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Accurate RNA secondary structure information is the cornerstone of gene function

research and RNA tertiary structure prediction. However, most traditional RNA secondary

structure prediction algorithms are based on the dynamic programming (DP) algorithm,

according to the minimum free energy theory, with both hard and soft constraints. The

accuracy is particularly dependent on the accuracy of soft constraints (from experimental

data like chemical and enzyme detection). With the elongation of the RNA sequence, the

time complexity of DP-based algorithms will increase geometrically, as a result, they are

not good at coping with relatively long sequences. Furthermore, due to the complexity

of the pseudoknots structure, the secondary structure prediction method, based on

traditional algorithms, has great defects which cannot predict the secondary structure

with pseudoknots well. Therefore, few algorithms have been available for pseudoknots

prediction in the past. The ATTfold algorithm proposed in this article is a deep learning

algorithm based on an attention mechanism. It analyzes the global information of the

RNA sequence via the characteristics of the attention mechanism, focuses on the

correlation between paired bases, and solves the problem of long sequence prediction.

Moreover, this algorithm also extracts the effectivemulti-dimensional features from a great

number of RNA sequences and structure information, by combining the exclusive hard

constraints of RNA secondary structure. Hence, it accurately determines the pairing

position of each base, and obtains the real and effective RNA secondary structure,

including pseudoknots. Finally, after training the ATTfold algorithm model through tens

of thousands of RNA sequences and their real secondary structures, this algorithm was

compared with four classic RNA secondary structure prediction algorithms. The results

show that our algorithm significantly outperforms others and more accurately showed

the secondary structure of RNA. As the data in RNA sequence databases increase, our

deep learning-based algorithm will have superior performance. In the future, this kind of

algorithm will be more indispensable.

Keywords: RNA, secondary structure prediction, pseudoknot, attention mechanism, deep learning, hard

constraints
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1. INTRODUCTION

RNA is an indispensable biopolymer that plays diverse biological
roles in regulating translation (Kapranov et al., 2007), gene
expression (Storz and Gottesman, 2006), and RNA splicing
(Sharp, 2009). The sophisticated 3-dimensional shape (tertiary
structure) of RNA is the cornerstone of its functions (Ding et al.,
2014), which allows RNA to exert various activities (Tinoco and
Bustamante, 1999). It is relatively easy and feasible to predict
the RNA secondary structure using RNA sequence data, but it
is quite difficult to accurately predict the RNA tertiary structure.
To accurately obtain the RNA secondary structure, different
prediction algorithms have been developed over the past 40 years.

The prediction of the RNA secondary structure is a
subject that has been extensively studied for a long time,
but there are still many problems. First, the most accurate
and reliable approach is to directly observe and obtain
the RNA secondary structure via chemical and physical
methods, including X-ray crystal diffraction and NMR biological
experiments, but this approach is particularly time-consuming,
laborious, and expensive (Novikova et al., 2012) and is
thus not suitable for large-scale predictions. Notably, the
most mainstream calculation method is the Nearest Neighbor
Thermodynamic Model (NNTM) based on a single RNA
sequence (Turner and Mathews, 2010). This method calculates
the RNA secondary structure with minimum free energy (MFE)
through the dynamic programming algorithm. Moreover, the
more prominent algorithm tools based on the above algorithms
are RNAfold (Zuker and Stiegler, 1981), mfold (Zuker, 2003),
and RNAstructure (Reuter and Mathews, 2010). The idea of the
MFE algorithm is to enumerate all possible structures and to
then elucidate the structure with MFE. However, the number of
enumerated structures increases exponentially with the increase
in RNA sequence length, making it difficult to predict the
structure of a long sequence. In addition, two distinctly different
RNA secondary structures may show similar energy, which
greatly reduces their accuracy. As for classic algorithms, they
only focus on the number of pairing bases in the sequence, while
ignoring the exact base pairs. Although such algorithms perform
well in terms of the prediction accuracy, they deliver poor reports
to describe the true RNA secondary structures. As a result, it is
impossible to intuitively learn about the functions or biological
roles of RNA. In the meantime, none of these algorithms predict
the RNA secondary structure with pseudoknots. At present, the
thermodynamic matcher is still a very general framework used to
solve the hard constraints of RNA secondary structure (Reeder
and Giegerich, 2004).

