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A further understanding of the molecular mechanism of hepatocellular carcinoma (HCC) 
is necessary to predict a patient’s prognosis and develop new targeted gene drugs. This 
study aims to identify essential genes related to HCC. We used the Weighted Gene 
Co-expression Network Analysis (WGCNA) and differential gene expression analysis to 
analyze the gene expression profile of GSE45114 in the Gene Expression Omnibus (GEO) 
database and The Cancer Genome Atlas database (TCGA). A total of 37 overlapping 
genes were extracted from four groups of results. Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway and Gene Ontology (GO) enrichment analyses were performed 
on the 37 overlapping genes. Then, we used the STRING database to map the protein 
interaction (PPI) network of 37 overlapping genes. Ten hub genes were screened according 
to the Maximal Clique Centrality (MCC) score using the Cytohubba plugin of Cytoscape 
(including FOS, EGR1, EPHA2, DUSP1, IGFBP3, SOCS2, ID1, DUSP6, MT1G, and MT1H). 
Most hub genes show a significant association with immune infiltration types and tumor 
stemness of microenvironment in HCC. According to Univariate Cox regression analysis 
and Kaplan-Meier survival estimation, SOCS2 was positively correlated with overall survival 
(OS), and IGFBP3 was negatively correlated with OS. Moreover, the expression of IGFBP3 
increased with the increase of the clinical stage, while the expression of SOCS2 decreased 
with the increase of the clinical stage. In conclusion, our findings suggest that SOCS2 
and IGFBP3 may play an essential role in the development of HCC and may serve as a 
potential biomarker for future diagnosis and treatment.

Keywords: hepatocellular carcinoma, differential gene expression analysis, weighted gene co-expression network 
analysis, tumor microenvironment, overall survival
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INTRODUCTION

Hepatocellular carcinoma (HCC) is a common tumor with a 
high morbidity and mortality rate (Torre et  al., 2015). Surgical 
resection remains the most effective treatment and is widely 
recommended (Hasegawa et  al., 2013). However, the prognosis 
of HCC is low, as only 10–20% carcinomas can be  removed 
entirely by surgery (Sun et  al., 2019). The high recurrence 
rate remains the most severe challenge for surgical resection, 
and the 5-year survival rate is only 30–40% (Portolani et  al., 
2006). Therefore, a thorough study of the dysregulated gene 
in HCC and building a prognosis model to predict the overall 
survival (OS) are great significance to improve the prognosis 
and rehabilitation of patients with HCC.

Weighted gene co-expression network analysis (WGCNA) is 
an important method to understand gene function and gene 
association from genome-wide expression. WGCNA can detect 
co-expression modules of highly related genes and modules of 
interest related to clinical features (Zhang and Horvath, 2005), 
which provides a good insight into the function of co-expressed 
genes and finds genes that play a crucial role in human diseases 
(Saris et al., 2009; Yang et al., 2014; Li et al., 2018). Also, differential 
gene expression analysis provides a method for studying the 
molecular mechanism of genome regulation and detecting 
quantitative changes in expression levels (Segundo-Val and Sanz-
Lozano, 2016). This difference in gene expression can lead to the 
discovery of potential biomarkers for specific diseases. Therefore, 
two methods were used to combine the results from WGCNA 
and differential gene expression analysis to improve the recognition 
ability of highly related genes as candidate biomarkers.

In our study, the mRNA expression data of HCC in The 
Cancer Genome Atlas database (TCGA) and Gene Expression 
Omnibus (GEO) databases were analyzed by WGCNA and 
differential gene expression analysis. Overlapping genes were 
obtained from the intersection of the four sets of results. 
We performed the KEGG pathway and GO enrichment analysis 
of overlapping genes and constructed a protein-protein interaction 
(PPI) network to screen hub genes. The hub genes were analyzed 
by tumor microenvironment analysis, dimension reduction analysis, 
survival analysis, and clinical information correlation analysis. 
It provides a potential basis for further understanding of the 
molecular mechanism, clinical diagnosis, and treatment of HCC.

