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Prediction of growth-related complex traits is highly important for crop breeding.

Photosynthesis efficiency and biomass are direct indicators of overall plant performance

and therefore even minor improvements in these traits can result in significant breeding

gains. Crop breeding for complex traits has been revolutionized by technological

developments in genomics and phenomics. Capitalizing on the growing availability

of genomics data, genome-wide marker-based prediction models allow for efficient

selection of the best parents for the next generation without the need for phenotypic

information. Until now such models mostly predict the phenotype directly from the

genotype and fail to make use of relevant biological knowledge. It is an open question

to what extent the use of such biological knowledge is beneficial for improving genomic

prediction accuracy and reliability. In this study, we explored the use of publicly available

biological information for genomic prediction of photosynthetic light use efficiency (8PSII)

and projected leaf area (PLA) in Arabidopsis thaliana. To explore the use of various types

of knowledge, we mapped genomic polymorphisms to Gene Ontology (GO) terms and

transcriptomics-based gene clusters, and applied these in a Genomic Feature Best

Linear Unbiased Predictor (GFBLUP) model, which is an extension to the traditional

Genomic BLUP (GBLUP) benchmark. Our results suggest that incorporation of prior

biological knowledge can improve genomic prediction accuracy for both 8PSII and PLA.

The improvement achieved depends on the trait, type of knowledge and trait heritability.

Moreover, transcriptomics offers complementary evidence to the Gene Ontology for

improvement when used to define functional groups of genes. In conclusion, prior

knowledge about trait-specific groups of genes can be directly translated into improved

genomic prediction.

Keywords: genomic prediction (GP), photosynthesis, phenomics data analysis, Arabidopsis thaliana (Arabidopsis),

GBLUP, GFBLUP
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INTRODUCTION

Due to breakthroughs in DNA sequencing technology over
the past decade, high-throughput genotyping is now a routine
practice in plant breeding (Rimbert et al., 2018). Phenotyping
is undergoing a similar revolution: large phenomics facilities
are being developed that can rapidly score large germplasm
collections of plants in a range of different environments (Flood
et al., 2016; Crain et al., 2018). These technological developments
have made it possible to acquire datasets describing genotypes
and phenotypes for large numbers of individuals at an extended
temporal scale. Despite recent advances in phenomics it is still
more expensive and laborious than genotyping. To make the
most use of phenomic datasets, Genomic Selection (GS) based
breeding programs aim to predict unobserved phenotypes of
individuals based on genotypes alone. This has the twofold
benefit of reducing breeding costs and speeding up breeding
programs as plants can be genotyped in the seedling stage
and selected accordingly, thus negating the need to grow large
populations to maturity and scoring them all to obtain breeding
values based on phenotypes. GS usually models the unobserved
phenotypes as additive effects of all genetic markers (total
additive genomic value or breeding value) in the test population
using a genomic prediction (GP) model. This GP model is based
on a reference population which has both been genotyped and
phenotyped for the trait(s) of interest (Meuwissen et al., 2001).
The performance of GP depends on many factors, including
genetic architecture, reference population size and structure
and heritability (Karaman et al., 2016). However, GP accuracy,
usually defined as the correlation (Pearson’s r) between observed
phenotypes and predicted breeding values, is generally lower
for complex traits than for simpler ones (Morgante, 2018). This
is because such traits are affected by many loci with small to
moderate effects, along with non-additive genetic (dominance,
epistasis) and genotype-by-environment (GxE) interactions
(Falconer and Mackay, 1996). Incorporating epistasis into GP
models has been reported to improve performance in selfing
plant species but may not work for outcrossing species; therefore,
additive GP models are still the primary choice (Jiang and Reif,
2015).

In GP models, each individual’s genetic or breeding value
is modeled as the sum of additive marker effects. Despite
advancements in phenomics, phenotyping data is still usually
only available for a few traits of several hundreds of individuals
(n), compared to millions of genetic markers (p). GP models
tackle this curse of dimensionality (p > n) by regularization
(Meuwissen et al., 2001). When marker effects are fixed, this
comes in the form of a penalty term added to the log-likelihood,
as in LASSO or ridge regression. More frequently, marker
effects are considered random, and regularization is achieved
through prior distributions on the marker effects. The variance
in these priors is directly related to the heritability, and can
be estimated either using REML, or a fully Bayesian approach.
In the classical GBLUP-approach, a single normal distribution
with equal variance is assumed for all marker effects (Vanraden,
2008). More recently, mixture distributions have been considered
(Moser et al., 2015). The prior could e.g., be amixture of Gaussian

distributions with large and small variances, and a point mass
at zero, allowing a marker to have respectively, large or small
effects, or no effect at all (Macleod et al., 2016). Moreover,
restrictions on the shape of the probability distribution, usually
Gaussian, can be relaxed (e.g., t-distribution) to accommodate
genetic architectures having a larger number of high to moderate
effect sizes (Gianola, 2013) or another suitable distribution can
be exploited instead. In spite of these refinements, it is usually
impossible to find the true causal variants when p > n, which
may lead to suboptimal prediction. Therefore, several authors
suggested that a priori available biological knowledge may be
incorporated in GP models, prioritizing likely causal markers,
and ultimately improving prediction accuracy (Edwards et al.,
2016; Ehsani et al., 2016; Wang et al., 2018).

Two types of biological knowledge have been considered in
the literature: first, knowledge on biological properties of genes
and their associated markers and second, knowledge in the
form of secondary phenotypes. The latter typically concerns -
omics data, and is modeled using additional relatedness matrices
(Guo et al., 2016; Morgante, 2018; Azodi et al., 2020) or
penalized selection indices (Lopez-Cruz et al., 2020). Although
such -omics data can in principle be generated for the GP
reference population, the use of more general publicly available
information is often more feasible and cost-effective. We
therefore focus on biological properties of genes and markers,
such as Gene Ontology (GO) and post-GWAS QTL information.
The GO provides a structured resource of functional classes
of gene products based on orthology, represented into three
biological domains, i.e., molecular function, cellular component
and biological process (Ashburner et al., 2000). Similar functional
groupings can be achieved from transcriptomic experiments
based on the assumption that functionally related genes are
expressed together. These clusters of co-expressed genes may be
enriched in multiple GO terms or pathways. Such information
can be incorporated by allowing the GP model to put more
weight on either certain individual markers (Legarra and
Ducrocq, 2012; Macleod et al., 2016) or groups of markers
(Edwards et al., 2016). Various modeling approaches have been
proposed to enable use of such data (Zhang et al., 2010; Speed
and Balding, 2014; Edwards et al., 2016; Ehsani et al., 2016;
Guo et al., 2016; Fragomeni et al., 2017). Here we use the
Genomic Feature Best Linear Unbiased Predictor (GFBLUP)
approach proposed by Edwards et al., 2016. GFBLUP extends
GBLUP by partitioning the total genomic variance into two sub-
components to weigh different genomic regions differently. This
allows incorporating prior biological knowledge about groups of
variants by treating each region as a separate random genetic
effect with different variance. Subsequently, researchers applied
this approach to various traits (Sarup et al., 2016; Fang et al.,
2017; Rohde et al., 2017; Gebreyesus et al., 2019). While prior
biological knowledge has thus been used to improve GP accuracy,
the question remains what type of knowledge is most useful
and how much the genetic architecture impacts the potential for
improvement of particular traits.