With the rapid growth of deep learning, a large number of
topics have been revisited and great breakthroughs have been
made, including the prediction of the RNA secondary structure.
The main cause for its rapid development and success is that
deep learning methods further optimize network parameters by
training mass data, so as to extract the hidden features from data
not observed and calculated by human resources. After further
identification of the hidden features, a corresponding prediction
model is constructed. Finally, using this model, the real and
effective structure can be predicted. The CD fold algorithm

proposed in Zhang et al. (2019) calculates the MFE of the
RNA secondary structure by the convolutional neural network
combined with the dynamic programming (DP) algorithm.
Additionally, the algorithm put forward in Willmott et al. (2020)
combines the recurrent neural network with the SHAPE soft
constraints. The e2efold algorithm proposed in Chen et al. (2020)
is trained on the large-scale training sets with the use of an
end-to-end model. Notably, the above-mentioned algorithms
greatly outperform the traditional ones. Furthermore, it has been
suggested in numerous studies that, the pseudoknot structure
in the RNA secondary structure greatly affects the biological
functions and is found in diverse kinds of RNA (Brierley et al.,
2007), like transfer messenger RNA (tmRNA), ribosomal RNA
(rRNA), and viral RNA. On the other hand, the pseudoknot
exhibits great activities in translation regulation, ribosomal frame
shifting, and RNA splicing. Therefore, it is an indispensable step
to predict the RNApseudoknot structure, which better reveals the
real and effective RNA secondary structure and sheds more light
on the various functions of RNA.

In this article, ATTfold, a deep learning algorithm, was
proposed to precisely predict the RNA secondary structure
with pseudoknots. In ATTfold, tens of thousands of RNA
sequences from multiple families along with their real secondary
structure data were trained to enhance the algorithm robustness.
By combining the unique form of hard constraints of RNA
secondary structure, the proposed algorithm predicted the
RNA secondary structures with or without pseudoknots in
different RNA families. Additionally, it more effectively solved
the prediction problem for long RNA sequences based on the
characteristics of the attention mechanism.

2. DATA AND METHODS

2.1. Database Selection
As is known, mass data are generally required for work based
on deep learning algorithms, but the number of RNA sequences
in some previous databases commonly used to predict RNA
secondary structure cannot meet these needs [for example, RNA
STRAND (Andronescu et al., 2008) has 4,666 RNA sequences,
while ArchiveII (Sloma and Mathews, 2016) has 3,975 RNA
sequences]. In this article, the RNAStralign Database (Tan
et al., 2017), which altogether contains 37,149 RNA sequences,
was used.

2.2. Calculation Method
As suggested by the name, the RNA secondary structure is a
two-dimensional figure, mainly constituted by complementarily
paired bases and unpaired bases in one-dimensional RNA
sequence. Therefore, the real RNA secondary structure can
be obtained, so long as the positions of all paired bases in
the RNA sequence are determined. The traditional dot bracket
representation is a one-dimensional structure that can well
represent RNA secondary structure without pseudoknots, but not
with pseudoknots. In this study, an N*N symmetric matrix was
used (N is the sequence length), where the horizontal coordinates
i and vertical coordinates j, indicated the position of the base
in the RNA sequence. Using this matrix, the actual base pairing
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condition of various RNA secondary structures can be fully
displayed. Furthermore, this matrix can also be used to predict
the RNA secondary structures with or without pseudoknots for
the various problems of the traditional RNA secondary structure
prediction methods mentioned in this article. Subsequently, a
more sophisticated model called ATTfold was proposed to solve
the problems.

ATTfold was a deep learning model constructed by combining
the attention mechanism with the hard constraints of the RNA
secondary structure. Its overall structure was divided into three
parts, namely, Encoder-Decoder-Constrain. The specific process
is shown in Figure 1. The encoder used the transformer model
with an attention mechanism (Vaswani et al., 2017), which
performed recording on the one-hot encoding of the input RNA
sequence and trained this encoding information, so as to obtain
more hidden features of the RNA sequence. The decoder used the
convolutional neural network model. By convolving the output
obtained by the encoder training, an N*N symmetric bases
pairing scorematrix was eventually acquired. In this bases pairing
scoring matrix, the score of each position (i, j) represented
the probability of base i pairing with base j. The bases pairing
scoring matrix obtained through the “encoder-decoder” part was
an unconstrained matrix, which might lead to a probability of
pairing in every position, including base pairing with itself.