MATERIALS AND METHODS

Datasets From TCGA and GEO Database
We downloaded the RNA-sequencing dataset of 50 normal 
liver tissue samples and 374 HCC samples with corresponding 

clinical data from The TCGA.1 Besides, 49 HCC patient samples 
with prognostic information from the GSE45114 dataset were 
also downloaded.2 As suggested in the edgeR package tutorial 
(Robinson et  al., 2010), genes with low read counts usually 
do not require further analysis. Therefore, in this study, 
we  maintained genes with CPM (count per million) >1. The 
Limma package was applied to perform the analysis.3 The 
p-value was adjusted by the Benjamini-Hochberg method to 
control the false discovery rate (FDR). We also used the Limma 
package to identify the differentially expressed genes given 
|log2 fold change (FC)| ≥ 1 and false discovery rate (FDR) < 0.05.

Using WGCNA to Identify Key  
Co-expression Modules
Co-expression networks facilitate network-based gene screening, 
which can be  used to identify candidate biomarkers and 
therapeutic targets. We  developed the gene expression profile 
of TCGA-LIHC and GSE45114 into the gene co-expression 
network using the WGCNA package (8). WGCNA was used 
to analyze the modules of highly related genes among samples 
and find the gene modules related to the external traits of 
samples. In order to construct a scale-free network, pick soft 
power β  =  3, and 20 are selected by the picksofhold function. 
Then, the adjacency matrix is established by the following 
formula: aij  =  |Sij|β (aij: adjacency matrix between gene i  and 
gene j, Sij: similarity matrix which is done by Pearson correlation 
of all gene pairs, β: soft power value), and transformed into 
a topological overlap matrix (ToM) and a corresponding 
dissimilarity (1-tom). Then, the hierarchical clustering tree of 
the 1-tom matrix is constructed to divide the similar gene 
expression into different gene co-expression modules. To further 
identify the functional modules in the co-expression network, 
the module feature association and clinical feature information 
between the modules were calculated. Therefore, modules with 
a high correlation coefficient are considered candidate modules 
related to clinical features and selected for subsequent analysis.

KEGG Pathway and GO Enrichment 
Analysis and PPI Network Construction 
and Hub Genes Selection
We submit differentially expressed RBPs to the STRING database 
for the KEGG pathway and GO enrichment analysis and 
protein-protein interaction information (PPI) recognition 
(Szklarczyk et al., 2019).4 The PPI network is further visualized 
by using the software of Cytoscape 3.7.1. In a co-expression 
network, Maximal Clique Centrality (MCC) algorithm was used 
to select the hub genes (Thul and Lindskog, 2018).

Tumor Microenvironment Analysis
The ESTIMATEscore, immune score, and stromal score were 
used to analyze the immune cells’ infiltration and stromal cells 

1 https://portal.gdc.cancer.gov/
2 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45114
3 http://www.bioconductor.org/packages/release/bioc/html/limma.html
4 http://www.string-db.org/

Abbreviations: HCC, Hepatocellular carcinoma; WGCNA, Weighted gene 
co-expression network analysis; GEO, Gene expression omnibus; TCGA, The cancer 
genome atlas database; MCC, Maximal clique centrality; OS, Overall survival; PPI, 
Protein interaction; HPA, Human protein atlas; TCGA-LIHC, The cancer genome 
atlas database-liver hepatocellular carcinoma; KEGG, Kyoto encyclopedia of genes 
and genomes; BP, Biological process; CC, Cellular component; MF, Molecular function; 
GTEx, Genotype-tissue expression; FDR, False discovery rate; FC, Fold change; CPM, 
Count per million; ToM, Topological overlap matrix.
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in different tumors (Yoshihara et  al., 2013). The estimated 
score of the program is used to describe the purity of the 
tumor. The analysis was based on the expression of data from 
TCGA (Yoshihara et al., 2013).5 Spearman correlation was used 
to analyze the correlation between hub gene expression and 
these scores. Six immune subtypes were defined to measure 
the immune infiltration in the tumor environment (Thorsson 
et  al., 2018). The correlation between the expression of the 
hub gene and the type of immune infiltrates in the tumor 
microenvironment was tested by the ANOVA model using the 
immune subtypes obtained from TCGA-LIHC data. Tumor 
stemness characteristics extracted from the transcriptome and 
epigenetics of TCGA tumor samples were used to measure 
stem-cell-like characteristics of tumor cells (Malta et al., 2018). 
Spearman correlation analysis was used to detect the correlation 
between hub gene expression and tumor stemness.

