variants on the causal estimates (He et al., 2020).
Moreover, vertical pleiotropy was assessed using the Steiger
test to verify the causal direction between FGF23 and stroke
(Hemani et al., 2017).

Lastly, we excluded those SNPs associated with potential
confounders (Bonferroni correction, P < 0.05/5 SNPs) by using
PhenoScanner V2 in March 2020 (Staley et al., 2016; Kamat
et al., 2019), and repeated the MR analysis using the IVW,
MR-Egger regression, and weighted-median estimate. To correct
for potential pleiotropic bias, we performed multivariable MR
following Sanderson’s method (Sanderson et al., 2020). We
also calculated the power of MR estimates using the mRnd
platform1 and the effect size based on a 5% type 1 error rate and
enough power (>80%). Statistical analyses were performed using
Mendelian Randomization (version 0.4.1) (Yavorska and Burgess,
2017) and TwoSampleMR (version 0.5.1) (Hemani, 2019) on
R 3.6.2 (The R Foundation for Statistical Computing, Vienna,

1https://shiny.cnsgenomics.com/mRnd/

Austria). All statistical tests were two-sided and the statistical
significance was set at the level of P < 0.05.

RESULTS

Primary MR Analysis of the Association
of FGF23 With IS and Its Subtypes
As listed in Supplementary Table 1, five SNPs were used as the
IVs for FGF23 levels. We identified significant association of
high FGF23 levels with increased LAS risk (OR = 1.94, 95% CI
1.35–2.27; p = 3.04E−04) but not with the other IS subtypes or
AIS using the IVW method (Supplementary Table 4). However,
a potential heterogeneity was identified using the Cochran’s Q
test and I2 for causal estimates of five SNPs in the conventional
IVW model for AIS (14.34, p = 0.0063, I2 = 72.10%), LAS
(14.12, p = 0.0069, I2 = 71.70%), and CES (16.79, p = 0.0021,
I2 = 76.20%) (Supplementary Table 4), suggesting the possibility
that the obtained effect estimates of these associations from the
IVW method may be biased by outlier SNPs.

Sensitivity Analysis of the Association of
FGF23 With IS and Its Subtypes
To assess the robustness of the causal effect of FGF23 on IS
and its subtypes, we performed several sensitivity analyses as
follows. First, WME suggested significant association between
FGF23 levels and LAS risk with an odds ratio of 1.75
(95% CI 1.06–2.90; p = 0.029), but not with the other
IS subtypes or AIS (Supplementary Table 4). Second, the
intercept term from MR-Egger analysis revealed no evidence
of directional pleiotropy in the analysis of LAS (p = 0.81),
SVS (p = 0.97), CES (p = 0.22), or AIS (p = 0.26).
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However, MR-PRESSO test identified horizontal pleiotropic
outliers in AIS (p = 0.0066), LAS (p = 0.0134), and CES
(p = 0.0034). The leave-one-out permutation analysis further
indicated that the direction and precision of the genetics
estimates between increased FGF23 levels and risk of IS and
its subtypes changed largely with the deletion of rs2769071
(Supplementary Table 7).

We next searched the PhenoScanner V2 database (Kamat
et al., 2019) for possible pleiotropic associations of individual
SNPs with risk factors for IS. Among the FGF23-associated
SNPs, associations were observed for the rs2769071 variant
with low-density lipoprotein (P = 3.06E−10), total cholesterol
(P = 7.48E−13), diastolic blood pressure (P = 2.80E−10), and
type 2 diabetes (P = 2.30E−05). The rs11741640 variant was
significantly related to self-reported hypertension (P = 2.22E−04)
and alcohol intake frequency (P = 3.74E−03). Detailed
information is provided in Supplementary Table 3.