Therefore, the RNA secondary structure formed by this bases
pairing scoring matrix was not a real and effective structure. To
obtain a true and effective RNA secondary structure from the
output of this network, the constraints that the RNA sequence
must comply with when forming its secondary structure should
be added, which are also called hard constraints. Lastly, after
the bases pairing scoring matrix was hard-constrained, the
corresponding bases pairing matrix was obtained. Each position

in the matrix contained only two numbers 0 or 1, where 0
meant that i, j bases were not paired, whereas 1 meant that they
were paired.

2.2.1. RNA Sequence to the Bases Pairing Scoring

Matrix
The ATTfold model was unable to directly recognize and
calculate characters (A, U, G, C) of the RNA sequence or
the pairing structure. Therefore, they should be encoded
and represented, respectively. The RNA sequence character
encoding is presented in Table 1. The (N*4) one-hot encoding
was performed for the entire RNA sequence in this study.
However, as we know, one-hot encoding is not perfect in
expressing the hidden features of each base, and a 4-dimensional
feature cannot fully express the hidden features of RNA
sequences. Therefore, the one-hot encoding was converted into
d-dimensional (N*d, d>4) coding through conv1d, which was
then used in combination with the transformer model according
to the attention mechanism; in this way, the RNA sequence
was recorded. The above operations were used to acquire more
useful hidden information. Additionally, due to the attention

TABLE 1 | The rules of transformation between bases and One-Hot vectors.

Input bases One-Hot encoding

A [1,0,0,0]

U [0,1,0,0]

C [0,0,1,0]

G [0,0,0,1]

N [0,0,0,0]

FIGURE 1 | The schematic diagram of ATTfold architecture, which contains three parts: Transformer, CNN, and Constrain. Transformer is an encoder network, mainly

responsible for recoding the input One-Hot vectors of RNA sequences. CNN is a decoder network to predict the bases pairing scoring matrix. Constrain has three

constraints to constrain the bases pairing scoring matrix and get the real secondary structure.

Frontiers in Genetics | www.frontiersin.org 3 December 2020 | Volume 11 | Article 612086

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Wang et al. RNA Secondary Structure Prediction

mechanism, ATTfold was able to better handle the long RNA
sequences. The principle is as follows:

Attention(Q,K,V) = softmax

(

QKT

√
d

)

V (1)

Among them, Query (Q), KEY (K), and Value (V) were
all obtained through the coding matrix (N*d) via the
respective linear transformation matrix, and the Attention
value represented the degree of correlation between bases. In
other words, it represented the size of the role of all bases in
the RNA sequence when one base was paired or unpaired with
another one. Consequently, the model obtained more hidden
features related to the RNA bases. In addition, the input method
of the transformer model was not in the same order as the
Recurrent Neural Network model, so that it was impossible to
distinguish the position of each base in the RNA sequence, thus
losing some important information. To solve this problem, the
concept of position embedding was innovatively introduced
into the transformer model and the corresponding position
embedding information was also introduced into our ATTfold,
as shown below:

POS_bas = 1, 2, . . . ,N (2)

POS_rel = 1/N, 2/N, . . . , 1 (3)

Among them, Pos_bas(N*1) and Pos_rel(N*1) were the absolute
and relative positions of the base, respectively. To further
obtain the relevant position information and to facilitate the
merging of position information with input information, the
absolute position was combined with the relative position
by a linear transformation method and converted into the
position embedding matrix (N*d), which was consistent with
the dimension of the sequence information. In this way,
a complete input coding was obtained through the matrix
addition of position embedding information with sequence
encoding information.

To obtain the structure information of the pseudoknot and to
facilitate our calculation of the loss function and model accuracy
in deep learning, the corresponding symmetric matrix (N*N) of
the known RNA sequence structure was encoded, since encoding
the dot bracket representation of the traditional method no
longer met our needs. The horizontal coordinates and vertical
coordinates indicated the absolute position of each base in the
RNA sequence. Each row and column, which represented the
specific position of the i base and j base pairing, was at most 1,
while the rest were 0. In this way, RNA secondary structures with
and without pseudoknots were well displayed at the same time.