In this study, we investigate improvement in GP performance
using two sources of publicly available biological knowledge,
i.e., Gene Ontology (GO) and clusters of co-expressed genes
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(COEX). This information was incorporated using the GFBLUP
modeling approach, grouping markers in genes according to
either their predicted function or co-expression, respectively. As
complex traits of study, we focused on photosynthetic light use
efficiency of photosystem II (8PSII) and projected leaf area (PLA)
in Arabidopsis thaliana. Both of these traits are related, in the
sense that the 8PSII directly illustrates the photosynthetic light
use efficiency and can capture the most immediate physiological
and regulatory response to varying irradiance levels (Van Rooijen
et al., 2015), whereas growth in PLA is the net outcome of unit
leaf photosynthetic capacity over time (Weraduwage et al., 2015;
Liu et al., 2020).

RESULTS

Genomic Prediction of Complex Growth
Related Traits
Previously, Van Rooijen et al. (2017) conducted a GWAS on A.
thaliana photosynthesis. In particular, they measured the light
use efficiency of photosystem II electron transport (8PSII) for
344 accessions of the Arabidopsis HapMap population, switching
from low light (100 µmol m−2 s−1) to high light (550 µmol
m−2 s−1) irradiance at the onset of day 25. In total, they took
6 measurements before and 12 after applying light stress to
identify potential QTLs during acclimation to high light. As we
intend to use this population to explore the utility of biological
knowledge in genomic prediction, we combined projected leaf
area (PLA), another indicator of plant growth, with 8PSII . We
first assessed whether GP works with reasonable performance for
these complex traits. For this purpose, a classical Genomic Best
Linear Unbiased Prediction (GBLUP) model was constructed
to assess how well the infinitesimal modeling assumptions
fit and to calculate markers-based heritability. In this model
(Equation 2), all marker effects are treated as arising from a
single normal distribution N(0,Gσ 2

g ) having one random genetic
component, to regress each individual phenotype measurement
over all markers simultaneously. At low light (LL) levels, mean
prediction accuracy for 8PSII is lower (Pearson’s r between
predicted and observed phenotypic values ranging from 0.16 ±
0.02 to 0.22 ± 0.01) than at high light (HL, Pearson’s r ranging
from 0.40 ± 0.01 to 0.48 ± 0.01), as shown in Figure 1A.
Prediction accuracy for PLA (Figure 1B) ranges from 0.06 ±
0.01 to 0.17 ± 0.01 and rises with the increase in plant size and
simultaneously decreases with increase in phenotypic coefficient
of variation. Genomic heritability (h2GBLUP) for 8PSII ranged
from 0.08 to 0.13 under LL and 0.56 to 0.87 under HL, and
0.05 to 0.17 for PLA (Supplementary Figure 1). Differences in
prediction accuracy for 8PSII between LL and HL are in line
with differences in genomic heritability, in accordance with
the observation that genomic prediction accuracy is generally
positively correlated with heritabilities (Hayes et al., 2009).
Moreover, for ∼1.2% of the GBLUP models for PLA, h2GBLUP
was zero because of undetermined genomic variance, whereas
for 8PSII ∼7% of genomic variances were estimated to be
100% (h2GBLUP = 1), which is clearly an over-estimation
(Supplementary Figure 2). As reported by Kruijer et al., 2015, it

was expected (based on 5000 simulated traits) that ∼10-15% of
GBLUP models could have variance components that cannot be
estimated for this population, so we discarded these models from
our analysis.

An extension of GBLUP is MultiBLUP (Speed and Balding,
2014), using multiple random genetic components in the model
(Equation 4), thus allowing differential weighting of groups
of genomic markers, each having a separate kinship matrix
derived from that group. We applied MultiBLUP using adjacent
overlapping chromosomal partitions of 10 kb (yielding best
performance when testing window sizes of 1 to 100 kb) to check
if multiple kinship matrices or genomic variance decomposition
improve prediction. The results (Supplementary Figure 3)
indicate that performance was close to that of GBLUP and
could not be improved further. This could be because most
models ended up with only one background kinship matrix
during cross-validation and many of these genomic regions
did not meet the significance threshold (pBonferroni < 0.05)
during association testing. In summary, these results show that
predictive performance for these complex traits is low and
there may be room for improvement by incorporating prior
biological knowledge, decomposing the total genomic variance
into biologically relevant subsets.

High-Level Biological Knowledge Does Not
Necessarily Improve Genomic Prediction
The next question is whether predictive performance can be
improved by using only markers residing within genes that
are known to be linked to the traits of interest. The idea
comes from previous studies, in which a subset of markers
was associated to biological relevant genes and achieved a
genomic value similar to the total genomic value achieved when
using all SNPs (Vanraden et al., 2017; Li et al., 2018). Here,
we selected 7,242 photosynthesis related genes, referred to as
PSGENES in the text, from public repositories (see M&M)
and constructed a GBLUP model based only on these. The
Genomic Relationship Matrix (GRM) was constructed from all
markers within the ORFs of PSGENES, leaving ∼17% of the
total genotyped markers after filtering. Interestingly, the models
performed equally well (Figure 1) as the GBLUP based on all
markers for both traits, with a slight improvement in predictive
ability for PLA (max. ∼6% increase in accuracy). Subsequently,
to assess whether this pre-selected subset of markers can improve
results if they are weighted differently than the rest of markers,
we constructed another model using the GFBLUP modeling
approach (Edwards et al., 2016) (Equation 3) having two genomic
components. In this model, the markers within PSGENES were
treated as one genomic component and the remaining markers
as a second genomic component. Again, this model showed
similar predictive performance as GBLUP, with some reduction
in variability for PLA, but could not improve the accuracy
further (Figure 1). From this, we conclude that prior biological
knowledge-based selection of functionally relevant genes is
potentially useful, but an optimal grouping may be important to
improve GP further.
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FIGURE 1 | Genomic prediction accuracy for photosynthetic light efficiency and projected leaf area. Cross-validation based assessment of prediction accuracy as

Pearson’s r between true and predicted values using three models: (i) GBLUP using all genomic markers (ALL), (ii) GBLUP using only pre-selected photosynthesis

related genic markers (PSGENES) and (iii) GFBLUP using PSGENES as a genomic feature in two genomic components. (A) Accuracy for 8PSII for two days (6 time

points) under low light irradiance levels (LL) and four days (12 time points) under high light irradiance (HL). (B) Accuracy for PLA measured 8 times per day from day 14

after sowing to day 20, where day 20 has only two measurements.

More Fine-Grained Biological Knowledge
Is Useful for Improving Genomic Prediction
To assess whether prior information from publicly available
resources can help improve GP performance, we tested grouping
of genes based on Gene Ontology (GO) terms and previously
reported clusters of co-expressed genes (COEX) of Arabidopsis
thaliana in multiple tissues and developmental stages (Movahedi
et al., 2011). Each of the three GO sub-ontologies, Biological
Process (BP), Molecular Function (MF) and Cellular Component
(CC), was used. The corresponding groups of markers in a GO
or COEX group, called a genomic feature (GF), were used in
GFBLUP (Equation 3) using a separate model for each feature
with two genomic components, i.e., one with markers from
the GF and the other with the remaining markers (rGF). The
predictive performance was compared to that of the GBLUP
benchmark using all markers with identical sets of 8-fold cross-
validation test populations. Each group of markers based on GO
or COEX was treated as a separate random effect in its respective
GFBLUP model for which its contribution to the total genomic

variance was calculated (see M&M). For each GF, the effects
of all corresponding markers were assumed to follow a normal
distribution with equal variance, but different from the remaining
markers; that is, the markers in the GF are differentially weighted
and prioritized from the rest.