RESULTS

Weighted Gene Co-expression Network 
Analysis
We analyzed The Cancer Genome Atlas database-Liver 
hepatocellular carcinoma (TCGA-LIHC) and GSE45114 data 
sets and constructed a weighted gene co-expression network 
to obtain functional gene clusters. In this study, 11 TCGA-
LIHC modules and 13 GSE45114 modules were found, and 
each module was assigned colors (Figures  1A,B). We  then 
evaluated the correlation between each module and cancer 
and normal tissue. The results showed that the blue module 
in TCGA-LIHC(r  =  −0.77, p  =  4e-85, Figure  1C) and the 
brown module in GSE45114(r  =  −0.85, p  =  1e-14, Figure  1D) 
had the highest correlation with tumor tissue.

Acquisition of Differentially Expressed 
Genes and Overlapping Genes
Genes differentially expressed in tumor and adjacent normal 
tissues were screened in the TCGA-LIHC data set (Figure 2A) 
and GSE45114 data set (Figure  2B). The 100 differentially 
expressed genes in each data set were mapped into heatmaps 
to assess the differences in expression between tumor and 
adjacent normal tissues (Figures  2C,D). The genes in the blue 
module of TCGA-LIHC data set and the genes ingrown module 
of GSE45114 and differentially expressed genes in TCGA-LIHC 
data set and GSE45114 data set were intersected. A total of 
37 overlapping genes were extracted for further study (Figure 2E).

KEGG Pathway and GO Enrichment 
Analysis of the 37 Overlapping Genes
To further study the function of 37 overlapping genes, 
we  conducted the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway and Gene Ontology (GO) enrichment analysis 
of the 37 overlapping genes. After GO enrichment analysis, the 
results indicated that 37 overlapping genes in the biological 

5 https://bioinformatics.mdanderson.org/estimate/

process (BP) were mainly related to myeloid leukocyte 
differentiation; cellular response to cadmium ion; response to 
cadmium ion; osteoclast differentiation; cellular response to 
copper ion; cellular response to zinc ion; stress response to 
metal ion; detoxification of inorganic compound; stress response 
to copper ion; and detoxification of copper ion (Figure  3A). 
The cellular component (CC) of 37 overlapping genes were 
mainly related in the blood microparticle; external side of plasma 
membrane; collagen trimer; endocytic vesicle membrane; pore 
complex; lamellipodium membrane; organelle membrane contact 
site; pericentriolar material; mitochondria-associated endoplasmic 
reticulum membrane; and tetraspanin-enriched microdomain 
(Figure  3A). Through the molecular function (MF) analysis, 
we  found that the 37 overlapping genes were mainly related to 
scavenger receptor activity; cargo receptor activity; growth factor 
binding; alcohol binding; exogenous protein binding; virus receptor 
activity; protein tyrosine/serine/threonine phosphatase activity; 
mitogen-activated protein kinase binding; MAP kinase phosphatase 
activity; and MAP kinase tyrosine/serine/threonine phosphatase 
activity (Figure 3A). Moreover, in the KEGG pathway enrichment 
analysis, 37 overlapping genes were mainly related to myeloid 
leukocyte differentiation; negative regulation of growth; response 
to metal ion; myeloid cell differentiation; cellular response to 
inorganic substance interaction with host; cellular response to 
metal ion; complement activation; movement in host environment; 
detoxification; entry into the host; viral entry into host cell; 
osteoclast differentiation; response to cadmium ion; and cellular 
response to cadmium ion (Figure  3B).

PPI Network Construction and Hub Genes 
Identification
The PPI network of 37 overlapping genes was established using 
the STRING database (Figure  3C), and the hub genes were 
selected from the PPI network by the MCC algorithm of 
CytoHubba plugin (Figure  3D). The top  10 genes with the 
highest score of MCC sores were identified as hub genes, 
including the Fos proto-oncogene (FOS), early growth response 
1(EGR1), EPH receptor A2(EPHA2), dual specificity phosphatase 
1(DUSP1), insulin like growth factor binding protein 3(IGFBP3), 
suppressor of cytokine signaling 2(SOCS2), inhibitor of DNA 
binding 1(ID1), dual specificity phosphatase 6(DUSP6), 
metallothionein 1G(MT1G), and metallothionein 1H(MT1H; 
Figure  3E).