The entire Encoder-Decoder network structure is displayed
in Figure 2. As for the Encoder network, its input consisted
of two parts, namely, the Sequence-Encoding (B*N*4) and

FIGURE 2 | Detailed diagram of Encoder network and Decoder network.
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Position-Embedding (B*N*d), where B (Batch size) represents
the number of RNA sequences input to the network each time, N
is the sequence length and d is the characteristic dimension. The
input encoding was first trained by three identical transformer
models using the attention mechanism. Then, to solve the
problems of gradient disappearance and local extremum during
the training of deep learning network, Residual-Block was also
introduced. The training encoding should be normalized in the
transmission process, so as to limit the value within a certain
range, thereby eliminating the adverse effects induced by singular
sample data. The Layer-Normalization (LN) (Ba et al., 2016) was
more effective at dealing with the sequence problems.

Regarding the Decoder, its input was a symmetric matrix
formed by processing the output of the Encoder and Position-
Embedding. The symmetric matrix passed through three
different Convolutional Neural Networks, finally forming the
symmetric bases pairing scoring matrices (B*N*N). Similarly,
the data should still be normalized in the process of processing.
The matrix (similar image) data were processed, so Batch-
Normalization (BN) (Ioffe and Szegedy, 2015) wasmore effective.
But the true and effective RNA secondary structure might not
be obtained through the bases pairing scoring matrix, so it
should be constrained. Finally, this matrix that combined the
hard constraints of RNA secondary structure was able to predict
a real secondary structure.

2.2.2. Hard Constraints Representation
Hard constraints represent a principle that each RNA secondary
structure must comply with, and are mainly used for RNA
folding. Soft constraints are the additional pseudo-energy terms
used by most new methods, which stands for a reward and
punishment mechanism implemented during the bases pairing
process (Lorenz et al., 2016). As for ATTfold, only the hard
constraints were adopted to predict the RNA secondary structure,
since the deep learning model itself contained a reward and
punishment mechanism. Using the back-propagation algorithm,
the corresponding parameters were updated. The following three
items were included in the hard constraints:

1. RNA bases pairing only satisfied A-U and G-C Watson-Crick
pairs (Watson and Crick, 1953), and G-UWobble pair (Varani
and McClain, 2000);

2. In the case of RNA bases pairing, the distance between two
bases should be greater than 3, because the formed hairpin
loops must contain at least 3 bases;

3. In the case of RNA bases pairing, the base was only paired once
with other bases.

For the above three hard constraints, corresponding solutions
were also proposed. First, this study aimed to constrain the bases
pairing scoring matrix of the last output in the previous network,
which conformed to the real RNA bases pairing structure.
Therefore, the constraints should be converted into a symmetric
matrix to facilitate calculations.

For constraint 1, bases pairing constraints should be
performed for each input sequence. Then, the input sequence was
converted into an N*N symmetric matrix, where the rows and
columns were the absolute positions of the bases, the positions

matched with the A-U, G-C, and G-U pairs were filled with
1, while the rest were 0. Afterwards, matrix multiplication of
Constraint_1 matrix and the bases pairing scoring matrix was
carried out. For positions that met the conditions, the predicted
values were retained, while positions that did not meet the
condition were returned to 0, as shown in Constraint_1 of
Figure 1.

For constraint 2, a certain base was not paired with others
when the surrounding distance was< 4. Therefore, it was also set
as an N*N symmetric matrix like constraint 1, and its diagonal
value was set to 0 (the base was not paired with itself). Later,
all the values at the top, bottom, left, and right were set to 0,
for which the distance to the diagonal was set to 3, while the
remaining values were set to 1. In this way, the condition of
constraint 2 was satisfied, and the specific form was defined as
Constraint_2 in Figure 1.

For constraint 3, even though the above two constraints were
performed on the bases pairing scoring matrix and the sparse
of matrix was made on a large scale, there was still a one-to-
many bases pairing situation. In this case, the DP algorithm
was not suitable, even though it was able to obtain the optimal
solution, since this article focused on the prediction problem
of long sequences. To facilitate the calculation, constraint 3 was
made through the following simplified operations:

relu(Sn− 1) = 0, n = 1, . . . ,N (4)

Sn represented the number of pairs in each base, and themeaning
in the matrix indicated the sum of the values of each row or
column. From constraint 3, Sn ≤ 1 was observed. Therefore, it
was transformed into the above formula, which well-expressed
the effect of constraint 3. So far, the three hard constraints
have been successfully transformed into a single constraint
problem. For the optimization algorithm for a single constraint
problem, the Lagrange Multiplier Method was utilized to solve
this problem perfectly (Chen et al., 2020). Compared with the DP
algorithm, this algorithm substantially reduced the calculation
time and improved the prediction accuracy.

