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As a data-driven dimensionality reduction and visualization tool, t-distributed stochastic
neighborhood embedding (t-SNE) has been successfully applied to a variety of fields.
In recent years, it has also received increasing attention for classification and regression
analysis. This study presented a t-SNE based classification approach for compositional
microbiome data, which enabled us to build classifiers and classify new samples in the
reduced dimensional space produced by t-SNE. The Aitchison distance was employed
to modify the conditional probabilities in t-SNE to account for the compositionality
of microbiome data. To classify a new sample, its low-dimensional features were
obtained as the weighted mean vector of its nearest neighbors in the training set.
Using the low-dimensional features as input, three commonly used machine learning
algorithms, logistic regression (LR), support vector machine (SVM), and decision tree
(DT) were considered for classification tasks in this study. The proposed approach was
applied to two disease-associated microbiome datasets, achieving better classification
performance compared with the classifiers built in the original high-dimensional space.
The analytic results also showed that t-SNE with Aitchison distance led to improvement
of classification accuracy in both datasets. In conclusion, we have developed a t-SNE
based classification approach that is suitable for compositional microbiome data and
may also serve as a baseline for more complex classification models.

Keywords: microbiome data, dimension reduction, t-SNE, Aitchison distance, classification

INTRODUCTION

The microbiome in human is involved in a large number of human essential functions, such as
metabolism, nutrient intake and energy generation. In recent years, the microbiome has been
found to be associated with numerous diseases, and the alterations in that by diet, disease, or
environmental factors may impact on human health (Turnbaugh et al., 2006, 2009; Qin et al.,
2012; Koeth et al., 2013). The next-generation sequencing technologies make it possible to study
the microbiota composition through direct DNA sequencing, replacing classical microorganism

Abbreviations: t-SNE, t-distributed stochastic neighborhood embedding; LR, logistic regression; SVM, support vector
machine; DT, decision tree; ACC, the classification accuracy; nMCC, the normalized Matthews correlation coefficient; AUC,
the area under the receiver operating characteristic curve; AUPR, the area under the precision-recall curve.
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study based on isolation and cultivation of specific species. Since
the number of the sequence reads is difficult to generate equally
for each sample in an experiment, the microbiome data is often
required to be converted to the relative abundance for deeper
analysis, resulting in compositional microbiome data (McMurdie
and Holmes, 2014; Weiss et al., 2017). A single sample can
often yield hundreds of millions of short sequencing reads, but
for many species they are only observed in a small number
of samples, so the microbiome data are typically characterized
by high-dimensionality and multivariate sparsity (Li, 2015;
Calle, 2019).

To gain a better understanding on the high-dimensional
microbiome data, it is essential to reduce the data
dimension in such a way that increases interpretability and
minimizes information loss simultaneously. Traditional
linear dimensionality reduction techniques, such as principal
component analysis (PCA) (Hotelling, 1933; Abdi and Williams,
2010), nonnegative matrix factorization (NMF) (Lee and
Seung, 1999; Jiang et al., 2012), and classical multidimensional
scaling (MDS, also called principle coordinate analysis, PCoA)
(Torgerson, 1952; Mugavin, 2008; Gonzalez and Knight,
2012), have difficulty capturing the nonlinear relationships in
microbiome data due to their linear nature (Xu et al., 2016; Calle,
2019). In contrast, the nonlinear techniques have advantages in
dealing with complex nonlinear datasets (Maaten et al., 2009).
Among nonlinear dimension reduction algorithms, t-distributed
stochastic neighbor embedding (t-SNE), developed by van der
Maaten and Hinton (2008), has recently received increasing
attention and has been applied to dimension reduction and
visualization of microbiome data (Kostic et al., 2015), single-cell
RNA-sequencing data (Linderman et al., 2019), bird songs (Deny
et al., 2016), computational fluid dynamics (Wu et al., 2017),
genomic data (Li et al., 2017), remote sensing images (Song et al.,
2018) and many other application fields.