Hub Genes Expressio With Immune 
Infiltration Types in HCC
There are six types of immune infiltration in human tumors: 
C1 (wound healing), C2 (INF-r dominant), C3 (inflammatory), 
C4 (lymphocyte depleted), C5 (immunologically quiet), and 
C6 (TGFβ dominant; Tamborero et  al., 2018). To study the 
relationship between hub genes and immune components in 
HCC, we detected the correlation between hub genes expression 
and immune infiltration types in the TCGA-LIHC data set 
(Figure  4A). Through the Kruskal test, we  found that FOS, 
EGR1, EPHA2, DUSP1, IGFBP3, SOCS2, ID1, and DUSP6 
were related to immune infiltration subtype.
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Hub Genes Expression With HCC Tumor 
Stemness of the Microenvironment in HCC
Tumor stemness can be  measured with RNA stemness score 
based on the mRNA expression (RNAss) and DNA stemness 
score (DNAss) based on the DNA methylation pattern (Malta 
et al., 2018). We examined the relationship between the expression 
of hub genes and the RNAss, DNAss, StromalScore, ImmuneScore, 
and ESTIMATEScore of tumor microenvironment in HCC. 
The RNAss was significantly negatively correlated with FOS, 
EGR1, EPHA2, DUSP1, IGFBP3, SOCS2, ID1, and DUSP6 
(Figure  4B). Besides, FOS, EGR1, IGFBP3, SOCS2, ID1, and 
MT1G showed a negative correlation with DNAss (Figure 4B). 
Moreover, FOS, EGR1, EPHA2, IGFBP3, ID1, DUSP6, MT1G, 
and MT1H were positive with ImmuneScore (Figure  4B). 
Moreover, all the hub genes were positive with StromalScore 
and ESTIMATEScore (Figure  4B).

Expression and Prognostic Values of Hub 
Genes in HCC
We compared the expression of each hub gene in HCC and 
found that the expression of DUSP1 was the highest, and the 
expression of MT1H was the lowest in HCC (Figure  5A). 
We  also compared the expression correlation of each hub 
gene in HCC, where MT1G and MT1H had the most positive 
correlation (Figure  5B). The hub genes were also analyzed 
by dimension reduction using the TCGA-LIHC data set and 
Genotype-Tissue Expression (GTEx) data set (Figure 5C). All 
hub genes were evaluated by Univariate Cox regression analysis 
and Kaplan-Meier survival estimation to study the relationship 
between gene expression and overall survival. In Univariate 
Cox regression analysis, IGFBP3 was negatively correlated 
with OS, while SOCS2 was positively correlated with OS, 
and other hub genes were not correlated with OS (Figure 5D).  

A B

C D

FIGURE 1 | Identify the module information related to clinical. The clustering tree of the co-expression network module is sorted by hierarchical gene clustering 
based on the 1-tom matrix. Each module is given a different color. (A) Gene tree and module color in The Cancer Genome Atlas database (TCGA). (B) Gene 
dendrogram and module color in GSE45114. Module feature relationship. Each row corresponds to a color module, and columns correspond to cancer or normal 
tissue. Each cell contains the corresponding correlation and value of p. (C) Module trait relationship in TCGA. (D) Module feature relationship inGSE45114.
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Moreover, in Kaplan-Meier survival estimation in patients with 
survival from 1 to 100  months, patients with high expression 
of SOCS2 had a better OS, while patients with high expression 
of IGFBP3 had a poor OS, and other hub genes were not 

correlated with OS (Figures  5E,F). We  also analyzed the 
relationship between hub gene expression and the clinical stage 
of HCC. We  found that only the expression of IGFBP3 and 
SOCS2 was related to the clinical stage of HCC, and the 

A

C

E

D

B

FIGURE 2 | Using | logfc | > 1.0 and adj p < 0.05 as cut-off criteria, the differentially expressed genes in TCGA and GSE45114 data sets of Hepatocellular 
carcinoma (HCC) were identified. (A) Volcano maps of differentially expressed genes in the TCGA dataset. (B) Volcano map of differentially expressed genes in the 
GSE45114 dataset. (C) Heatmap of 100 differentially expressed genes in the TCGA dataset. (D) Heatmap of 100 differential genes in the GSE45114 dataset. 
(E) Venn diagram of gene crossover between differential expression gene list and co-expression module. A total of 37 overlapping genes were located at the 
intersection of the differential expression gene list and the co-expression module.
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expression of IGFBP3 increased with the increase of clinical 
stage, while the expression of SOCS2 decreased with the increase 
of the clinical stage (Figure 6A). The protein level of the SOCS2 

gene in HCC was significantly higher than that in normal tissues 
based on the HPA database (Figures  6B,C). However, there is 
no IGFBP3 protein expression data in the HPA database.