In total, 7,297 GO terms and 12,419 disjoint COEX
gene groups were linked to at least one marker. The total
number of genes ranged between 1 and 24,998 for the GO
features and between 1 and 3,384 for the COEX groups
(Supplementary Figure 4, Supplementary Table 4); the number
of markers ranged between 0 and 109,723 for the GO features and
4 and 19,621 for the COEX groups. Due to the hierarchical GO
structure, the 95th percentile of the total number of genes within
GO features was lower (496) as compared to COEX (2,466).
Note that both GO and COEX groups may overlap, i.e., a gene
can be in multiple functionally related GO/COEX groups. In
the following results, the improvement in genomic prediction
has been quantified in terms of percent gain in accuracy
compared to the GBLUP benchmark, GFBLUP model’s goodness
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FIGURE 2 | Biological priors can help improve genomic prediction accuracy for growth related traits. Prediction accuracy of the best overall GFBLUP models using

Gene Ontology (GO) and co-expression (COEX) gene groups, compared to the GBLUP benchmark (without prior biological knowledge). Since the GBLUP model was

evaluated for each measurement point, so the GBLUP here is shown for the corresponding time point where improvement by GFBLUP was observed. Accuracy was

calculated as Pearson’s r between true vs. predicted values. The GBLUP-ALL model uses all markers in GBLUP; GFBLUP-GO and GFBLUP-COEX models use the

top GO terms and COEX (see text for details). (A) Accuracy for 8PSII under low light irradiance levels (LL). (B) Accuracy for ϕPSII under high light irradiance (HL). Here,

despite showing some improvement, the GFBLUP-GO model did not pass all of our model evaluation criteria (see Model Performance Evaluation). (C) Accuracy for

PLA.

of fit measured using likelihood ratio test (LR), and genomic
heritability (h2GBLUP) and proportion of genomic heritability
explained by a genomic feature (h2

f
).

GO Informed Prediction
7,297 GO terms were tested with repeated 8-fold cross-validation
at multiple measurements of a trait, leading to a total of ∼10
million GFBLUP model accuracies for 8PSII and∼29 million for
PLA (Supplementary Figure 5). The models for which variance
was apparently over-estimated (h2

f
> 0.99) or undetermined

(h2
f

< 0.01) were not considered for subsequent analysis. This

was the case for ∼50% of the models for both traits, indicating
that only selected biological groups are potentially helpful.

We initially analyzed the highest gain in prediction
performance obtained by any GO term at any time point.
For 8PSII , “salicylic acid biosynthesis” (BP) provided the highest
increase in accuracy (∼60%), for 8PSII measurements under low
light on the second day (Figure 2, Supplementary Table 2A).
For the GO sub-ontologies CC and MF, “organelle outer
membrane” and “phosphatase activity,” respectively yielded
highest gains in these categories under low light (∼43 and
37%, respectively; Supplementary Table 2A). None of the GO
terms yielded a significant improvement after high light stress;

however, some GO terms, e.g., “protein containing complex”
yielded an increase in accuracy higher than the benchmark but
not passing our model evaluation criteria wholly (Figure 3).
For PLA, the largest improvement (∼197%) was obtained
by the biological process “monocarboxylic acid biosynthesis”
(Figure 2, Supplementary Table 2B). The best performing
MF and CC terms for PLA were “exopeptidase activity” and
“chloroplast part” (∼185 and ∼178%, respectively; Figure 3,
Supplementary Table 2B). Interestingly, these best CC terms for
both traits are directly related to photosynthesis, which lends
credibility to the usefulness of the GO terms to capture relevant
prior biological knowledge.

In total, 43 GO terms (BP:34, CC:6, MF:3) were potentially
informative (i.e., Wilcoxon–Mann–Whitney test p-values <

0.05, without multiple testing correction), showing a tendency
to improve 8PSII traits and yielding a significant increase
in GFBLUP model accuracy (Supplementary Figures 6A, 7,
Supplementary Table 2A) compared to GBLUP. The overall
gain in accuracy for these informative GO features ranged
between 23 and 60%. The GO terms’ hierarchical redundancy
was removed using GO trimming (Jantzen et al., 2011) and the
remaining 40 informative terms fell broadly into six biological
clusters (Figure 4, Supplementary Figure 9): (i) hormonal
regulation; (ii) cellular development; (iii) transport; (iv)
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FIGURE 3 | Biological priors based on top GO cellular components improving genomic prediction accuracy for growth related traits. Prediction accuracy of the best

GFBLUP models using Gene Ontology (GO) cellular components gene groups, compared to the GBLUP benchmark (without prior biological knowledge). The

accuracy of benchmark model may differ within corresponding figures of Figures 2, 3, because it is calculated from the corresponding time point, where improvement

by GFBLUP was observed. Accuracy was calculated as Pearson correlation between true vs. predicted values. The GBLUP-ALL model uses all markers in GBLUP;

GFBLUP-GO models use the top GO cellular component terms mentioned in the text above. The text in the bottom of boxplots shows the likelihood ratio test p-value

(LRT) and proportion of genomic heritability explained (h2f ) by corresponding GO model. (A) Accuracy for 8PSII under low light irradiance levels (LL). (B) Accuracy for

8PSII under high light irradiance (HL). Similar to Figure 2, the GFBLUP-GO model did not pass all of our model evaluation criteria (see Model Performance Evaluation),

though showing some improvement. (C) Accuracy for PLA.

metabolism; (v) catabolism and (vi) macromolecular complex
assembly, organization, and biogenesis. The cellular component
terms were semantically clustered into organellar membranes
and photosynthesis machinery sub-compartments, whereas
molecular function terms were related to transmembrane
transport and phosphatase activities.

For PLA, 52 GO terms (BP:41, CC:6, MF:5) resulted in
significant improvement (pFDR < 0.05) in predictive ability
(Figure 5, Supplementary Figure 6C, Supplementary Table 2B)
and the gain in accuracy ranged between 104 and 197%. After
removal of hierarchical redundancy, semantic grouping of the
remaining 45 GO terms showed that they involved a number
of growth and developmental processes. Biological process GO
terms fell into ∼8 clusters (Figure 6, Supplementary Figure 10)
related to development, defense response, stress response, cell
cycle regulation, metabolism, molecular biosynthesis, cellular
component organization, and transport. The molecular function
terms were clustered into two groups including exopeptidase
and methyltransferase activities. The cellular component terms
included the photosynthesis machinery (i.e., chloroplast) and
endoplasmic reticulum. Comparison of average accuracy over
multiple folds of GO models (Supplementary Figures 6A,C)
indicate that many models performed better than GBLUP. Some

of these passed our significance threshold (see model evaluation
criteria, M&M) at a particular trait measurement but appeared to
improve prediction performance for other measurement points
as well.

The maximum number of genes annotated with the
informative GO terms for 8PSII and significant GO terms
for PLA were 1,358 and 1,245, respectively. These GO terms
appeared at multiple levels of the GO hierarchical structures,
including parent and child terms closely related to photosynthesis
and growth (Table 1). Moreover, many genes were common
with the pre-selected photosynthesis related PSGENES: 42 and
58% for 8PSII and PLA respectively, significantly more than
what expected by chance (pχ2

df : 1
< 0.05). Total genomic

heritability (h2GBLUP) was negatively correlated with predictive
gain (rΦPSII = −0.77, rPLA = −0.5). The genomic heritability
explained individually (h2

f
) by the informative GO terms ranged

between 6 and 31% for 8PSII and between 3 and 43% for
PLA (Supplementary Tables 2A,B). Interestingly, the markers
associated with these GO terms constituted only 0.1–3.3% of
the total markers for 8PSII and 0.005–2.8% for PLA. This
indicates that to improve predictive ability, genomic variance can
be decomposed based on biologically meaningful sets of genes
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FIGURE 4 | Semantic clustering of GO informed prediction for 8PSII. Multidimensional scaling (MDS) plot of the representative subset (i.e., terms remaining after the

redundancy reduction) of biological process GO terms informative for 8PSII. Semantically similar GO terms are clustered based on the “SimRel” semantic similarity

measure using Revigo. Dot size is proportional to the number of genes annotated with the GO term, such that more general GO terms have larger circles. The x and y

coordinates indicate relative cluster distances in 2 dimensions. The %gain of a particular GO term is indicated by the circle color.