The t-SNE algorithm could efficiently project complex data
sets onto a 2D or 3D plane, while the local structure of the
data in the original high-dimensional space is preserved as
much as possible. However, the t-SNE method does not provide
a built-in way to map new data points to the corresponding
low-dimensional representation, and hence it is hardly utilized
for classification or regression tasks (Maaten, 2009). Some
studies have attempted to cope with this out-of-sample extension
problem by using neural networks for feature extraction and then
perform classification on the mapped low-dimensional space
from t-SNE (Maaten, 2009; Oliveira et al., 2018). However, there
is little research on the application of t-SNE to the classification of
microbiome data, which may be due to the unique characteristics
of microbiome data, such as compositionality and relatively small
sample size in many cases, limiting the performance of existing
methods on such type of data.

In this article, we explore the potential of t-SNE for the
classification of microbiome data, and propose a t-SNE based
classification approach, which enables us to build classifiers and
classify new samples in the reduced dimensional space. In our
t-SNE algorithm, Aitchison distance, introduced by Aitchison
(1986), is used to calculate the conditional probabilities for
compositional microbiome data. To classify a new sample, its

low-dimensional features are first obtained as the weighted
mean vector of its nearest neighbors. Using the low-dimensional
features as input, three commonly used methods-logistic
regression (LR), support vector machine (SVM), and decision
tree (DT) are then applied for classification in this study.

METHODS

t-Distributed Stochastic Neighbor
Embedding
For a given set of p-dimensional samples s1, s2, · · · , sN the
similarity between sample sj and sample si is represented by
the conditional probability pj|i, i, j = 1, 2, · · · ,N. For nearby
samples, pj|i is relatively high, whereas for widely separated
samples, pj|i will be almost zero. The conditional probability pj|i
is given as

pj|i =
exp

(
−

d2(si,sj)
2σ2

i

)
∑

k 6=i exp
(
−

d2(si,sk)
2σ2

i

) for i 6= j, and pi|i = 0,

Where d2 (si, sj) is the square of the Euclidean distance between
sample si and sample sj and σ2

i is the variance of the Gaussian
distribution that is centered on sample si.

To circumvent the outlier problem, the symmetrized
conditional probability between sample si and sample sj is
recommended,

pij =
pj|i + pi|j

2N
for i 6= j, and pii = 0.

the next step, t-SNE attempts to learn a d-dimensional map
z1, z2, · · · , zN (d < p) that reflects the similarities pij between
two samples zi and zj in the reduced dimensional space. The
measure of pairwise similarities in the reduced dimensional space
uses a student t-distribution rather than a Gaussian distribution
to alleviate crowding problem, defined as

qij =
(
1+ d2 (zi, zj))−1∑

k 6=l
(
1+ d2 (zk, zl)

)−1 for i 6= j, and qii = 0,

where qij represents the local structure of the data points in the
reduced dimensional space. To select the map points so that
the two similarity matrices, P and Q, are as similar as possible,
the location of the sample zi is determined by minimizing
the Kullback–Leibler divergence (Kullback and Leibler, 1951)
between the low-dimensional and high-dimensional similarity
distributions Q and P,

KL (P ‖ Q) =
∑
i6=j

pij log
pij
qij

,

using a gradient-descent method. It is worth noting that the
gradient descent is an iterative optimization algorithm, and
thereby the iterative number (iter) should be optimized. The
t-SNE method has another main parameter, the perplexity (per),
which governs the variance of the Gaussian σ2

i appearing in the

Frontiers in Genetics | www.frontiersin.org 2 December 2020 | Volume 11 | Article 620143

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-620143 December 8, 2020 Time: 18:39 # 3

Xu et al. Classification of Microbiome Data

conditional probability pj|i. For a detailed introduction of the
t-SNE algorithm, see the literature (Maaten and Hinton, 2008).