A

C D

E

B

FIGURE 3 | Enrichment analysis of overlapping genes and selection of hub genes. (A) Gene Ontology (GO) enrichment analysis for the 37 overlapping genes. 
(B) KEGG pathway enrichment analysis for the 37 overlapping genes. (C) The STRING database constructed the PPI network of 37 overlapping genes. (D) The PPI 
network of 37 overlapping genes was compiled by Cytoscape software. The blue nodes represent genes, and the edges represent the interaction between nodes. 
(E) The maximal clique centrality (MCC) algorithm is used to identify hub genes in PPI networks. The edge represents the binding of protein and protein. The red 
node represents the gene with a high MCC score, while the Yellow node represents the gene with a low MCC score.
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A

B

FIGURE 4 | Hub genes and HCC microenvironment analysis. (A) Association of hub genes expression with immune infiltrate subtypes in HCC tested with ANOVA. 
(B) Correlation matrixes between hub gene expression and RNAss, DNAss, stromal score, immune score, and Estimate Score. Spearman correlation tests were 
used for testing.
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DISCUSSION

Hepatocellular carcinoma is one of the most common 
malignant tumors. It has a high incidence rate, high mortality 

rate, and poor prognosis. Only a few tumors can be completely 
removed by surgery. However, the treatment of HCC has 
improved. The 5-year survival rate is only 30–40%. Therefore, 
more precise molecular targets are needed to determine the 

A B

C D

E F

FIGURE 5 | Hub genes expression and survival analysis in HCC.(A) Comparison of the expression of each hub gene in HCC.(B) Expression correlation of each hub 
gene in HCC.(C) Dimension reduction analysis of all hub genes using The cancer genome atlas database-liver hepatocellular carcinoma (TCGA-LIHC) data set and 
GTEx data set. (D) Univariate Cox regression analysis of OS analysis of hub genes from the TCGA-LIHC database. (E) Kaplan-Meier survival estimation of OS 
analysis of IGFBP3 from the TCGA-LIHC database. (F) Kaplan-Meier survival estimation of OS analysis of SOCS2 from the TCGA-LIHC database.
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prognosis and progress of HCC.In our study, 37 differentially 
expressed genes in the same most significant gene functional 
cluster were identified using WGCNA and gene expression 
analysis in the TCGA-LIHC data set and GSE45114 data 
set. Then, we  performed the KEGG pathway and GO 
enrichment analysis of the 37 genes and found that they 

play an important role in many biological processes. Besides, 
the top  10 HCC related hub genes were screened according 
to MCC scores from the CytoHubba plugin in Cytoscape, 
including FOS, EGR1, EPHA2, DUSP1, IGFBP3, SOCS2, 
ID1, DUSP6, MT1G, and MT1H. We analyzed the relationship 
between hub genes expression and immune response and 

A

B C

FIGURE 6 | Hub genes clinical stage and immunohistochemistry in HCC. (A) Relationship between hub gene expression and clinical stage of HCC from the 
TCGA-LIHC database. (B) Immunohistochemistry of the SOCS2 in HCC tissues from the human protein atlas (HPA) database (staining: Low; intensity:  
Weak; quantity: >75%). (C) Immunohistochemistry of the SOCS2 in normal liver tissues from the HPA database. (staining: Medium; intensity: Moderate; 
quantity: >75%).
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tumor microenvironment in HCC. We  found that the 
expression of FOS, EGR1, EPHA2, DUSP1, IGFBP3, SOCS2, 
ID1, and DUSP6 would affect the immune infiltration types. 
The expression level of FOS, EGR1, DUSP1, and SOCS2  in 
C3(inflammatory) immune infiltration subtype was higher 
than that in other immune infiltration subtypes, while the 
expression level of EPH2, IGFBP3, ID1, and DUSP6  in the 
C1 (wound healing) immune infiltration subtype was high. 
A significant positive correlation was found between all hub 
genes and Stromal Score and ESTIMATE Score in HCC. 
Besides, FOS, EGR1, EPHA2, IGFBP3, ID1, DUSP6, MT1G, 
and MT1H showed a significantly positive correlation with 
the Immune Score. However, FOS, EGR1, IGFBP3, SOCS2, 
ID1, and MT1G in HCC were negatively related to DNAss. 
We  also found that FOS, EGR1, EPHA2, DUSP1, IGFBP3, 
SOCS2, ID1, and DUSP6 were negatively related to RNAss. 
We  analyzed the expression correlation of hub genes and 
found that most of the hub genes were positive correlation 
expressions. In HCC tissues, the expression of MT1H was 
the lowest, and DUSP1 was the highest, and all their expression 
was upregulated in HCC compared with adjacent liver tissue. 
We  evaluated all hub genes by Univariate Cox regression 
analysis and Kaplan-Meier survival estimation. IGFBP3 was 
correlated with the poor OS, while SOCS2 was correlated 
with the good OS, and other hub genes were not correlated 
with OS. Finally, immunohistochemistry was verified  
that the expression of SOCS2  in HCC was higher than in  
the liver.