FIGURE 5 | Improvement in genomic predictive performance using GO for PLA. All GO terms that significantly improve GFBLUP models for PLA with %gain in

accuracy (r) over GBLUP. Each GO term has a separate model for individual measurements indicated as T{day}_{Number of measurement}. The color bar identifies

the GO terms as Biological Process (BP), Cellular Component (CC) and Molecular Function (MF).
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FIGURE 6 | Semantic clustering of GO informed prediction for PLA. Multidimensional scaling (MDS) plot of the representative subset (i.e., terms remaining after the

redundancy reduction) of cellular component GO terms informative for PLA. Semantically similar GO terms are clustered based on the “SimRel” semantic similarity

measure using Revigo (Supek et al., 2011). Dot size is proportional to the number of genes annotated with the GO term, such that more general GO terms have larger

bubbles. The x and y coordinates indicate relative virtual cluster distances in 2 dimensions. The %gain of a particular GO term is indicated by the bubble color.

scattered over the genome rather than lie in adjacent regions such
as in the MultiBLUP analysis above. Moreover, h2

f
is positively

correlated with GO gene group size (rΦPSII = 0.87, rPLA = 0.77)
as well as with the likelihood ratio (rΦPSII = 0.60, rPLA = 0.65)
of both trait models, indicating that incorporating meaningful
prior subsets into the GFBLUP model improves goodness
of fit.

From this we infer that GO-based prior knowledge can
improve GP performance. The improvement is most prominent
for traits with low heritability, where some of the GO terms
appeared more frequently for PLA than 8PSII at multiple
measurement times.

COEX Informed Prediction
Similar to genomic features based on GO, we made subsets
of markers based on COEX clusters by selecting the markers
within the ORFs of genes which were part of a given

COEX cluster. Similar to GO based models, COEX models
with zero and with 100% variance explained were discarded
(Supplementary Figure 5). In general, more COEX models pass
our model evaluation threshold (Supplementary Figures 6B,D)
and they have a higher likelihood ratio than GO based models.
This could be due to the genic overlap between groups
and the enrichment of multiple related GO terms within
a group.

For 8PSII we found 172 informative COEX gene groups
potentially improving predictive ability, one of which
was statistically significant (p < 0.05) after correcting for
multiple testing using FDR (Supplementary Figures 6B, 8).
355 COEX groups significantly improved predictive
ability for PLA (Figure 7, Supplementary Figure 6D,
Supplementary Tables 3A,B). The gain in accuracy was
higher for PLA (80 to 243%) than for 8PSII (7 to 89%) and
was negatively correlated with genomic heritability (rΦPSII
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TABLE 1 | Known trait-specific GO terms improving genomic prediction performance for both traits.

GO ID Ontology Type h2
f LR p-value (unadj) #gene #marker %gain Cor(Gf,Gr) h2

GBLUP

8PSII

GO: 0009543 chloroplast thylakoid lumen CC 0.07 10.53 1.48 × 10−2 71 218 33 0.59 0.09

GO: 0031968 organelle outer membrane CC 0.06 12.47 4.3 × 10−3 72 345 40 0.61 0.08

GO:0044429 mitochondrial part CC 0.14 47.05 2.3 × 10−3 298 1069 38 0.81 0.09

GO:0005740 mitochondrial envelope CC 0.13 8.43 2.7 × 10−2 255 914 25 0.79 0.12

GO ID Ontology Type h2
f

LR p-value (adj) #gene #marker %gain Cor(Gf,Gr) h2
GBLUP

PLA

GO:0044434 Chloroplast part CC 0.32 101 5.26 × 10−5 1211 5658 178 0.94 0.07

GO:0009535 chloroplast thylakoid membrane CC 0.14 10 4.9 × 10−2 322 1139 121 0.81 0.07

GO:0000911 cytokinesis by cell plate formation BP 0.15 34 9.6 × 10−3 204 1465 134 0.81 0.07

GO:0010090 trichome morphogenesis BP 0.04 30 8.3 × 10−4 31 65 154 0.40 0.06

GO:0010321 regulation of vegetative phase change BP 0.14 18 4.9 × 10−3 425 1512 106 0.84 0.07

GO:0048366 leaf development BP 0.10 48 1.96 × 10−5 99 487 187 0.62 0.06

GO:0090698 post-embryonic plant morphogenesis BP 0.04 7 8.3 × 10−7 4 11 207 0.20 0.06

The proportion of explained genomic heritability (h2f ) by a GO term, likelihood ratio (LR) between GFBLUP and GBLUP models, Wilcoxon–Mann–Whitney test p-value, total number of

genes and markers, %gain in accuracy (r), correlation between genomic relationship matrices based on GO term markers (Gf ) and remaining markers (Gr ) and total genomic heritability

(h2
GBLUP

), for different trait specific GO terms that are common to both GO and COEX based analyses. For GO terms, the type is indicated—molecular function (MF), biological process

(BP) and cellular component (CC).

FIGURE 7 | Improvement in genomic prediction performance using co-expressed gene clusters for PLA. All COEX clusters that significantly improve GFBLUP models

for PLA with %gain in accuracy (r) over GBLUP. Each COEX cluster has a separate model for individual measurements indicated as T{day}_{Number of

measurement}. The clusters are ordered according to “cluster_sr_no” column in Supplementary Table 3B.

= −0.86, rPLA = −0.56), like for GO informed prediction.
This improvement was attributed to a maximum of only ∼5%
of the total genomic markers in all groups. Interpretation of
COEX gene groups is not as straightforward as of GO terms,
which by nature carry an informative name. Interestingly,∼90%
of genes were common in the COEX groups for both traits,

possibly due to the relatedness of the traits. To attach biological
meaning to these groups we performed GO enrichment analysis
on all groups together. We found 113 BP, 29 MF, and 24 CC
most specific GO terms enriched in these clusters. The top 10
GO terms with highest fold enrichment include photosynthesis
machinery, i.e., chloroplast stroma (GO:0009570), chloroplast
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envelope (GO:0009941) cellular components; ATPase activity
coupled with transmembrane ion transport (GO:0015662);
and glucose metabolic process (Supplementary Figure 11,
Supplementary Table 5). These results indicate that trait-
specific co-expressed gene functional groups can also help
improve prediction performance and that these groups capture
biologically relevant functions.

Similar to GO informed prediction, ∼34% of COEX genes
were common to the pre-selected photosynthesis related genes
(PSGENES) for both traits, but here this is close to what we expect
by chance. This indicates that, even though the COEX groups
contain only a limited subset of all genes, they are not biased
toward photosynthesis genes. The gain in predictive ability and
explained genomic heritability (h2

f
) for 8PSII by the top COEX

gene group was higher (89% resp. 14%) than those for the top
GO feature (60% resp. 13%). Similarly, for PLA the top COEX
gene group achieved a higher accuracy gain (242%) than the
top GO group (197%), as shown in Figure 2. Notwithstanding
these differences, we observed that many genes were common
between GO and COEX based prediction for both traits (21 and
19% of all models passing the evaluation criteria for 8PSII and
PLA resp.). These common genes in COEX based prediction
were mainly enriched for many fundamental photosynthesis and
growth related GO terms (Supplementary Tables 7A,B), e.g.,
light harvesting in photosystem I and photosynthetic electron
transport in photosystem II (BP), chloroplast (CC), and ATP
binding (MF).