In total, we excluded two SNPs (rs2769071 near the ABO
gene and rs11741640 near the RGS14 gene) that were potentially
associated with at least one secondary phenotype and repeated
the MR analyses. Based on the remaining three effective SNPs,
FGF23 levels were significantly associated with LAS but not with
the other IS subtypes or AIS (Figure 2). In the standard MR
analysis-IVW method, the odds ratios per standard deviation
of the genetically predicted increase in FGF23 levels was 1.74
(95% CI 1.08–2.81; p = 0.023) for LAS. Importantly, the results
obtained for LAS were similar in the WME analysis (OR = 1.76,
95% CI = 1.04–2.99; p = 0.036), while the Egger estimate was

less precise despite having the same direction and a similar
size (OR = 1.80, 95% CI = 0.26–12.46; P = 0.549). The single
variant causal ratio and results of all three variants for the
association of FGF23 and LAS are shown in Supplementary
Table 6. No heterogeneity among these three instruments was
found using Cochran’s Q analysis (Q = 0.02, P = 0.992,
I2 = 0.00%) in LAS (Supplementary Table 5). The leave-
one-out sensitivity analysis also showed the same direction
and estimates between the increased FGF23 levels and the
risk of LAS, although the deletion of IV rs17216707 near
CYP24A1 gene was not statistically significant (Supplementary
Table 8). No directional pleiotropy in LAS was found according
to the Egger intercept test (–0.003, 95% CI = –0.150 to
0.145; P = 0.970). Considered the potential effects of obesity
and smoking-the two most important confounders for both
heart disease and circulating metabolites, we then applied
the multivariable MR analysis. The BMI or smoke adjusted
data by three validated instruments also verifies our results
(Supplementary Table 9).

Besides, the direction of causality inferred by the Steiger test
showed that the SNPs–FGF23 association (r2 = 1.04E−02) was
more significantly correlated (pSteiger = 3.20 × 10−14) than the
SNPs-LAS association (r2 = 1.26E−05), suggesting that higher
FGF23 levels leads to the increased risk of LAS, consistent with
expectation. We had enough power (>80%) to detect 1.59 OR of
LAS risk per SD increased log FGF23 levels (cases n = 4,373; non-
cases n = 406,111); and the power of causal estimate for FGF23 to
LAS here was 94%.

FIGURE 2 | Association of genetically predicted circulating fibroblast growth factor 23 (FGF23) levels with ischemic stroke (IS) and other stroke subtypes. The odds
ratio (OR) represented at the center of each box was the risk of genetically predicted one standard deviation increase in FGF23 levels. AIS, any ischemic stroke; LAS,
large-artery atherosclerotic stroke; SVS, small-vessel stroke; CES, cardioembolic stroke; CI, confidence interval; IVW, Mendelian randomization (MR) inverse-variance
weighted method; WME, weighted median estimate; Egger, the MR-Egger method.
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DISCUSSION

Until now, it has remained unclear whether the circulating FGF23
levels is genetically associated with risk of IS. In this study, we
found a potential association of genetically predicted high levels
of FGF23 and the increased risk of LAS. The risk of LAS increased
by 74% with a 23 pg/mL per SD increase in circulating FGF23
levels. This effect size was similar to previously reported sizes of
low-density lipoprotein cholesterol (OR = 1.28, 95% CI = 1.07–
1.53) (Hindy et al., 2018), fasting blood glucose (OR = 1.42, 95%
CI = 1.08–1.85) (Larsson et al., 2017), systolic blood pressure
(OR = 1.56, 95% CI = 1.37–1.78) (Parish et al., 2019), and waist-
to-hip ratio (OR = 1.75, 95% CI = 1.44–2.13) (Marini et al., 2020).

Our results are consistent with those of previous
epidemiological studies (Seiler et al., 2010; Shah et al., 2015;
Yan et al., 2017; Chang et al., 2020). In patients with acute IS,
the plasma FGF23 concentration was positively correlated with
the presence and burden of intracranial carotid atherosclerosis
(Chang et al., 2020). FGF23 seems to be mainly involved in vessel
calcification, vascular stiffness, and inflammation (Mirza et al.,
2009; Kim et al., 2011; Libby et al., 2019; Vervloet, 2019). In
mice, excessive plasma FGF23 directly stimulates the production
of inflammatory factors such as interleukin-6 (Singh et al.,
2016). Meanwhile, inflammatory factors in turn promote the
production of FGF23 and exacerbate LAS progression (Feger
et al., 2017; Durlacher-Betzer et al., 2018; Egli-Spichtig et al.,
2019; McKnight et al., 2020). Our analysis implied that reducing
FGF23 levels may be a potential therapeutic strategy for IS,
especially for LAS. However, the potential mechanisms that
correlate FGF23 with LAS still require further investigations.