Through the synthesis of the above conditions, the final
objective function of ATTfold was obtained, as shown below:

max
1

2
(S− s) ∗ R
︸ ︷︷ ︸

part 1

+w ∗ relu (Sn − 1)
︸ ︷︷ ︸

part 2

+ ρ ‖ R ‖
︸ ︷︷ ︸

part 3

(5)

min−
(
1

2
(S− s) ∗ R+ w ∗ relu (Sn − 1) + ρ ‖ R ‖

)

(6)

S represented the bases pairing score matrix predicted, R was
the real structure matrix, Sn referred to the sum of the values
in each row of S, and ρ||R|| indicated the L1 regularization
penalty term, which was used to improve matrix sparsity and
prevent overfitting. However, s represented a threshold. In the
case of Sij > sij, bases i and j were paired, and vice versa. Part
1 of formula (5) was the main part of the entire function, and
the degree of fit between the predicted structure and the real
structure was obtained. Furthermore, part 2 was constraint 3,
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while part 3 was the L1 regularization penalty. The goal of this
article was to find the maximum fit between the predicted and
the real structures, and it was inconvenient for us to optimize
it. Therefore, to optimize the maximum fit using the gradient
descent method, formula (6) was used as our final objective
function. The optimization process is shown in Figure 3. After
optimization for T times by the gradient descentmethod, the final
matrix obtained was our final prediction matrix.

The secondary structure formed by the prediction matrix
obtained for the first time is far from the real secondary
structure. With a large amount of labeled data, we also need
to optimize each parameter in the ATTfold model through the
backpropagation algorithm. Finally, the network trained through
the training set, with the help of the validation set, finds a set of
parameters for the optimal result as the parameters of the final
model. Lastly, the final prediction matrix obtained by ATTfold
can be closer to the real secondary structure. During this process,
in order to correspond to the final prediction matrix and to
better optimize the algorithm, we also converted the real RNA
secondary structure into the corresponding matrix form as the
final label.

3. RESULTS

As introduced above, a database including 37,149 RNA sequences
and their real structures was used as the experimental database in

this article. It contains eight RNA families, including 5S_rRNA,
tRNA, group_1_intron, 16S_rRNA, tmRNA, SRP, RNaseP, and
telomerase. Through data set analysis, the length distribution
of the RNA sequence was particularly uneven, due to the wide
variety of RNA families contained in the data set. Typically,
16S_rRNA was the family with the greatest impact, but its
RNA sequence length was too long, along with a relatively large
amount of data, eventually leading to the above problems. As
shown in Figure 4A, if all such data were used as the input
data of ATTfold, it might greatly increase the difficulty in model
training, making it difficult to find most of the effective hidden
features. Therefore, to prevent the condition that the particularly
long data affected the model but not the training and prediction
of other RNA families, the RNA data set with a RNA sequence
length not greater than 512, was utilized as the final experimental
data. The sequence length distribution is displayed in Figure 4B.
Additionally, to enhance the generalization ability of the ATTfold
model, the RNA sequence data of the above-mentioned eight
RNA families, with the length not exceeding 512, were trained
simultaneously. A total of 25,425 RNA sequences met this
condition. To better verify the model accuracy and robustness, all
the RNA sequences were divided into training set, verification set,
and test set, respectively. In the meantime, to avoid the condition
that the same sequence data affected the final experiment, the test
set was compared with the training set and the de-redundancy
operation was performed. In the other words, the same sequence
in the test set (which served as the training set) was deleted. The

FIGURE 3 | Schematic diagram of bases pairing scoring matrix optimization. The role of (A) is to initialize each parameter and variable during the optimization

process. (B) uses the gradient descent optimization algorithm to optimize the bases pairing scoring matrix. Finally, it returns a two-dimensional matrix that meets the

hard constraints of RNA secondary structure.
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FIGURE 4 | RNA sequence length analysis chart. (A) shows the distribution of the length of all RNA sequences of the eight RNA families. (B) shows the distribution of

RNA sequence length within 512.

specific distribution is exhibited in Table 2. In this experiment,
our network model was trained through the training set, and
the model was selected through the validation set. Finally, by
inputting the test set sequence into the network, the prediction
result was obtained and compared with the real structure, so as
to measure the generalization ability of the entire model.

