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Background: Hepatocellular carcinoma (HCC) is a common malignant tumor with high
mortality and poor prognoses around the world. Ferroptosis is a new form of cell death,
and some studies have found that it is related to cancer immunotherapy. The aim of
our research was to find immunity- and ferroptosis-related biomarkers to improve the
treatment and prognosis of HCC by bioinformatics analysis.

Methods: First, we obtained the original RNA sequencing (RNA-seq) expression
data and corresponding clinical data of HCC from The Cancer Genome Atlas
(TGCA) database and performed differential analysis. Second, we used immunity- and
ferroptosis-related differentially expressed genes (DEGs) to perform a computational
difference algorithm and Cox regression analysis. Third, we explored the potential
molecular mechanisms and properties of immunity- and ferroptosis-related DEGs by
computational biology and performed a new prognostic index based on immunity- and
ferroptosis-related DEGs by multivariable Cox analysis. Finally, we used HCC data from
International Cancer Genome Consortium (ICGC) data to perform validation.

Results: We obtained 31 immunity (o < 0.001)- and 14 ferroptosis (o < 0.05)-
related DEGs correlated with overall survival (OS) in the univariate Cox regression
analysis. Then, we screened five immunity- and two ferroptosis-related DEGs (HSPA4,
ISG20L2, NRAS, IL17D, NDRG1, ACSL4, and G6PD) to establish a predictive model
by multivariate Cox regression analysis. Receiver operating characteristic (ROC) and
Kaplan-Meier (K-M) analyses demonstrated a good performance of the seven-
biomarker signature. Functional enrichment analysis including Gene Ontology (GO) and
the Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that the seven-
biomarker signature was mainly associated with HCC-related biological processes such
as nuclear division and the cell cycle, and the immune status was different between the
two risk groups.

Conclusion: Our results suggest that this specific seven-biomarker signature may
be clinically useful in the prediction of HCC prognoses beyond conventional
clinicopathological factors. Moreover, it also brings us new insights into the molecular
mechanisms of HCC.
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INTRODUCTION

Liver cancer is a common malignant tumor around the world.
Liver cancer is the seventh most common cancer globally
according to global cancer data in 2017, with 953,000 new
cases diagnosed and 819,000 deaths (Fitzmaurice et al., 2019).
Hepatocellular carcinoma (HCC) is the most common because
HCC accounts for approximately 90% of primary liver cancer
(Llovet et al., 2016). Risk factors for HCC mainly include cirrhosis
(chronic liver damage caused by inflammation and fibrosis),
hepatitis B virus (HBV) infection, hepatitis C virus (HCV)
infection, alcohol abuse, and non-alcoholic fatty liver disease
(NAFLD) (Fujiwara et al., 2018). HCC is very malignant, and
70% of patients undergoing surgery experience tumor recurrence
within 5 years (Nakagawa et al., 2016). In addition, HCC is
highly complex and heterogeneous, so many molecular targeted
anticancer agents are not effective for some patients, with
some even showing resistance (Cancer Genome Atlas Research
Network, 2017). The prognosis of HCC is very poor, with a
3 years survival rate of 12.7% and a 5 years survival rate of
20% (Giannini et al., 2015; Goossens et al., 2015; Yu et al,,
2017). Currently, the diagnosis and treatment of HCC are
not satisfactory. Specific biomarkers play an important role in
the early screening, diagnosis, treatment option selection, and
prognosis of HCC. In our study, we explored some immunity-
and ferroptosis-related biomarkers to understand how they affect
the pathogenesis and prognosis of HCC. We hope that these
biomarkers will be helpful for the diagnosis, treatment, and
prognosis of HCC.

Ferroptosis is an iron-dependent form of non-apoptotic cell
death in the presence of oxidized polyunsaturated fatty acids
(PUFAs), redox-active iron, and compromised lipid peroxide
repair (Perez et al., 2020). Ferroptosis has been demonstrated in
many diseases, such as cancer (Liang et al., 2019; Perez et al,,
2020). It also plays a very vital role in digestive-system neoplasms
such as gastric cancer, pancreatic cancer, colorectal cancer, and,
especially, HCC (Nie et al., 2018). Research shows that the p62-
Keapl-NRF2 pathway is related to the ferroptosis of liver cancer
cells, and the retinoblastoma (RB) protein plays a role in liver
tumorigenesis and ferroptosis (Viatour et al.,, 2011; Sun et al,,
2016; Nie et al., 2018). Therefore, it is important to research
ferroptosis-related biomarkers in the prognosis and treatment
of HCC patients.