t-SNE Based Classification for
Compositional Data
The procedure of the proposed approach is shown in Figure 1,
including two main parts, the implementation of t-SNE with
Aitchison distance and the out-of-sample extension.

t-SNE With Aitchison Distance
The sample space of compositional data is simplex (Calle,
2019). Three important conditions should be fulfilled for a
proper analysis of compositions: permutation invariance, scale
invariance and sub-compositional coherence (Aitchison, 1986).
In fact, Euclidean distance cannot meet the principles of scale
invariance and sub-compositional coherence, which may lead
to spurious correlations among the abundances of the different
taxa (Aitchison, 1986; Li, 2015; Calle, 2019). On the other hand,

Aitchison distance, which has been proved to satisfy all these
criteria, was often deemed to be a solution to most problems
related to compositional data (Aitchison, 1992; Calle, 2019).

The Aitchison distance da between two p-dimensional vectors
x = (x1, x2, · · · , xp) and y = (y1, y2, · · · , yp), is defined as,

da
(
x, y

)
=

 p∑
i=1

(
ln

xi
g (x)

− ln
yi

g
(
y
))2

1/2

,

where g(·) denotes the geometric mean. The conditional
probability pj|i in t-SNE is substituted by pj|i(i, j =
1, 2, · · · ,N, j = 1, 2, · · · ,N) calculated as,

pj|i, a =
exp

(
−

d2
a(si,sj)

2σ2
i

)
∑

k6=i exp
(
−

d2
a(si,sk)

2σ2
i

) , for i 6= j, and pi|i,a = 0.

FIGURE 1 | Overview of the procedure of our approach.
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The high-dimensional feature vectors of the original set
are submitted to t-SNE with Aitchison distance for data
dimensionality reduction (step 1a–2a in Figure 1), and the
corresponding reduced dimensional data z1, z2, · · · , zN in
Rd are used to build classifiers. In this study, we consider three
widely used classification algorithms: logistic regression (LR),
support vector machine (SVM) or decision tree (DT) (step 3a in
Figure 1).

Out-of-Sample Extension
Given a new p-dimensional sample s0 in SP, its k nearest
neighbors in the original data are first identified based on the
conditional probabilities between s0 and the original set of
samples (step 1b in Figure 1),

sp0,i =
exp(−d2

a (s0, si) /2σ2
i )∑

h6=i exp(−d2
a (si, sh) /2σ2

i )
, i = 1, 2, · · · ,N.

Let sp0,(1) > sp0,(2) > · · · > sp0,(k) > · · · > sp0,(N) denote the
set of N ordered probabilities, and z

′

1, z
′

2, · · · , z
′

k denote the
low-dimensional representations of the original data with the
largest k conditional probabilities, which will be labeled as the
k nearest neighbors of s0 step 2b in Figure 1). Then the low-
dimensional representation of s0 step 3b in Figure 1) is given by

z0 =

k∑
i=1

wi · z′i,

where wi =
sp0,(i)∑k
i=1 sp0,(i)

denotes the weight of z′i.

In the final step z0, used as an input to the classifier for
prediction (step 4 in Figure 1).

Selection of Optimal Parameters
In t-SNE, there are several parameters that need to be tuned for
good performance, such as the perplexity per, which is defined
as a smooth measure of the effective number of neighbors. It has
been suggested that a typical value for this parameter is between
5 and 50 (Maaten and Hinton, 2008). In practice, proper tuning
of per requires users to understand the inner working of the
t-SNE method as well as to have hands-on experience. In our
study, the tuning of parameters can be achieved based on the
performance of classifications. In particular, a grid search with
fivefold cross-validation is used to tune the parameters, including
the perplexity per, maximum number of iterations iter, output
dimensionality dim, and number of neighbors k. The optimal
combination of parameters is selected via maximizing mean
cross-validation accuracy.