In this chapter, the prediction results of the ATTfold method
were elaborated and compared with four traditional classic
algorithms [namely, RNAfold (Zuker and Stiegler, 1981), mfold
(Zuker, 2003), RNAstructure (Bellaousov et al., 2013), Probknot
(Bellaousov and Mathews, 2010)]. These four methods have
extensively been used with a high authority in this field, all
of which have their own websites for the online prediction
of the RNA secondary structure, which is very convenient for
users. Among these four methods, the methods of predicting
the secondary structure with and without pseudoknots were
included, which were also compared with the ATTfold algorithm
to better verify our model performance. To unify the evaluation
standard and to make it possible to predict the real RNA
secondary structure well by means of the evaluation standard,
a two-dimensional symmetric matrix (N*N) was employed to
simultaneously represent the known and the predicted RNA

TABLE 2 | RNAStralign dataset statistics.

RNA type Length All_Num 512_Num Train Val Test Deredundancy

5S_rRNA 104–132 11419 11419 9172 1114 1133 867

tRNA 59-95 9245 9245 7405 933 907 527

group_

1_intron

163–615 2135 2058 1606 237 215 116

16S_rRNA 54–1851 12608 973 765 101 107 84

tmRNA 102–437 637 637 519 60 58 49

SRP 30–553 601 591 480 45 66 48

RNaseP 189–486 467 467 363 52 52 45

telomerase 382–559 37 35 30 1 4 4

Total 30–1851 37149 25425 20340 2543 2542 1740

secondary structures (where n represented the length of each
sequence). In this two-dimensional symmetric matrix, 0 at each
position indicated that two bases were not paired, while 1
indicated that two bases were paired. Unlike the traditional (1*N)
one-dimensional matrix, 0 in the matrix suggested that the base
was not paired, whereas 1 indicated that the base was paired. The
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traditional representation method only judges whether a base is
paired, rather than the exact base that it is paired with. Therefore,
the predicted secondary structure is far from the real structure,
regardless of the higher score obtained.

3.1. Performance Metrics
To better judge the RNA secondary structure predicted by
ATTfold, two evaluation criteria (a pair of contradictory
performance metrics) were used, namely, sensitivity (SEN) and
positive predictive value (PPV). SEN referred to the number of
true paired bases predicted by ATTfold, while PPV indicated the
number of true paired bases predicted by ATTfold. To have a
more comprehensive evaluation, the new performance matrix
composed of SEN and PPV was quoted, and named F1-score
(Yonemoto et al., 2015), as follows:

SEN = TP� (TP + FN) (7)

PPV = TP� (TP + FP) (8)

F1− score = 2 ∗ ((SEN ∗ PPV)� (SEN + PPV)) (9)

Among them, TP, FN, FP, and TN were better represented by
Table 3. TP was the number of base pairing positions in the

TABLE 3 | The specific representation of each parameter in the performance

metrics.

Predict

P N

True
P TP FN

N FP TN

bases pairing scoring matrix predicted by ATTfold, that were the
same as the actual secondary structure base pairing positions.
FN indicated the number of base pairing positions predicted by
ATTfold to be 0 in the actual secondary structure. FP was the
number of unpaired positions of the true secondary structure
base, predicted by ATTfold to be 1. TN indicated the number
of predicted unpaired positions that were the same as the true
unpaired positions. There were more unpaired bases in the
sequence, so TN was not used as a condition to judge the model
quality. Additionally, the F1-score integrated the advantages of
SEN and PPV, and better judged themodel quality. Therefore, the
value of the F1-score was finally used as the evaluation standard
of the model.

3.2. Performance Comparison
To show the fitting effect of ATTfold on the RNA secondary
structures of different families more clearly, each family in the
test set was evaluated separately. In the end, four families had
better scoring effects–5S_rRNA, tRNA, Telomerase, and tmRNA.
The fitting effect of ATTfold on these four families is presented
in Figure 5. As observed, the 5S_rRNA and tRNA families had
a relatively fast fitting speed, and the prediction effect entered
a flat stage after 12 Epochs. Their final prediction values were
stable at above 0.9, indicating that ATTfold had an excellent
predictive effect on these two RNA families. For the tRNA and
telomerase families, the early prediction effect rapidly increased
with the increase in the training Epoch. Then, it entered a period
of fluctuation, after which, the telomerase family still had a period
of slow rise and was gradually stabilized at around 0.8, whereas
the tmRNA family was quickly stabilized at around 0.65. In
addition to the description of those prediction effects on four
RNA families, the overall effect of the total RNA sequence on
predicting its secondary structure was also described (purple