In total, 80% of HCC patients in an advanced stage lost
opportunities for surgery and ablation, but systemic treatments
for HCC are limited (Liu and Qin, 2019). In recent years,
immunotherapy has been given more attention, and clinical trials
and animal experiments have proven that immunotherapy plays
a role in the treatment of HCC patients (Zongyi and Xiaowu,
2020). Immunotherapy approaches, including vaccines, immune
checkpoint blockade, and adoptive cell transfer (ACT), have
been proven safe and effective for HCC treatment (Li et al.,
2015). Therefore, it is important to explore immunity-related
biomarkers for immunotherapy treatment of HCC.

In summary, we find that ferroptosis in HCC must be
related to immunity. Lang et al. (2019) found that radiotherapy
and immunotherapy can promote ferroptosis via SLC7A1l.

Ubellacker et al. (2020) proved that metastasizing melanoma
cells from the lymph nodes are resistant to ferroptosis. Jiang
et al. (2020) designed sulfasalazine (SAS)—loaded mesoporous
magnetic nanoparticles (Fe3O4) and platelet (PLT) membrane
camouflage (Fe304-SAS @ PLT), which can mediate ferroptosis
with immunotherapy and can be expected to provide great
potential in the clinical treatment of tumor metastasis. Ruiz-de-
Angulo et al. (2020) developed iron oxide-loaded nanovaccines
(IONVs) that can enhance the combination immunotherapy
and immunotherapy-promoted tumor ferroptosis. We find that
exploring the clinical relevance and prognostic significance of
immunity- and ferroptosis-related biomarkers is helpful for
ferroptosis immunotherapy in HCC.

In this study, we used TCGA database to analyze the mRNA
expression profiles to find immunity- and ferroptosis-related
differentially expressed genes (DEGs) for the prognosis of
HCC. Furthermore, functional analysis of potential immunity-
and ferroptosis-related DEGs is helpful for understanding
their roles in the occurrence and development of HCC.
Finally, we also validated our results in the International
Cancer Genome Consortium (ICGC) cohort. Therefore,
this study provides a good prognostic risk model for
HCC patients and some insights into the occurrence and
development of HCC.

MATERIALS AND METHODS

Patients and Datasets

The RNA sequencing (RNA-seq) data and corresponding clinical
information of 374 HCC samples and 50 normal liver samples
were downloaded from TCGA database' on September 10,
2020. In addition, The RNA-seq data and corresponding
clinical information of 231 liver cancer samples were obtained
from the ICGC database’ on September 10, 2020. From the
Immunology Database and Analysis Portal (ImmPort), a list
of 2,483 immunity-related genes was obtained. ImmPort is a
database that updates immunology data accurately and in a
timely manner. Data from ImmPort are a powerful foundation of
immunology research. In addition, it provides a list of immunity-
related genes for use in cancer research. These genes were proven
to participate in the process of immune activity. Additionally,
60 ferroptosis-related genes were obtained by summarizing
previous literature.

Differential Gene Analysis

By comparing HCC tissues to normal tissues and using the
limma package from Bioconductor in R software (version 4.0.2),
DEGs were identified with the criteria for screening the DEGs
of a false discovery rate (FDR) < 0.05 and a | log2FoldChange|
> 1. Then, immunity- and ferroptosis-related DEGs were
extracted from the DEGs.

Thttp://portal.gdc.cancer.gov/repository
Zhttps://dcc.icgc.org/projects/LIRI-JP
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TABLE 1 | Sixty ferroptosis-related genes.

ACSL4 ALOX12 CISD1 GLS2 LPCAT3 SLC7A11 PHKG2 ACSL3 NFE2L2 GOT1
AKR1CH ATP5MC3 CS GPX4 MT1G FDFTH HSBP1 ACACA KEAP1 G6PD
AKR1C2 CARSH DPP4 GSS NCOA4 TFRC ACO1 PEBP1 NQO1 PGD
AKR1C3 CBS FANCD2 HMGCR PTGS2 TP53 FTH1 ZEB1 NOX1 IREB2
ALOX15 CD44 GCLC HSPB1 RPL8 EMC2 STEAPS3 SQLE ABCCH HMOX1
ALOX5 CHACH GCLM CRYAB SAT1 AIFM2 NFS1 FADS2 SLC1A5 ACSF2

verification group

FIGURE 1 | Flowchart of our study.
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TABLE 2 | Univariate Cox regression analysis of 31 immunity (o < 0.001)-related DEGs.