In addition, for the parameters of the three classification
algorithms applied in the reduced dimensional space, LR is
trained by tuning the lambda based on minimum mean cross-
validated error. In the SVM model, the radial basis kernel is
used. The two tuning parameters (gamma and cost) are chosen
by minimizing the mean cross-validation error as the best
combination for seven values from 10−6 to 101 for the gamma
and five values from 1 to 5 for the cost. For DT, the optimized
decision tree is obtained by evaluating the cross-validated error

using a grid search method and then determining the best set
of hyperparameters, including min split, min bucket, max depth,
and complexity. The rest of the unmentioned parameters uses the
default setting in the R package.

Model Evaluation
To compare the performance of different model settings, we
use the area under the receiver operating characteristic curve
(AUC) which represents the trade-off between the true positive
rate (specificity) vs. the false positive rate (1-sensitivity), the
commonly used classification metric-accuracy (ACC) which were
defined by the ratio of the samples correctly classified to the total
samples, as well as two other criteria capable of overcoming the
class imbalance issue, the area under the precision-recall curve
(AUPR) which represents the trade-off between the precision vs.
the recall, and the normalized Matthews correlation coefficient
(nMCC) which projects the original range of MCC [-1, 1] into
the interval [0, 1] (Matthews, 1975; Chicco and Jurman, 2020),

ACC =
TP+ TN

TP+ FP+ TN+ FN
,

nMCC =
MCC+ 1

2
,

where MCC = TP×TN−FP×FN
√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
,

TP, FP, TN, and FN denote true positive, false positive, true
negative, and false negative, respectively. For the given data, we
randomly split the data to the training and test sets in 80/20 ratio.
All of the training samples were randomly divided into five sets,
four of which were employed for constructing the classification
model, and the remaining one as the validation set was used
to validate the model for obtaining the optimal parameters.
The generalization performance results were reported by ACC,
nMCC, AUC, and AUPR, which were measured on test data that
was held out during the training of t-SNE with Aitchison distance
or t-SNE with Euclidean distance.

Implementation of the Proposed
Approach
The proposed approach was implemented on R software (version
4.0.2), where t-SNE was performed using the R package tsne, LR
was implemented using the R package glmnet, SVM was executed
using the R package e1071, and DT was implemented using the R
package rpart. In addition, both AUC and AUPR were calculated
using the R package PRROC, and MCC was calculated using the
R package mltools. The R code could be found at https://github.
com/Xuxl2020/t-SNE-classifier.

Application to Microbiome Data
The proposed approach was performed on two microbiome
datasets from diverse body sites: (1) the Mycoplasma pneumoniae
(MP) infection data (Zhou et al., 2020) and (2) the idiopathic
central precocious puberty (ICPP) data (Dong et al., 2020). The
MP infection data was oropharyngeal (OP) microbiota derived
from the MP infection study on 99 Chinese children, including
40 patients (diagnosed as MP infection, Case group) and 59
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age-matched healthy children (Control group). The ICPP data
was fecal microbiota from 25 girls (Case group) with idiopathic
central precocious puberty and 23 healthy girls (Control group)
in China. All microbiota data were generated from the Miseq
platform by sequencing the V3-V4 hypervariable region of
microbial 16S rDNA and were annotated with the RDP database
and then calculating relative abundance for each sample in the
genus taxonomic level. Both data were the compositional data.
The MP infection and ICPP data contained 728 and 146 features
(genus), respectively.

RESULTS

Data Visualizations With t-SNE
The results of t-SNE 2D map for MP infection data (per = 30,
iter = 2,000) and ICPP data (per = 15, iter = 2,000) are
illustrated in Figure 2. For MP infection data (Figure 2A),
t-SNE with Aitchison distance constructs a map in which the
separation between the case and control groups is almost perfect.
In contrast, t-SNE with Euclidean distance produces a map
in which there is no clear boundary between different groups.