Insulin-like growth factor-binding protein 3 is also known 
as IGFBP-3. IGFBP-3 is one of six IGF binding proteins 
(IGFBP-1 to IGFBP-6) that have highly conserved structures. 
The imbalance of IGFBP-3 is associated with many cancers 
(Baxter, 2014). However, the regulatory mechanism of IGFBP-3 
on tumors remains unclear. In breast cancer (Yu et  al., 1998; 
Sheen-Chen et al., 2009), pancreatic cancer, (Xue et al., 2008), 
and clear cell renal cell carcinoma (Takahashi et  al., 2005), 
the high expression of IGFBP-3 is associated with poor 
prognosis. However, IGFBP-3 promoter methylation and 
decreased expression lead to poor prognosis of non-small 
cell lung cancer (Chang et  al., 2002). Besides, circulating 
levels of IGFBP-3 are associated with increased risk of some 
cancers, but the results vary from site to site (Renehan et  al., 
2004). IGFBP-3 protein level decreased in the process of 
prostate cancer metastasis from benign to malignant (Miyake 
et al., 2000). The risk of colon cancer was positively correlated 
with plasma IGFBP-3 (Palmqvist et  al., 2002). In our study, 
This is consistent with our analysis that IGFBP-3 is highly 
expressed in HCC, and high IGFBP-3 expression is associated 
with poor prognosis of HCC.IGFBP-3 was highly expressed 
in HCC, and the high expression of IGFBP-3 is associated 
with poor prognosis of HCC.

Suppressor of cytokine signaling 2, also known as SOCS2, 
is a member of the STAT-induced STAT inhibitor (SSI), also 
known as suppressor of cytokine signaling (SOCS), family. 
In cancer, low SOCS2 gene expression was associated with 
breast cancer, lung cancer, hepatocellular carcinoma, and 
ovarian cancer (Wikman et  al., 2002; Sutherland et  al., 2004;  

Farabegoli et  al., 2005; Haffner et  al., 2007; Qiu et  al., 2013; 
Zhu et  al., 2013). In contrast, SOCS2 was highly expressed 
in bone marrow cells of patients with chronic myeloid 
leukemia (CML; Schultheis et  al., 2002). The expression of 
SOCS2 in breast cancer decreased with the increase of tumor 
grade (Sasi et  al., 2010). High SOCS2 expression was an 
independent predictor of good prognosis in breast cancer 
(Haffner et  al., 2007; Sasi et  al., 2010). In HCC, the 
downregulation of SOCS2 was significantly associated with 
the late stage of TNM (Qiu et  al., 2013). The low expression 
of SOCS2  in primary prostate tissue was associated with 
an increased incidence of postoperative metastasis and 
decreased SOCS2 levels during prostate cancer (Hendriksen 
et  al., 2006; Iglesias-Gato et  al., 2014). Overexpression of 
SOCS2 inhibited the proliferation of Caco-2 colon cancer 
cell line (Miller et  al., 2004). This evidence supports that 
SOCS2 generally limits tumor growth, which is consistent 
with our conclusion.

Our study suffers from some limitations. Although we  have 
used a variety of bioinformatics methods to analyze the diagnostic 
genes of HCC, the molecular mechanism of genes affecting 
the prognosis and survival of HCC patients needs to be further 
studied through a series of experiments.

CONCLUSION

Our study combined WGCNA with differential gene expression 
analysis, further verified by immune infiltration-type analysis 
and tumor stemness of microenvironment analysis, and 
we  obtained the survival-related genes IGFBP3 and SOCS2, 
which may predict the prognosis of HCC.
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