Gene HR HR.95L HR.95H p-value
HSPA4 1.045547 1.026417 1.065033 2.27303e-06
HSPI0AA1 1.004311 1.002005 1.006623 0.000244
PSMD2 1.020485 1.009187 1.031909 0.000356
PSMD10 1.051077 1.022360 1.080600 0.000424
PSME3 1.045486 1.018561 1.073124 0.000833
PSMD14 1.108899 1.068529 1.150793 4.677158e-08
IFI30 2.120626 1.388905 3.237842 0.000498
S100A10 1.003209 1.001529 1.004892 0.000178
S100A11 1.001503 1.000696 1.002310 0.000257
FABP6 1.107941 1.051312 1.167619 0.000128
ISG20L2 1.150664 1.091781 1.212722 1.637690e-07
PPIA 1.012916 1.007300 1.018564 6.063610e-06
CACYBP 1.063116 1.041823 1.084844 3.045023e-09
TRAF3 1.314769 1.141606 1.514198 0.000145
DCK 1.128434 1.061451 1.199643 0.000108
EED 1.371412 1.139318 1.650788 0.000841
NDRG1 1.007402 1.004143 1.010673 8.191811e-06
HDAC1 1.043026 1.026902 1.059404 1.160481e-07
BIRC5 1.029163 1.015326 1.043189 3.150455e-05
NRAS 1.074759 1.045659 1.104669 2.632364e-07
CKLF 1.049034 1.020240 1.078640 0.000748
PLXNA1 1.136348 1.054735 1.224277 0.000775
PLXNA3 1.237200 1.109210 1.379960 0.000133
GMFB 1.127773 1.058756 1.201289 0.000189
IL17D 1.102332 1.049880 1.157405 8.969548e-05
KITLG 1.216591 1.091701 1.355768 0.000388
STC2 1.035485 1.0157342 1.055619 0.000386
BRD8 1.153320 1.062828 1.251517 0.000622
NRBA1 1.299958 1.123685 1.503884 0.000417
SHCH1 1.014026 1.007082 1.021018 7.091489e-05
CDK4 1.030991 1.014361 1.047895 0.000234

DEGs, differentially expressed genes; HR, hazard ratio.

TABLE 3 | Univariate Cox regression analysis of 14 ferroptosis (o < 0.05)-related DEGs.

Gene HR HR.95L HR.95H p-value
ACSL4 1.002989 1.000515 1.005469 0.017831
AKR1CH 1.002368 1.000481 1.004259 0.0138674
AKR1C3 1.003731 1.001673 1.005794 0.000376
FANCD2 1.393143 1179111 1.646025 9.781021e-05
SLC7A11 1.096822 1.030426 1.167497 0.003722
TFRC 1.024294 1.005358 1.043587 0.011694
AIFM2 1.047483 1.014825 1.081192 0.0040961
FTH1 1.001395 1.000482 1.002308 0.002725
STEAP3 0.987559 0.976359 0.998888 0.031473
ACACA 1.154423 1.068485 1.247272 0.000274
NQO1 1.002206 1.001001 1.003413 0.000330
ABCCAH 1.083417 1.042739 1.125683 4.072212e-05
SLC1A5 1.014168 1.0076400 1.020738 1.955653e-05
G6PD 1.014428 1.010206 1.018668 1.6770876e-11

DEGs, differentially expressed genes; HR, hazard ratio.
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TABLE 4 | Multivariate Cox regression analysis of seven biomarkers.