The largest informative COEX groups for 8PSII and for PLA
only differ slightly in sizes (3,176 and 2,840 genes, respectively),
but on average, COEX groups were larger than the GO groups for
both traits. The 95th percentile of genomic heritability explained
individually by the COEX groups (h2

f
) was 70% for 8PSII and

39% for PLA, indicating that some 8PSII models could be
over-estimated. Analogous to GO, h2

f
was positively correlated

with COEX gene group sizes (r8PSII = 0.88, rPLA = 0.40) and
likelihood ratio (r8PSII = 0.27, rPLA = 0.22), indicating that
incorporating meaningful prior subsets into the COEX model
improved goodness of fit.

Together, our results illustrate that both of the meaningfully
specific GO terms and more general COEX groups of genes with
interrelated functions may improve GP predictive performance.

DISCUSSION

Predicting Photosynthesis
In this work, we aimed at improving GP performance by
exploiting publicly available biological knowledge to group genes
in three different ways: using our knowledge about the trait,
using the Gene Ontology and using co-expression. Instead of
developing new methodology, we focused on using existing
BLUP methods, widely used in animal and plant breeding, to
explore new sources of biological prior knowledge, e.g., clusters
of co-expressed genes. The GFBLUP methodology was initially
proposed for Drosophila melanogaster using Gene Ontology
data as biological prior knowledge (Edwards et al., 2016).
We also investigated to what extent different traits benefit

from and the use of prior knowledge. Our results support a
strong influence of different trait genetic architectures, since
performance improvement was more evident for leaf area
phenotypes than for 8PSII .

The approach can be generally applied to complex traits, but
here we focused on photosynthesis and plant size. Besides serving
as a case study, photosynthesis is also interesting in its own right,
for two reasons. First, the genetic architecture of photosynthesis,
though well-studied over the previous decades, is still poorly
described in the quantitative genetic context (Van Rooijen et al.,
2017). Secondly, it is an important target for improvement
in crop breeding (Long et al., 2015). Modest improvements
in photosynthesis efficiency by engineering photorespiratory
pathways have demonstrated enormous yield gains (Kromdijk
et al., 2016; South et al., 2019). The yield model of Monteith
(Monteith, 1977) suggests that increased light use efficiency
of photosystem II holds great potential to meet global food
challenges by increasing the conversion efficiency of intercepted
irradiance into biomass (εc) (Van Bezouw et al., 2019). Another
determinant of plant growth rate is leaf area growth, involving
precise regulation of photosynthesis machinery and growth
hormones such as auxin (Zhang et al., 2017). Leaf area
measurements from fluorescence based non-destructive optical
phenotyping systems, can be efficiently used to screen plants at
different growth stages with varying levels of photosynthetic rates
(Weraduwage et al., 2015). Therefore, improved GP models for
these traits could have impact in future crop breeding.

Following Edwards et al. (2016), we studied accuracy on
internal test sets within the HapMap population. Further work
is needed for data-driven selection of the most relevant terms
for prediction on external test sets. For example, a possible
strategy may be to select the feature with highest genomic
variance explained, or with lowest p-value in the LRT we
described. Our results indicate that biological priors driven
GP models can be used to rank groups of genes potentially
associated to the trait of interest along with improving prediction
performance. The GWAS conducted on the same HapMap
population for photosynthetic light use efficiency of photosystem
II identified that the A. thaliana “Yellow Seedling 1” gene is
involved in photosynthesis acclimation response (Van Rooijen
et al., 2017). This YS1 gene is annotated with GO Cellular
Component terms chloroplast, intracellular membrane-bounded
organelle and mitochondrion and GO Biological Process
terms thylakoid membrane organization and photosystem II
assembly. Our results using GO and COEX GP (Table 1)
clearly demonstrate that these GO terms were most prevalent
to improve the prediction and explain a large amount of
genomic heritability. This indicates that genomic prediction
and GWAS support each other as potentially useful tools for
forward genetics.

The gain of predictive accuracy of the GP models compared
to the base-model is trait-specific and negatively correlates with
genomic heritability, which is promising for breeding at low
h2. This inverse relation may be due to the fact that we deal
with highly polygenic, complex traits: many physiological and
regulatory biological processes are involved in 8PSII under high
light stress, e.g., PSII repair, ROX etc. Our models, testing groups
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of genes individually, may not be able to improve performance
for such cases. Another potential explanation lies in the ability of
GFBLUP to capture small genetic variance at low h2 in a separate
random component, potentially including known causal genes,
which is not possible in GBLUP.

Exploiting Biological Knowledge to
Improve Genomic Prediction
With recent technological advances in both field and controlled
environment high-throughput phenotyping systems, phenotypes
can be measured at unprecedented scales. Phenotypes can
vary in space and time due to genetics and environment
alone, genotype-by-environment (GxE) interactions as well
as stochastic and development effects. Component variances
due to these factors can be calculated by precise modeling.
If multiple measurements are available, GP models can be
developed on individual measurements, treated as individual
phenotypes, or on derived parameters, e.g., growth curves.
We found that at each measurement timepoint, at least some
GO (in particular cellular component terms) or COEX group
could help to improve performance, and some were more
frequent (Figure 4, Supplementary Figure 7). For example, for
8PSII no single GO or COEX gene group was capable of
improving GP accuracy for all time points (either LL or
HL separately), but a number of gene groups were able to
improve PLA at multiple measurements (although not always
meeting the threshold for significance). Phenotyping at an
extended scale and GP modeling thus provides an opportunity
to obtain biological insights. As an alternative to modeling
at each timepoint separately, a whole time series or growth
curve can be used instead. We did not pursue this here, as
time series data is not generally available in most practical
scenarios and we were interested to learn whether performance
improvement was specific to growth stages and conditions
e.g., models for 8PSII behaved differently under low and high
light conditions.

Here, we mainly investigated two approaches to incorporate
publicly available trait-specific biological information into GP,
i.e., pre-selecting a list of genes and selecting sets or groups
of genes based on predicted functional (i.e., GO) or expression
(COEX) information. The approach using predicted functional
information proved to be more useful in this context, but more
approaches and sources of information can also be incorporated
with a focus on prioritizing biologically related genomic regions.
Moreover, knowledge from multiple heterogeneous sources can
be combined to further pinpoint potential QTLs, termed as poly-
omics GPmodels (Wheeler et al., 2014; Uzunangelov et al., 2020).
These information sources may include (i) predicted variants
effects, (ii) gene functions e.g., GO, COEX, (iii) networks of gene-
gene and protein-protein interactions, stored in public resources
like STRING (Mering et al., 2003), GeneMANIA (Warde-Farley
et al., 2010); (iv) pathways, in which genes are grouped e.g.,
KEGG (Kanehisa and Goto, 2000); (v) previously generated
GWAS and QTL results which indicate involvement of particular
regions for specific traits e.g., AraGWAS (Togninalli et al.,
2020), AraQTL (Nijveen et al., 2017), (vi) known connections to

phenotypes and (vii) endophenotypes, usually measured using -
omics data at different stages of genetic information flow toward
phenotypes. The reliability of these sources of information is an
important factor for credible analysis. Information describing the
(un)certainty of annotations is generally available in the form of
a score (e.g., for gene functions based on GO evidence scores or
reliability scores generated by a prediction method). It remains
an open question how to incorporate such scores in the process
of using the biological knowledge for GP.