For ICPP data (Figure 2B), the map produced by t-SNE with
Aitchison distance contains a few points that are clustered with
the wrong group, probably due to more complex composition
and more distinct individual differences in gut microbiota.
Again, none of the groups are clearly separated in the t-SNE
with Euclidean distance map. The computation time (seconds)
of t-SNE with Aitchison distance and t-SNE with Euclidean
distance for both microbiome datasets was also provided in
Supplementary Table 1.

Impact of Output Dimensionality on
Classification Performance
For MP infection data, the optimal parameters selected are: the
perplexity per = 30, maximum number of iterations iter = 2,000,
and number of neighbors k = 7. To examine the impact of
the output dimensionality on the classification performance, the
results of the proposed approach (using Aitchison distance) for
dim = 2, 3, 5, and 7 were presented in Figure 3A. ACCs, AUCs,
nMCCs, and AUPRs were relatively small at dim = 2. When
dim = 3, the ACCs were increasing to 0.95, 0.96 and 0.92 for LR,
SVM, and DT, respectively, the AUCs were increasing to 0.99,
1.00, and 0.93 for LR, SVM, and DT, respectively, the nMCCs

FIGURE 2 | Data visualizations in 2D by t-SNE for (A) MP infection data and (B) ICPP data. Color: blue for case group and red for control group.

Frontiers in Genetics | www.frontiersin.org 5 December 2020 | Volume 11 | Article 620143

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-620143 December 8, 2020 Time: 18:39 # 6

Xu et al. Classification of Microbiome Data

FIGURE 3 | Classification performances on the test data change with the output dimensionality dim. (A) MP infection data and (B) ICPP data. Color: blue for logistic
regression (LR), orange for support vector machine (SVM), and gray for decision tree (DT). ACC, the classification accuracy; AUC, the area under the receiver
operating characteristic curve; nMCC, the normalized Matthews correlation coefficient; AUPR, the area under the precision-recall curve.

were increasing to 0.95, 0.96, and 0.93 for LR, SVM, and DT,
respectively, and the AUPRs were increasing to 0.98, 0.98, and
0.91 for LR, SVM, and DT, respectively, which were similar to the
values at dim = 5 and 7.

For ICPP data, the optimal parameters selected are: the
perplexity per = 15, maximum number of iterations iter = 2,000,
and number of neighbors k = 7. The results of the proposed
approach (using Aitchison distance) for dim = 2, 3, 5, and 7
were presented in Figure 3B. ACCs, AUCs, MCCs, and AUPRs
were relatively small at dim = 2 and 3. When dim = 5, the ACCs
were increasing to 0.77, 0.81, and 0.75 for LR, SVM, and DT,
respectively, the AUCs were increasing to 0.83, 0.87, and 0.78 for
LR, SVM, and DT, respectively, the nMCCs were increasing to

0.77, 0.79, and 0.75 for LR, SVM, and DT, respectively, and the
AUPRs were increasing to 0.76, 0.76, and 0.73 for LR, SVM, and
DT, respectively, which were similar to the values at dim = 7. The
detailed results for different output dimensions were summarized
in Table 1.

Impact of Different Distance Measures
on Classification Performance
For MP infection data with dim = 3, compared to the results
using Euclidean distance, the proposed approach using Aitchison
distance increased the ACC by 9% for LR, 10% for SVM, and
10% for DT, respectively, increased the nMCC by 9% for LR,
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TABLE 1 | Performance of classification models on the test set.