Gene coef HR HR.95L HR.95H p-value
HSPA4 0.03010367 1.03056137 1.00997931 1.05156286 0.00344803
ISG20L2 0.07391033 1.07671025 1.01047236 1.14729014 0.02251551
NRAS 0.03852136 1.083927293 1.00807902 1.07143210 0.01323166
IL17D 0.07267629 1.07538237 1.01820693 1.13576838 0.00912692
ACSL4 0.00250016 1.00250329 0.99991487 1.00509840 0.05803585
G6PD 0.00752260 1.00755097 1.00139737 1.01374238 0.01609678
NDRG1 0.004278187 1.004287352 0.999529763 1.009067586 0.077424807
coef, coefficient; HR, hazard ratio.
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FIGURE 2 | Survival analysis of seven biomarkers in The Cancer Genome Atlas (TCGA) cohort. (A) Kaplan-Meier survival curves for the seven biomarkers relative to
the overall survival outcomes. (B) Receiver operating characteristic (ROC) analysis of the sensitivity and specificity of the survival time using the seven biomarkers
based on the risk score. (C) Distribution of hepatocellular carcinoma (HCC) sample risk scores. Samples were divided into two groups based on the median risk
score. (D) Survival status of HCC patients. The positions of the dots represent the correlations between the survival times and risk scores. (E) Principal component
analysis (PCA) plot of TCGA cohort. (F) T-distributed stochastic neighbor embedding (t-SNE) analysis of TCGA cohort.
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Construction and Validation of the
Prognostic Immunity- and
Ferroptosis-Related Differentially

Expressed Gene Signature

The association between immunity- and ferroptosis-related
DEGs and patient survival was evaluated by univariate Cox
regression analysis using the survival R package in R. Immunity-
related DEGs with a p < 0.001 and ferroptosis-related DEGs with
a p < 0.05 were considered candidate variables in a univariate
Cox regression analysis and entered into a stepwise multivariate
Cox regression analysis tested by Akaike Information Criterion
(AIC, assessing the goodness of fit of a statistical model) to
identify covariates with independent prognostic values for patient
survival. Based on the median risk score, HCC patients were
divided into high- and low-risk groups. The Kaplan-Meier
(K-M) survival curves for cases predicted with low and high
risk were generated, respectively. Then, ROC curve analysis
was performed to test the sensitivity and specificity of the
prognostic risk score model for overall survival (OS) in HCC
patients. The area under the ROC curve (AUC) was derived
as reported previously. Then, we performed an independent
prognostic analysis to evaluate whether clinical parameters are
independent prognostic factors for OS. Based on prognostic
immunity-and ferroptosis-related DEGs, we performed principal
component analysis (PCA) by the “prcomp” function of the
“stats” R package and used t-distributed stochastic neighbor
embedding (t-SNE) with the “Rtsne” R package. To verify these
results, we used ICGC data.

Construction of the Immunity- and
Ferroptosis-Related Differentially
Expressed Gene Regulatory and
Protein-Protein Interaction Network

We explored prognostic immunity- and ferroptosis-related DEG

immunity- and ferroptosis-related DEGs, and used Cytoscape
software (version 3.7.2) to display the immunity- and
ferroptosis-related DEG regulatory network. To explore
the interactions between these genes, we constructed a
protein—-protein interaction (PPI) network based on data
gleaned from the Retrieval of Interacting Genes (STRING)
online database’.

Functional Enrichment Analysis

Based on the median risk score, HCC patients were
divided into the high-and low-risk groups. We applied
the “limma” R package to analyze the correlations of
DEGs between the high- and low-risk groups with
FDR < 0.05 and | log2FoldChange] > 1 in TCGA
and ICGC cohorts, respectively. Then, we used risk-
related DEGs to conduct Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG)
analyses by the “clusterProfiler” R package. Finally, for
differential infiltrating score analysis between the high-

and low-risk groups, we determined the infiltrating
scores of immune cells and immune-related functions
for samples by single-sample gene set enrichment
analysis (ssGSEA).

RESULTS

Identification of Immunity- and

Ferroptosis-Related Genes

Using the limma package of R language for DEGs (FDR < 0.05
and | log2FoldChange | > 1) analysis, we obtained 7,768
DEGs in the 374 HCC samples and 50 normal liver samples
from TCGA database. Then, we extracted 335 immunity-related
DEGs from 2,483 entries of the ImmPort database and 26
ferroptosis-related DEGs from 60 ferroptosis-related genes in

regulatory mechanisms,

extracted prognostic
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FIGURE 3 | Network of immunity- and ferroptosis-related differentially expressed genes (DEGs). (A) The prognostic immunity- and ferroptosis-related DEG regulatory
network. The red circles represent ferroptosis-related DEGs, and the blue triangles represent immunity-related DEGs. (B) The protein—protein interaction (PPI)
network of prognostic immunity- and ferroptosis-related DEGs.