Our first approach, pre-selecting a gene list, seems to be
naive but can be useful as a baseline for comparison with more
complex statistical procedures. The group based approach is
usually based on gene function, but this heavily depends on
computational prediction, as for most of the genes in plants
and animals, no experimental function annotation is available
(Radivojac et al., 2013). Function prediction is often based on
sequence similarity, which works well for predicting molecular
functions but less so for biological processes. Using expression
compendia based on multiple experiments poses an interesting
alternative, since genes with similar expression patterns are
more likely functionally related, hence more likely involved
in the same biological process(es) (Kourmpetis et al., 2011).
Alternatives are to define phenotype associated genomic regions
based on differential gene expression levels (Fang et al., 2017)
or metabolite levels and metabolic fluxes (Tong et al., 2020),
or to construct haplotypes in genic regions based on their
ontology information (Gao et al., 2018). The GP requiring
genomics inferred relationship matrices (GRM), e.g., GBLUP
and its variants, can make use of information derived from
these sources to construct a population variance-covariance
structure (Zhang et al., 2010, 2011; Fragomeni et al., 2017).
A simple approach is to include multiple random effects for
each knowledge source yielding its own variance-covariance
structure for the population under study, in the mixed model
equations (Guo et al., 2016). One way to combine multiple
omics datasets is to prepare a Composite Relationship Matrix
(CRM) as a linear combination of Genomic Relationship
Matrices (GRMs), Expression Relationship Matrices (XRMs),
Metabolome Relationship Matrices (MRMs), MicroRNA
Relationship Matrices (miRMs) etc. (Wheeler et al., 2014).

Alternative Models for Genomic Prediction
Linear mixed model (LMM)-based genomic prediction, as used
in this work, makes use of raw genotypes and parameter
regularization to estimate thousands of SNP marker effects using
only a few hundred observations (p >> n), employing different
prior statistical assumptions on these parameters. This makes
the approach fairly simple and interpretable; therefore, biological
knowledge can be incorporated straightforwardly by employing
these statistical assumptions. But with the increase in the ratio
between markers and available phenotypes, serious overfitting
problems may be encountered in these models (González-
Recio et al., 2014), leading to a need to use prior knowledge
in regularization. A more general set of statistical learning
methods are Machine Learning (ML) methods for prediction
and classification, capable of dealing with the dimensionality
problem in amore flexiblemanner. In thesemethods, phenotypes
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are regressed on nonlinear functions of genotypes rather than
raw genotype values, compromising model interpretability but
potentially improving prediction performance. Several studies
have reported the use of Support Vector Machines (SVM),
Reproducing Kernel Hilbert Spaces Regression (RKHS), Neural
Networks (NN), Random Forests (RF), and boosting (De Los
Campos et al., 2010; Ogutu et al., 2011) for genomic prediction.
Still, low prediction accuracy remains a problem for complex
traits. It will be interesting to further explore how biological
knowledge can be incorporated into ML approaches for GP. One
way could be to involve a knowledge driven regularization-based
approach as demonstrated for disease prediction in human (Deng
and Runger, 2013).

CONCLUSION

The wealth of publicly available transcriptomics and Gene
Ontology based prior biological knowledge can be incorporated
for genomic prediction of photosynthetic light use efficiency of
photosystem II electron transport (8PSII) and PLA. Significant
improvement in prediction accuracy over the benchmark GBLUP
model was obtained for several GO terms and COEX groups.
This improvement is trait-specific and negatively correlates with
genomic heritability; whereas, for projected leaf area we found
more added value than for 8PSII . Many known photosynthesis-
specific GO terms lead to improvements, providing evidence
of the potential usefulness of this approach in future breeding
practice. We foresee incorporation of heterogeneous prior
biological information into machine learning algorithms as an
active area of research in future.

MATERIALS AND METHODS

Datasets
Genotype Data
Genotype data of the 360 natural accessions in the core set
of the Arabidopsis thaliana HapMap population, representing
its global diversity, was obtained using Affymetrix 250k SNP
array (Zhang and Borevitz, 2009; Baxter et al., 2010). The
HapMap accessions were chosen as most accessions are more
or less equally interrelated, so modeling is not heavily affected
by population structure. Phenotypes of 344 accessions were
available, so 16 accessions were removed from the analysis
(CS76104, CS76112, CS76254, CS76257, CS76121, CS28051,
CS28108, CS28808, CS28631, CS76086, CS76138, CS76212,
CS76196, CS76110, CS76117, CS76118). Genotype data were
subjected to quality control and all genotypes with a missing call
in any accession were removed. Only 510 (0.24%) markers had
minor allele frequency (MAF)<0.01 and 14,824 (6.9%) hadMAF
<0.05 (Supplementary Figure 12). To incorporate the effects of
rare alleles along with common alleles in the GP model, the
MAF filtering threshold was set at 0.01. Of subsequent markers
in a window of 50bp with a Pearson correlation coefficient (r) <

0.999, one was removed, using PLINKv1.9 (Purcell et al., 2007).
In total, 214,051 SNPs passed quality filtering, 213,541 remained
after MAF filtering and 207,981 SNPs were available after LD

pruning for the analyses. The resulting minimal distance between
SNPs was found to be∼550 bp.

Phenotype Data
The light use efficiency of Photosystem II electron transport
(8PSII) dataset was obtained from Van Rooijen et al. (2017),
who measured it using chlorophyll fluorescence via NIR imaging
at 790 nm. In this dataset, 8PSII was recorded three times a
day; under 100 µmol m−2 s−1 (low light) for 2 days and for
four continuous days after induction of high light stress at 550
µmol m−2 s−1 to study the photosynthetic acclimatory response.
We measured PLA every 3 h starting from the afternoon of
day 22 after sowing until early morning of day 29 using the
“Phenovator” high-throughput automated phenotyping system
(Flood et al., 2016), which results in total of 54 timepoints for
this trait (Supplementary Table 8). Technical mis-match errors
between the imaging system and the coordination of image
analysis software were identified for some replicates at some time
points for a small number of genotypes, but these were not found
to influence overall results and the data was thus retained. Data
of timepoints on day 22 was excluded from the analyses due to
their relatively low coefficient of variation.

The Phenovator system has been designed to screen
Arabidopsis plants for photosynthesis and growth on a
larger temporal scale in a carefully controlled environment
with minimal noise. The plants are grown over a table,
spatially arranged into sowing blocks, imaged using a moveable
monochrome camera recording 12 plants per image, and
processed using an image processing software (available on
demand from the authors). The system design allows spatial
uniformity and temporal reproducibility by minimizing the
design parameter variances. Therefore, we expected low variances
of interactions between genotype and the design parameters;
whereas, within image position and sowing position could
have larger main effects and thus could be corrected for.
Phenotypic values were taken as the average of one to four
replicates of Best Linear Unbiased Estimators (BLUE) using the
linear mixed model adjusted for experimental design factors
(Supplementary Table 9) that were described in Flood et al.
(2016). For this experiment, the important design factors are
spatial row (x) and column (y) coordinate, the image position
and the sowing block. Thus, the BLUE for phenotypic mean is
calculated based on this equation, implemented in R with the
lmer function (supplemental R script) using the lme4 package
(Bates et al., 2007):

Y = Genotype+ x+ y+ Image_position

+ Sowing_block+ error (1)

where Genotype is used as fixed effect and the other factors are
defined as random effects.