MP infection ICPP

dim = 2 3 5 7 2 3 5 7

ACC ED LR 0.72 0.87 0.88 0.87 0.55 0.59 0.68 0.67

SVM 0.81 0.87 0.85 0.85 0.61 0.63 0.64 0.64

DT 0.75 0.84 0.83 0.84 0.60 0.57 0.63 0.64

AD LR 0.89 0.95 0.95 0.95 0.69 0.69 0.77 0.76

SVM 0.95 0.96 0.95 0.96 0.73 0.76 0.81 0.82

DT 0.90 0.92 0.93 0.92 0.67 0.67 0.75 0.75

nMCC ED LR 0.72 0.87 0.87 0.87 0.60 0.61 0.71 0.72

SVM 0.78 0.87 0.86 0.86 0.63 0.64 0.72 0.72

DT 0.73 0.82 0.82 0.82 0.62 0.60 0.72 0.71

AD LR 0.90 0.95 0.94 0.95 0.68 0.72 0.77 0.77

SVM 0.94 0.96 0.95 0.96 0.72 0.74 0.79 0.80

DT 0.90 0.93 0.93 0.93 0.67 0.71 0.75 0.76

AUC ED LR 0.77 0.91 0.91 0.90 0.63 0.72 0.77 0.75

SVM 0.85 0.90 0.89 0.90 0.70 0.74 0.75 0.75

DT 0.75 0.85 0.82 0.81 0.66 0.68 0.74 0.74

AD LR 0.97 0.99 0.98 0.98 0.73 0.79 0.83 0.84

SVM 0.98 1.00 0.99 0.99 0.77 0.83 0.87 0.86

DT 0.92 0.93 0.94 0.93 0.67 0.72 0.78 0.79

AUPR ED LR 0.72 0.86 0.88 0.90 0.66 0.71 0.74 0.74

SVM 0.72 0.85 0.86 0.87 0.66 0.71 0.74 0.75

DT 0.69 0.81 0.82 0.81 0.64 0.69 0.71 0.74

AD LR 0.96 0.98 0.99 0.99 0.71 0.74 0.76 0.77

SVM 0.97 0.98 0.98 0.99 0.71 0.75 0.76 0.78

DT 0.90 0.91 0.92 0.91 0.65 0.70 0.73 0.75

ACC, the classification accuracy; nMCC, the normalized Matthews correlation coefficient; AUC, the area under the receiver operating characteristic curve; AUPR, the
area under the precision-recall curve; AD, the models using Aitchison distance; ED, the models using Euclidean distance; LR, logistic regression; SVM, support vector
machine; DT, decision tree.

10% for SVM, and 13% for DT, respectively, increased the AUC
by 9% for LR, 11% for SVM, and 9% for DT, respectively, and
increased the AUPR by 14% for LR, 16% for SVM, and 14% for
DT, respectively. For MP infection data with dim = 5, compared
to the results using Euclidean distance, the proposed approach
using Aitchison distance increased the ACC by 13% for LR, 27%
for SVM, and 19% for DT, respectively, increased the nMCC by
8% for LR, 10% for SVM, and 4% for DT, respectively, increased
the AUC by 8% for LR, 16% for SVM, and 5% for DT, respectively,
and increased the AUPR by 3% for LR, 3% for SVM, and 3% for
DT, respectively. The detailed results for the comparisons were
summarized in Supplementary Table 2.

Classification Performance in Original
and Reduced Dimension Space
To compare the classification performances of the classifiers
built in original and reduced dimensional space, we also used
the three algorithms (LR, SVM, and DT) to build classifiers
in the original dimensional space. For MP infection data (99
samples with 728 features), the ACCs were 0.95, 0.94, and 0.92
for LR, SVM, and DT, respectively, the nMCCs were 0.95, 0.95,
and 0.94 for LR, SVM, and DT, respectively, the AUCs were
0.99, 0.98, and 0.94 for LR, SVM, and DT, respectively, and

the AUPRs were 0.98, 0.97, and 0.94 for LR, SVM, and DT,
respectively (Figure 4A). For ICPP data (48 samples with 146
features), the ACCs were 0.75, 0.76, and 0.73 for LR, SVM,
and DT, respectively, the nMCCs were 0.77, 0.76, and 0.75 for
LR, SVM, and DT, respectively, the AUCs were 0.80, 0.85, and
0.76 for LR, SVM, and DT, respectively, and the AUPRs were
0.75, 0.75, and 0.76 for LR, SVM, and DT (Figure 4B). In
comparison with the results of the proposed approach (Figure 4
and Table 1), we found that the application of dimensionality
reduction technique, t-SNE with Aitchison distance, resulted in
no reduction in classification accuracy.