Frontiers in Genetics | www.frontiersin.org

December 2020 | Volume 11 | Article 614888


https://stringdb.org/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Du and Zhang

Bioinformatics Analysis of Prognostic Genes

literature reporting (Table 1). The flow diagram of this study is

shown (Figure 1).

Identification of Prognostic Immunity-
and Ferroptosis-Related Differentially
Expressed Genes

To explore the immunity-

and ferroptosis-related DEG

correlations with the OS of HCC patients, we obtained 31
immunity (p < 0.001)- and 14 ferroptosis (p < 0.05)-related

DEGs by univariate Cox regression analysis (Tables 2, 3).
According to the forest plot of hazard ratios (HRs), most of
these DEGs were risk factors for poor prognoses in HCC
patients. Then, we used these DEGs to perform multivariate
Cox regression analysis. Finally, we identified five immunity-
and two ferroptosis-related DEGs (HSPA4, ISG20L2, NRAS,
IL17D, NDRG1, ACSL4, and G6PD) to establish a predictive
model (Table 4). K-M survival curves outcomes based on median
risk score values show that the predicted survival time of the
low-risk group was significantly longer than that of the high-risk
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FIGURE 4 | Validation of seven biomarkers in the International Cancer Genome Consortium (ICGC) cohort. (A) Kaplan—Meier survival curves for the seven
biomarkers relative to the overall survival outcomes. (B) Receiver operating characteristic (ROC) analysis for the seven biomarkers based on risk scores. (C) The
distribution and median value of the risk scores. (D) Survival statuses of hepatocellular carcinoma (HCC) patients. The positions of the dots represent the correlations
between the survival time and risk scores. (E) Principal component analysis (PCA) plot in the ICGC cohort. (F) t-distributed stochastic neighbor embedding (t-SNE)

analysis in the ICGC cohort.
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group, p < 0.001 (Figure 2A). We used the time-dependent ROC
curve to assess the ability of the risk score to predict survival
rates (Figure 2B). The results showed that the AUC of the five
immunity- and two ferroptosis-related DEGs in the prognostic
model was 0.837 and demonstrated that the risk score model had
a stable performance. HCC patients were classified into high-
and low-risk groups according to respective median risk scores
(Figures 2C,D). By PCA and t-SNE analyses, we also indicated
that HCC patients in different risk groups were distributed in
two directions (Figures 2E,F).

Construction of the Immunity- and
Ferroptosis-Related Differentially
Expressed Gene Regulatory and
Protein-Protein Interaction Network

First, we constructed a regulatory network about prognostic 31
immunity- and 14 ferroptosis-related DEGs (Figure 3A). Then,
using the STRING online platform, we established a PPI network
based on these DEGs (Figure 3B). Both networks indicated that
immunity and ferroptosis have potential molecular mechanisms.

Validation of the Seven-Biomarker
Signature Using the International Cancer

Genome Consortium Data

To verify the reliability of the model from TCGA data, we selected
seven biomarkers to perform multivariate Cox regression analysis
using ICGC data. Likewise, compared to the median risk score
values, the K-M survival curve outcomes show similar results
(Figure 4A). In addition, the time-dependent ROC curve showed
that the AUCs of the seven-biomarker prognostic model was
0.787 (Figure 4B). It also indicated that the risk score model was
very robust. HCC patients with ICGC data were also categorized
into high- and low-risk groups according to the respective
median risk scores (Figures 4C,D). PCA and t-SNE analyses
demonstrated that patients in the two groups were distributed in
discrete directions (Figures 4E,F).

Independent Prognostic Analysis

We performed univariate and multivariate Cox regression
analyses to evaluate whether clinical parameters (including
gender, age, stage, and grade) and the risk score are independent

FIGURE 5 | Independent prognostic analysis of risk scores and clinical parameters. (A) The univariate Cox regression analysis of the associations between the risk
scores and clinical parameters and the overall survival (OS) of patients in The Cancer Genome Atlas (TCGA) cohort. (B) The multivariate Cox regression analysis of
the associations between the risk scores and clinical parameters and the OS of patients in TCGA cohort. (C) The univariate Cox regression analysis of the
associations between the risk scores and clinical parameters and the OS of patients in the ICGC cohort. (D) The multivariate Cox regression analysis of the
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prognostic factors of OS. Then, in both TCGA and ICGC
data, we found that the risk score and stage were independent
prognostic predictors for OS in the univariate and multivariate
Cox regression analyses (Figures 5A-D).