Both traits, at all measurement times, showed approximately
normal distributions (Supplementary Figures 13, 14). The
distributions are leptokurtic and left skewed for both traits
(except for a few measurements for PLA on day 14 and day
15). The coefficients of variation under low light conditions for
8PSII ranged from 1.95 to 2.30% and 2.92 to 7.58% under high

Frontiers in Genetics | www.frontiersin.org 12 January 2021 | Volume 11 | Article 609117

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Farooq et al. Prior Knowledge Improves Genomic Prediction

light and 18.73 to 27.04% for PLA (Supplementary Table 1).
Correlation between subsequent measurement times was high
(r > 0.9) for both traits, except between measurements under
low vs. high light conditions of 8PSII ; therefore, these were
analyzed separately.

Biological Priors
Co-expressed gene groups were obtained from the Arabidopsis
expression compendium by Movahedi et al. (2011). GO data was
retrieved using the R package “org.At.tair.db” (Carlson, 2019b)
and genes were annotated using “GO.db” (Carlson, 2019a)
irrespective of evidence codes. The set of genes in GO terms
were up-propagated along the GO tree, such that each GO group
in our analysis comprised of a set of all those genes attributed
to itself or to all of its child terms. The up-propagated sets of
genes were retrieved using the “GO2ALLTAIRS” method in the
“org.At.tair.db” package. Markers in genes linked to a specific GO
term or COEX cluster were used in the analyses.

Moreover, a set of 7,242 photosynthesis related genes was
manually compiled (Supplementary Table 6) using four publicly
available sources: KEGG (Kanehisa, 2001) pathways related
to photosynthesis (i.e., ath00195, ath00197, ath00710); the
Arabidopsis pathway database AraCyc for four photosynthesis
pathways (i.e., Calvin cycle, photorespiration, oxygenic, light
reaction); genes annotated with GO terms directly related to
photosynthesis machinery; and all 51 priority genes selected for
GWAS of photosynthesis acclamatory response identified by for
this HapMap population.

Statistical Analysis
Linear Mixed Models
The Linear Mixed Model (LMM) with one random genomic
component was used as baseline. This model (Equation 2),
known as Genomic Best Linear Unbiased Prediction (GBLUP)
(Habier et al., 2007; Vanraden, 2008) was used to predict marker
effects, calculate genomic heritability (h2GBLUP) and the total
additive genomic values, which is the sum of all marker effects:

ỹ = µ + g+ ε (2)

Here, ỹ is an nx1 vector of adjusted phenotypes as described
in section 5.1.2, µ is the overall mean, g is an nx1 vector
of genomic values captured by all genomic markers such that
g = ĝ and ε is an n-vector of residuals. The random genomic
values g and residuals were assumed to be independent, normally
distributed as g ∼ N(0,Gσ 2

g ), ε ∼ N(0, Iσ 2
e ). Here G is

the genomic relationship matrix (GRM), providing variance-
covariance structure of genotypes calculated from all genomic
markers and I is the identity matrix.

Accordingly, for each GO and COEX gene groups, another
linear mixed model similar to GBLUP but with two random
genomic components (Equation 3), known as Genomic Feature
Best Linear Unbiased Predictor (GFBLUP) (Edwards et al., 2016)
was applied:

ỹ = µ + f+ r+ ε (3)

This model differs from GBLUP in that the total estimated
genomic value (ĝ = f+r̂) is partitioned into genomic value
captured by markers in a GO/COEX group (f) and by the
remainingmarkers (r̂), such that f ∼ N(0,Gfσ

2
f
), r ∼ N(0,Grσ

2
r )

and ε ∼ N(0, Iσ 2
e ). For both GBLUP and GFBLUP, total

genomic value ĝ of the test population was predicted conditional
on observed phenotypes of the training population, using the
approach mentioned by Edwards et al. (2016). The genomic
relationship matrix G in the GBLUP model was constructed
based on all genomic markers such that G =WW’

m , where W is
an n×m genotype matrix (n genotypes andmmarkers), centered

and scaled such that its ith column wi = (zi−2pi)√
2pi(1−pi)

, where zi

is the ith column vector of Z having minor allele counts (0, 1,
or 2) as entries and pi is the MAF of the ith marker. In our
case, all genotypic locations were homozygous, so genotypes are
coded as 0 or 2. For the GFBLUPmodel, the genomic relationship
matrix Gf for each GO or COEX group was calculated from
the markers linked to that group; Gr was constructed from the
remaining markers.

The MultiBLUP model (Equation 4) was constructed
according to the Adaptive MultiBLUP strategy proposed by
(Speed and Balding, 2014). Briefly, the total genome was divided
into adjacent but 50% overlapping regions of 10 kb. The genomic
markers within these regions were tested as a group to estimate
their association with the phenotype (p < 10−5) and adjacent
regions were merged if pBonferroni < 0.05. Subsequently, separate
covariance matrices K1, K2,..., KM were constructed for each
region (M regions in total) based on its markers and genomic
values g1, g2,..., gM were estimated. The GRM based on all
markers (equivalent to GBLUP) was used if no region was found
significant. The total genomic value is ĝ =

∑M
m=1 ĝm with i.i.d.

gm ∼ N(0,Kmσ 2
m) and ε ∼ N(0, Iσ 2

e ):

ỹ = µ +
∑M

m = 1
gm + ε (4)

Variance components in all of these LMMs were estimated
using the average information restricted maximum-likelihood
(REML) procedure (Johnson and Thompson, 1995) implemented
in the greml method of the R package qgg (Rohde et al., 2020)
for GBLUP/GFBLUP, using a maximum of 100 iterations at a
tolerance level of 10−5; and LDAK v5.1 (http://dougspeed.com/)
for MultiBLUP.

Total additive genomic value was predicted using 8-fold cross-
validation. This involved training the model using 301 (78%)
genotypes and using the remaining 43 for testing in each fold. The
exact same accessions were used for both GBLUP and GFBLUP
during each split to enable a fair comparison. Prediction accuracy
of models was defined as Pearson correlation (r) between
observed phenotypic values and predicted genomic values of the
test population in each fold. The procedure was repeated 10
times, thus modeled predictive ability distributions consisted of
80 correlations or fewer if variances were over- or underestimated
as described earlier by simulation studies (Kruijer et al.,
2015). For comparison between models, the median of these
correlations was used, and significance of the difference was
tested using the non-parametric Wilcoxon–Mann–Whitney test
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for assessing significant differences in median accuracy between
GBLUP and GFBLUP. Subsequently, p-values were adjusted for
multiple-testing correction by calculating False Discovery Rate
(FDR) based on total number of GO/COEX groups multiplied
by total number of time points (Edwards et al., 2016). For 8PSII

we also analyzed results without FDR adjustment, which are
referred as “informative” as opposed to “significant” throughout
the text.

Model Performance Evaluation
GFBLUP models were compared to the benchmark GBLUP
based on their goodness of fit, predictive ability and estimated
genomic parameters. Using the likelihood ratio test (LRT)
we tested the null-hypothesis σ 2

f
= 0. LRT p-values were

based on the asymptotic distribution of the LRT-statistic, which
is a mixture of a point mass at 0 and a χ2-distribution
with 1 degree of freedom (d.o.f.) (Edwards et al., 2015). The
significantly improved GFBLUP models (pLRT < 0.05) having
predictive abilities greater than the benchmark GBLUP (i.e., p-
value of Wilcoxon-Mann-Whitney tests < 0.05) were filtered for
subsequent analysis. Genomic parameters were calculated from
variance estimates of both models to analyze only models passing
the abovementioned filtering criteria. This includes total genomic

heritability explained (h2GBLUP = σ 2
g

(σ 2
g +σ 2

e )
) and proportion of

genomic heritability explained by an individual GO/COEX group

in GFBLUP models (h2
f
=

σ 2
f

(σ 2
f
+σ 2

r +σ 2
e )
). In order to check if we

obtained a higher number of PSGENES in GO/COEX groups
than expected by chance, we used the chi-square test with 1 d.o.f.
to compare the observed vs. expected frequencies of PSGENES in
these groups.