DISCUSSION

In this work, we proposed a classification approach based on
t-SNE, taking into account the compositional characteristic of
microbiome data. The application of the proposed approach was
illustrated on two disease-associated microbiome datasets, and
demonstrated good classification performance on both datasets.
Although we focused on the classification tasks, the proposed
approach could be also used for regression analysis in the reduced
dimensional space by t-SNE.
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FIGURE 4 | Classification performances in original and reduced dimensional space. (A) MP infection data and (B) ICPP data. Color: blue (High) for original
high-dimensional data and orange (Low) for low-dimensional data. ACC, the classification accuracy; AUC, the area under the receiver operating characteristic curve;
nMCC, the normalized Matthews correlation coefficient; AUPR, the area under the precision-recall curve. Note: in the reduced dimensional space, dim = 3 and
dim = 5 for MP infection data and ICPP data, respectively.

In both microbiome datasets, using the Aitchison distance to
calculate the conditional probabilities in t-SNE made the case
and control groups appear more clearly separated, compared
to the t-SNE map with Euclidean distance (Figure 2), whereas
the use of Aitchison distance did not increase the computation
time of t-SNE, compared to the use of Euclidean distance
(Supplementary Table 1). The classification performance was
also improved for the proposed approach by using Aitchison
distance (Table 1 and Supplementary Table 2). This was
probably because Aitchison distance satisfies the principles
of scale invariance and sub-compositional coherence, and
hence is more suitable for compositional data analysis, as
stated by Aitchison (1986). In future work, the impact of
Aitchison distance on t-SNE and the classification performance

of compositional data should be studied with more rigorous
mathematical theories.

In our data analysis we found that SVM outperformed LR and
DT in many settings, which may be related to the fact that the
classifier generalization ability varies for different types of data
(Hastie et al., 2009; Oliveira et al., 2018), impacting the prediction
accuracy. On the other hand, the optimization parameters
often have a large impact on classification performance, and
a reasonable and feasible tuning method is necessary. In our
approach, a grid search with fivefold cross-validation is employed
for tuning parameters, iterating over many possible parameter
combinations to maximize the classification accuracy (ACC).
Grid search is one of the most widely used techniques and allows
us to have a transparent parameter selection (Huang et al., 2012).
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Moreover, considering comparable sequencing depth (about
30,000 tags) and sequencing quality (Q20 > 95%) in each sample,
the difference in model performances for different datasets
may be attributed to the following factors: (1) the ICPP data
is intestinal microbiome which has a higher microbial load
and more complex microbial composition relative to that in
oropharynx (mean of Shannon index 2.078 in ICPP data vs. 1.831
in MP data); (2) the smaller sample size in ICPP data probably
limit the performance of model.

In this study, we only considered LR, SVM, and DT,
whereas other models such as neural networks may have
better classification performance depending on the datasets.
In addition, the same idea in our approach may be also
applied to other manifold learning dimension reduction
techniques, such as the unified manifold approximation
and projection (UMAP) developed by McInnes and Healy
(2018). As a preliminary study, we compared the model
performances using UMAP based on Euclidean distance
and Aitchison distance. The results were presented in
Supplementary Table 3 for both microbiome datasets,
showing that the use of Aitchison distance led to more
accurate classification, similar to the proposed t-SNE
based approach. More comprehensive and theoretical
investigations on different dimension reduction methods will
be conducted in future work.

The visualizations by t-SNE may be helpful for our
understanding on the performance of the proposed approach. As
shown in Figure 2A for the MP infection data, the control and
case groups were well separated, and a satisfactory classification
performance was expected at dim = 2 or 3. On the other hand,
the t-SNE map at 2D for the ICPP data (Figure 2B) did not show
a clear clustering pattern for the case and control groups which

suggested that a relatively large value of dim would be needed to
achieve a satisfactory classification performance.
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