Functional Enrichment Analyses

We performed GO and KEGG functional enrichment analyses
on risk-related DEGs to investigate the potential functions of
the seven prognostic biomarkers. The results indicated that the
seven prognostic biomarkers mainly focused on nuclear division
and mitotic nuclear division in both TCGA and ICGC data
(Figures 6A,B). KEGG functional enrichment analysis suggested
that the seven prognostic biomarkers were mainly related to
the cell cycle, the metabolism of xenobiotics by cytochrome
P450, extracellular matrix (ECM)-receptor interactions, etc.
(Figures 6C,D). To further explore relationship between the
HCC prognosis and immune status, we quantified the infiltrating
scores of immune cell- and immunity-related functions with
ssGSEA. The correlations between ssGSEA scores and different
risk groups showed that the scores of iDCs, Macrophages, NK-
cells, Th2-cells, Treg, APC costimulation, Type I IFN Response,

the low- and high-risk groups in both TCGA and ICGC
cohorts (Figures 7A-D).

DISCUSSION

Although the current treatment and diagnosis of HCC have
improved compared with the past, the mortality and incidence
of HCC are still high. Colorectal cancer, stomach cancer, and
HCC have the highest mortality rates, which have surpassed
those of lung cancer (Chi et al., 2019). The prognosis is poor.
It is very important to predict the prognosis of HCC and give
corresponding treatments in time. The OS rate of HCC is still
very low, and the prognosis is poor. The quality of life with
advanced HCC is also poor (Anwanwan et al., 2020). Therefore,
it is important to have deeper insight into the pathological
mechanisms of the occurrence and development of HCC. In
addition, it is vital to find new biomarkers and targets that are
more sensitive and effective for the early diagnosis, treatment,
and prognosis of HCC.

At present, many researchers have proven that ferroptosis
is related to immunity, and immunotherapy and ferroptosis
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A B Cell cycle: [ ]
Oocyte meiosis [ ]
S, ® | Cellular senescence { [ ]
i dvsion Chemical carcinogenesis { [ ]
mitotic nudear division | Y A Metabolism of xenobiotics by cytochrome P450 ® aqualue
chromosome segregation- (] Retinol metabolism- [ ]
sisterchromatd segregation ° - ECM-receptor nteraction ) oot
mitotic sister chromatd segregation | (] || o= Drug metabolism ~ cytochrome P450 [ ] o
spinde o : 3 PPAR signaling pathway ) %
chromosomalregion | [ @« Bile secretion: . ke
Wm:l:r:z::: : : @« Central carbon metabolism in cancer- @ Count
condensed chromosome, centromeric fegion- ° qive Progesterone-mediated oocyte maturation: [ ) ® s
condensed ehromasome kinetochere { ° Small cell lung cancer- () @
B = = had Glycolysis / Gluconeogenesis | o : ;;
heme binding: ° e P53 signaling pathway [ ] @
tetrapyrrole binding: [ - Drug metabolism - other enzymes [ ] ©
‘steroid hydroxylase actvity | . Arachidonic acid metabolism { @ .
oeachidonio aEk EOno0KyRenkee SeMY . Bladder cancer: °
Srachiconks acld spompenass sty ® Fructose and mannose metabolism { @
o o o
GeneRatio Tyrosine metabolism{ @
Phenylalanine metabolism{ ®
0.02 0.04 0.06
GeneRatio
C D Cell cycle [ )]
Proteoglycans in cancer o
Focal adhesion .
Protein digestion and absorption { @
Phagosome { [ )
extraceluiar suucture rganizaon | ECM-receptor interaction | [ )
‘extracellular matrix organization { ® Metabolism of xenobiotics by cytochrome P450 3 qualue
carboryic acid biosyniheli process | ™Y i Bile secretion
‘organic acid biosynthetic process | & N Drug metabolism - cytochrome P450
nuclear dvision{ ® Oocyte meiosis oot
itotc nuclear division Gount Relaxin signaling pathway
oo LS *n PPAR signaling pathway 002
coliagen-containing extacelliar matrx ] [ o« Chemical carcinogenesis | 003
apial partof cell| ] Complement and coagulation cascades
‘endoplasmic reticulum lumen | [ ] B . AGE-RAGE signaling pathway in diabetic complications{
apical plasma membrane | ° il Amoebiasis { Count
collagen timer { [ S0e-08 Glycolysis / Gluconeogenesis | () ® 5
extracallvar matrx component | ® e Arachidonic acid metabolism { () @ ©
= W Biosynthesis of amino acids ] o
oolladhesion molecue binding | [ ] Thyroid hormone synthesis Q
anion ransmembrane ransporter actviy | [} Insulin secretion o @ »
aycosaminogiycan binding | o H Gap junction @ [ &
peptidase regulator acivy { ° Mineral absorption { [ ] CE
extracelllar matrx stuctural consttuent | ° Retinol metabolism{ [ ]
integrin binding | L] Leishmaniasis 1 o
0b2 004 006 - Drug metabolism - other enzymes [ ]
Genereto; Fructose and mannose metabolism { [ ]
Tyrosine metabolism-{ [ ]
Alanine, aspartate and glutamate metabolism-{ [ ]
Nitrogen .
0.02 0.04 0.06
GeneRatio
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construct prognostic models of immunity- and ferroptosis-
related genes and to predict their correlations in HCC. In our
study, we systematically investigated the differential expression of
immunity- and ferroptosis-related genes in HCC and performed
a survival analysis. A novel prognostic model integrating
five immunity- and two ferroptosis-related DEGs was first
constructed and validated in an external cohort. Functional
analyses show that immune cells and immunity-related functions
and pathways were enriched.