FIGURE 5 | The effect of ATTfold on the prediction of 4 RNA families and all RNA sequences.
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curve). The overall prediction effect was stabilized after 15
Epochs and remained at around 0.8. The best prediction result of
ATTfold for all RNA sequences was chosen as the final prediction
effect (the F1-score at the 28th Epoch was 0.8097), and the
corresponding model parameters were saved as the final Model.
Under the optimal results, the final prediction results of these
four well-performing RNA families were introduced as follows.

Table 4 shows the comparison results between ATTfold and
the other four traditional algorithms in the same test set in the
5S_rRNA and tRNA families. As a result, our method displayed
obvious advantages over the other four methods in evaluating
these two RNA families. Compared with the highest scores of
the other four traditional algorithms, the F1-socre of this method
increased by 25 and 21%, respectively, and even reached a super
good effect of over 90%. Such a phenomenon can be explained
by two factors. First, in the training set of the entire network, the
number of 5S_rRNA and tRNA RNA sequences accounted for
81.5% of the total number of sequences. In this way, the hidden
features extracted by the entire network and the parameters in
the network were mainly formed for these two families. Second,
the RNA sequence lengths of 5S_rRNA and tRNA ranged from
59 to 132. As shown in Figure 4B, there were small differences
between the longest and the shortest sequence lengths of these
two families, and the overall sequence length was concentrated
in a small range. In addition, the number of base pairings was
relatively small. In summary, the deep learning network easily
learned the corresponding pairing information of these two
RNA families, so the total F1-score achieved a very high effect.
However, after comparison, the scoring effect of the mfold and
RNA structuremethods through the two-dimensional matrix was
relatively low, which did not reach the scoring height of the
classic algorithm. As a result, a one-dimensional matrix score of
these two RNA families was obtained for these four traditional
algorithms, as shown in Table 5.

As observed in 5S_rRNA, the scores of the four traditional
algorithms increased by 22% on average, while the score of each
algorithm increased by 15% on average in tRNA, and these four
traditional methods reached a relatively high score. Therefore,
the traditional method is mainly used to predict whether the
relative position base is matched but does not accurately predict
the exact base that it is matched with. Accordingly, the secondary
structure formed by the paired base predicted in this way is quite

TABLE 4 | Compare ATTfold and four traditional algorithms on tRNA and

5S_rRNA by using a two-dimensional matrix.

Method
tRNA 5S_rRNA

F1-score PPV SEN F1-score PPV SEN

ATTfold 0.966 0.972 0.961 0.927 0.933 0.923

RNAfold 0.753 0.722 0.787 0.683 0.652 0.719

mfold 0.603 0.628 0.58 0.406 0.425 0.394

RNAstructure 0.619 0.604 0.637 0.458 0.44 0.478

Probknot 0.738 0.696 0.792 0.666 0.655 0.681

The bold value is the maximum of each column.

different from the actual secondary structure. In contrast, our
ATTfold model better predicted the precise position of base-to-
base pairing. Similarly, the RNA secondary structure closer to the
real state was also obtained.

Apart from the above two short RNA sequence families,
Table 6 shows the scoring effects of Telomerase and tmRNA–
the two long RNA sequence families. In these two families
with longer RNA sequences, our algorithm made great progress
compared with the other four traditional algorithms, even though
the overall effect predicted by our method was not as good as the
first two families. The F1-score values increased by 26 and 22%,
respectively, from the highest score. Compared with the other
four RNA families not on the list, these two RNA families had a
smaller overall RNA sequence length, as displayed in Figure 4B,
making it easier for the model to find the useful hidden features.
Notably, the small amount of data was responsible for the inferior
prediction effect of our model to the first two RNA families.
Therefore, in the future, more RNA molecules of this family
should be identified, which will allow our model to have a
better predictive effect on them with the continuously enlarging
data volume. In this regard, there is still a lot of room for
model improvement.

4. DISCUSSION

The prediction of the RNA secondary structure has gradually
fallen into a bottleneck in traditional algorithm research over
the past 40 years. In addition, few methods can be used
to predict the RNA secondary structure with pseudoknots at
present due to the complexity of traditional algorithms. With the
rapid development of deep learning and machine learning, the

TABLE 5 | Performance of four traditional algorithms in one-dimensional matrix.