Semantic Clustering of GO Terms
Informative GO terms were clustered based on their semantic
similarity using the Revigo (Supek et al., 2011) web server
with “SimRel” semantic similarity metric equal to 0.7. The
resulting GO clusters were plotted using a Multidimensional
Scaling (MDS) plot in R, where maximum %gain in accuracy
by each GO term was used to color the bubbles. GO terms
enriched in COEX groups were found using the PANTHER
classification system (Mi et al., 2019). Fisher’s exact test was
used for calculating enrichment p-values followed by multiple
testing correction using the FDR, reporting enrichment at
p < 0.05. These enriched GO terms were sorted in order
of their GO hierarchical tree such that a child term was
below its parent; thus, the most specific GO terms are the
child GO terms in the bottom of that tree, were used for
subsequent analysis.
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Supplementary Figure 1 | Relation between genomic heritability and GBLUP

predictive ability. GBLUP prediction accuracy is directly proportional to genomic

heritability for both traits. (A) shows the relation between heritability and accuracy

under low light (LL) and high light (HL) irradiance levels for 8PSII, (B) shows the

same for PLA.

Supplementary Figure 2 | GBLUP accuracy (r) vs. genomic variance (h2
GBLUP

).

Each dot corresponds to prediction accuracy (r) of GBLUP (y-axis) for each split of

the data during cross-validation. The genomic variance explained by the model

(x-axis) ranges from 0 to 1 and calculated as h2
GBLUP

= σ2
g

(σ2
g+σ2

e )
. Models at different

measurement times are colored differently. (A) represents GBLUP models for 8PSII

and contains two separate clouds of dots, representing LL (left) and HL (right)

models with different heritability ranges. (B) represents GBLUP models

for PLA.

Supplementary Figure 3 | MultiBLUP predictive ability. The boxplots show the

prediction accuracy (r) of MultiBLUP applied to 18 measurements of 8PSII and 50

measurements of PLA. The average accuracy is slightly lower than the average

GBLUP accuracy (white star) for both traits. (A) shows the prediction accuracy

under low light (LL) and high light (HL) irradiance levels for 8PSII whereas, (B)

shows the same for PLA.

Supplementary Figure 4 | Number of genes and markers in GO and COEX

features. Total number of genes and markers associated with those genes for

both types of genomic features, i.e., GO (left) and COEX (right).

Supplementary Figure 5 | GFBLUP accuracy (r) vs. genomic variance (h2f )

explained by a GO/COEX group. Each dot corresponds to prediction accuracy (r)

of GFBLUP (y-axis) for each split of data during cross-validation for a particular

GO (A,C) and COEX (B,D) group. The genomic variance explained by the

particular GO/COEX (x-axis) ranges from 0 to 1. (A,B): GFBLUP models for 8PSII;

(C,D): GFBLUP models for PLA.

Supplementary Figure 6 | GBLUP vs. GFBLUP predictive ability. Average

prediction accuracy (r) of GBLUP vs. GFBLUP using GO terms (A,C) and COEX

clusters (B,D) for 8PSII (A,B) and PLA (C,D). The average was calculated over 80

splits of the data (8-fold cross-validation repeated 10 times), excluding models
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where variance was undetermined). Red dots indicate models that passed our

model evaluation criteria (see M&M).

Supplementary Figure 7 | Improvement in genomic prediction performance

using informative GO terms for ϕPSII. All informative GO terms with %gain in

accuracy (r) of GFBLUP over GBLUP at multiple 8PSII measurement times,

indicated by {Low|High light}{day}_{Number of measurement}. The color bar

identifies GO terms as Biological Process (BP), Cellular Component (CC) or

Molecular Function (MF).

Supplementary Figure 8 | Improvement in genomic prediction performance

using informative COEX groups for ϕPSII. All informative COEX clusters with %gain

in accuracy (r) of GFBLUP over GBLUP at multiple 8PSII measurement times,

indicated by {Low|High light}{day}_{Number of measurement}.

Supplementary Figure 9 | Semantic clustering of GO informed prediction for

8PSII. Multidimensional scaling (MDS) plot of representative subset (i.e., terms

remaining after the redundancy reduction) of informative GO terms molecular

functions and cellular components, capable of improving predictive ability of

GFBLUP models for 8PSII. Semantically similar GO terms are clustered based on

the “SimRel” semantic similarity measure using Revigo. Dot size is proportional to

the number of genes annotated with a GO term in the TAIR9 reference genome

annotation. The x and y coordinates indicate relative cluster distances in 2

dimensions. The %gain of a particular GO term is indicated by the

bubble color.

Supplementary Figure 10 | Semantic clustering of GO informed prediction for

PLA. Multidimensional scaling (MDS) plot of representative subset (i.e., terms

remaining after the redundancy reduction) of informative GO terms molecular

functions and cellular components, capable of improving predictive ability of

GFBLUP models for PLA. Semantically similar GO terms are clustered based on

the “SimRel” semantic similarity measure using Revigo. Dot size is proportional to

the number of genes annotated with a GO term in the TAIR9 reference genome

annotation. The x and y coordinates indicate relative cluster distances in 2

dimensions. The %gain of a particular GO term is indicated by the bubble color.

Supplementary Figure 11 | Top 10 enriched GO terms in COEX clusters for 8PSII

and PLA. Top 10 most specific GO terms enriched in 172 informative COEX

clusters for the 8PSII and 355 for PLA traits. The horizontal axis measures the fold

enrichment, i.e., the observed fraction of genes annotated with a particular GO

term divided by the expected fraction in the reference genome of Arabidopsis

thaliana. Enrichment p-values were found using Fisher’s exact test with multiple

testing correction using False Discovery Rate (FDR); only terms with pFDR < 0.05

are shown.

Supplementary Figure 12 | Minor allele frequency spectrum (MAF). MAF

distribution of all 214,051 chip markers. The orange bar represents all markers

having MAF<5%, the red bar rare alleles with MAF<1%.

Supplementary Figure 13 | ϕPSII phenotypic data distributions using Best Linear

Unbiased Estimates (BLUE). Distributions of genotypic means of BLUE values of

genotypes in the dataset.

Supplementary Figure 14 | PLA phenotypic data distributions using Best Linear

Unbiased Estimates (BLUE). Distributions of genotypic means of BLUE values of

genotypes in the dataset.

Supplementary Table 1 | Best Linear Unbiased Estimated Phenotypic data

statistics.

Supplementary Table 2a | Informative GO terms increasing GFBLUP prediction

accuracy for 8PSII.

Supplementary Table 2b | GO terms significantly increasing GFBLUP prediction

accuracy for PLA.

Supplementary Table 3a | Informative COEX improving GFBLUP prediction

accuracy for 8PSII.

Supplementary Table 3b | COEX significantly improving GFBLUP prediction

accuracy for PLA.

Supplementary Table 4 | Genomic features statistics.

Supplementary Table 5 | Enriched Go terms in 8PSII and PLA COEX analysis.

Supplementary Table 6 | List of genes used in GBLUP based on only

photosynthesis genes markers.

Supplementary Table 7a | GO Enrichment of common genes between GO and

COEX based analysis for 8PSII.

Supplementary Table 7b | GO Enrichment of common genes between GO and

COEX based analysis for PLA.

Supplementary Table 8 | Raw measurements of Projected Leaf Area.

Supplementary Table 9 | Average best linear unbiased estimates (BLUE) of

Projected Leaf Area.
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