We established the predictive model including five immunity-
and two ferroptosis-related DEGs (HSPA4, ISG20L2, NRAS,
IL17D, NDRGI1, ACSL4, and G6PD). At present, the full name
of HSPA4/Hsp70 is Heat Shock Protein Family A Member 4,
which is a protein-coding gene. Chen et al. (2009) showed

that the FOLFOX4 (5-fluorouracil, leucovorin, and oxaliplatin)
regimen has advantages in colorectal cancer patients who have
unresectable liver metastasis with lower HSP70 expression over
those with higher HSP70 expression. Zhu et al. (2019) proved
that ISG20L2 was related to the HCC prognosis. Concerning
NRAS, Dietrich et al. (2019) found that it is a prognostic
biomarker and contributes to sorafenib resistance in HCC.
O’Sullivan et al. (2014) proved that IL17D was a novel target for
the immunotherapy of tumors. NDRGL is a hypoxia-inducible
protein, which is related to the progression of human cancers,
and is induced by hypoxia in HCCs (Sibold et al., 2007).
Long non-coding RNA CCAT2 promotes proliferation and
metastasis through upregulation of NDRG1 in HCC (Liu et al,,
2019). The FOXQ1/NDRGI axis can drive HCC initiation; thus,
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NDRG1 was suggested as a new potential therapeutic target for
HCC (Luo et al,, 2018). ACSL4 was overexpressed and served
as an independent adverse prognostic index in HCC (Sun and
Xu, 2017). Lu et al. (2018) found that overexpression of G6PD
was correlated with epithelial-mesenchymal transition, which
contributes to the migration and invasion of HCC.

At present, cancer treatment has entered an age of immunity
and iron (Buttner et al., 2016; Tarangelo and Dixon, 2016).
For ferroptosis, nanoparticles modulate iron and ROS levels
to induce ferroptosis, which could provide a new strategy for
cancer treatment (Tarangelo and Dixon, 2016). Immunotherapy
has become a new standard of treatment for advanced HCC
around the world (Waidmann, 2018). CD8T T cells release
interferon (IFN)y, and IFNy can regulate the lipid peroxidation
and ferroptosis pathways in tumors (Wang et al, 2019).
These findings mean that ferroptosis can play a role in the
immunotherapy of tumors.

There are several limitations to our study. First, the number
of normal samples from TCGA database was relatively small.
Second, the present study only included a database mining
design, without validation using fresh samples and prospective
experimental research. Therefore, we will collect fresh samples
and further prove our conclusions through experiments.

CONCLUSION

In conclusion, we identified seven biomarkers associated with
the prognosis of HCC patients. The prediction of the seven
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