Method
tRNA 5S_RNA

F1-score PPV SEN F1-score PPV SEN

RNAfold 0.867 0.831 0.911 0.831 0.79 0.878

mfold 0.765 0.82 0.735 0.674 0.726 0.639

RNAstructure 0.795 0.775 0.82 0.758 0.73 0.791

Probknot 0.853 0.803 0.917 0.814 0.798 0.835

TABLE 6 | Compare ATTfold and four traditional algorithms on Telomerase and

tmRNA by using a two-dimensional matrix.

Method
Telomerase tmRNA

F1-score PPV SEN F1-score PPV SEN

ATTfold 0.816 0.846 0.791 0.66 0.686 0.64

RNAfold 0.556 0.485 0.652 0.406 0.385 0.433

mfold 0.442 0.392 0.507 0.442 0.392 0.507

RNAstructure 0.432 0.377 0.505 0.365 0.344 0.389

Probknot 0.474 0.418 0.548 0.435 0.41 0.465

The bold value is the maximum of each column.
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bottleneck problems can be solved one after another based on the
corresponding traditional optimization algorithms. The problem
of the RNA secondary structure prediction with pseudoknots
is no exception. In this article, a new type of deep learning
prediction model named ATTfold was proposed based on the
attention mechanism to predict the RNA secondary structure
with pseudoknots. Our method was mainly divided into three
parts, namely, Encoder-Decoder-Constrain. The Encoder part
encoded the RNA sequence through a transformer model on
the basis of the attention mechanism to obtain the hidden
features. The Decoder part decoded the hidden features through
a convolutional neural network to form an unconstrained base
pairing score matrix. The Constrain part constrained the bases
pairing scoring matrix, which was a condition with which the
RNA sequence must comply with to form a secondary structure
and was referred to as the hard constraint. In the end, the real and
effective RNA secondary structure was predicted.

Comparatively speaking, the ATTfold method exhibited the
following innovative points. First, it used the transformer model
with a dominant position in the NLP direction to extract the
hidden features of the RNA sequence. Furthermore, combined
with the convolutional neural network, the two-dimensional
matrix was decoded to form a pairing matrix. Second, the hard
constraints were simplified, and the algorithm was optimized
through the Lagrange Multiplier Method. Compared with the
DP algorithm, the computational complexity of the algorithm
was greatly reduced. Finally, the most important thing was
how to predict RNA sequences with pseudoknots. Different
from the traditional dot bracket representation method, whose
one-dimensional structure only expresses the structure without
pseudoknots, more different types of brackets should be added
to express the structure with pseudoknots (Wang et al., 2019).
ATTfold, on the other hand, used a two-dimensional symmetric
matrix to show the true pairing of each base, thus displaying the
real RNA secondary structure with pseudoknots.

According to the above results, under the training of tens of
thousands of data, ATTfold was greatly improved compared with
the traditional algorithms, but it also revealed some problems.
When predicting short RNA sequences without pseudoknots,
the average score was above 90%. For long RNA sequences
with pseudoknots, the effect of our algorithm was inferior to
short sequence prediction, even though it was superior to the
traditional algorithms. Two causes may be responsible for this
result. First, the most important issue for deep learning is the
volume of data. Short RNA sequences account for over 80% of
the total RNA data volume, and a long time is required to train

against these short RNA sequences when training the network;
by contrast, the proportion of long RNA sequences is very small.
Second, the secondary structure of the long RNA sequences is
more complicated, and it is more difficult for the models to
extract hidden features. Consequently, more data are needed to
fit the long RNA sequences well.

Collectively, findings in this study show that the new deep
learning prediction model ATTfold, constructed based on the
attention mechanism, has been qualitatively improved compared
with the traditional algorithm, which can learn similar hidden
features through RNA sequences of different families thereby
predicting the secondary structure of different RNA families.
Moreover, with the discovery of more long RNA sequences
and their base pairing structures in the future, the overall
performance of the ATTfold algorithm for multiple RNA families
will be further improved. However, as far as the current
data volume is concerned, although our algorithm has greatly
improved the secondary structure prediction of long RNA
sequences based on traditional algorithms, its accuracy is still
relatively low. Therefore, when there are not enough long RNA
sequences with known structures, more effective methods are
warranted for prediction.
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