Considering the role of FGF23 in regulation of vitamin D
levels, some previous studies argued that the pathophysiological
effects of FGF23 were partially through decreasing the level
of active vitamin D. FGF23 inhibits the functions of vitamin
D by promoting its degradation via 24-hydroxylase encoded
by the CYP24A1 gene and inhibiting its production by
1α-hydroxylase encoded by the CYP27B1 gene (Vervloet,
2019). The physiological roles of vitamin D, including anti-
inflammation and inhibition of artery calcification, are contrary
to the effects of FGF23 (Han et al., 2016; Wang et al., 2018). In
addition, vitamin D receptor activation enables the recovery of
αKlotho, an anti-aging protein, while this recovery is inhibited
in an inflammatory environment (Lim et al., 2012). FGF23
induces vessel damage and inflammation through an αKlotho-
independent pathway when αKlotho is insufficient (Komaba
and Fukagawa, 2012; Navarro-González et al., 2014; Krick
et al., 2018). The aforementioned studies collectively suggest
that proper calcitriol supplements might reduce the risk of
LAS in people or those with intracranial atherosclerosis. The
effects of calcitriol supplements involved in the process of
vasomotion and immune modulation have been reported by
several studies (Chitalia et al., 2014; Ojeda López et al., 2018).
In this study, the validated genetic variant (rs17216707) near
the CYP24A1 gene showed a strong association with LAS
(Supplementary Table 6), which supports the critical role
of active vitamin D in the regulation of FGF23 level and
the risk of LAS.

To our knowledge, this is the first MR study to clarify
the genetic causalities between FGF23 levels and IS with MR
methods. Considering the ethical care of patients and the high
cost of randomized controlled trials, the MR framework is
effective in the discovery of potential targets of intervention and
can indicate potential therapeutic strategies. In addition, our
findings in this study were especially prospective, as analyzed
data were extracted from the database with the largest number
of participants currently known.

However, this study also has several limitations. The different
methods for FGF23 measurement could have potentially caused
bias in the results. The FGF23 levels were detected in
two forms: intact and C-terminal FGF23 (Robinson-Cohen
et al., 2018). In patients with chronic kidney diseases, the
production of FGF23 (intact FGF23) was separated from its
cleaved form (C-terminal FGF23) (Edmonston and Wolf, 2020).
Meanwhile, the FGF23-associated GWAS data were obtained
from individuals whose estimated glomerular filtration rate was
above 30 mL/min/1.73 m2. In addition, log-transformed FGF23
levels, applied in each cohort and the following meta-analysis,
could reflect the relative change in circulating FGF23 levels.

In our study, only three SNPs accounting for 1.13% of
the total variation in FGF23 levels were identified as genetic
instruments, causing a possible limitation in the results. Thus,
additional influential loci are necessary as IVs in the future
if new GWAS data are available. As this limited number of
IVs restricted the application of PRESSO, the sensitive analysis
of potential horizontal pleiotropy could not be performed
completely. However, similar results were obtained from WME
and IVW estimate, while no signs of heterogeneity (Cochran’s
Q test) and directional pleiotropy (MR-Egger intercept analysis)
were discovered. Therefore, the above results indicated that
confounders are unlikely to explain the observed associations.

Population stratification also potentially restricted the
accuracy of this study. The MR inference depended on three
instrumental assumptions that rely on the same genetic
backgrounds in the exposure and outcome data. In this study,
we used European-descent genotypes to assess the association
between FGF23 levels and IS. This result may be altered in
different populations due to different genetic backgrounds, such
as linkage disequilibrium. Moreover, the MR framework was
not able to infer the association during specific periods of the
life cycle or conditions. Thus, further animal experiments and
possible intervention trials are needed.

In summary, our results provide support for a suggestive
causal association between higher circulating FGF23 levels and
an increased risk of LAS. Our findings may offer new therapeutic
targets for LAS. Further studies are necessary to investigate
whether genetic variants at or near the CYP24A1 gene influence
the risk of LAS through downstream effects or pathways
related to vitamin D.
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