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Colorectal cancer (CRC) is a major cause of cancer deaths worldwide. Unfortunately,

many CRC patients are still being diagnosed at an advanced stage of the cancer, and

the 5-year survival rate is only ∼30%. Effective prognostic markers of CRC are therefore

urgently needed. To address this issue, we performed a detailed bioinformatics analysis

based on the Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx),

and Gene Expression Omnibus (GEO) databases to identify prognostic biomarkers for

CRC, which in turn help in exploring potential drug-repurposing. We identified five hub

genes (PGM2, PODXL, RHNO1, SCD, and SEPHS1), which had good performance

in survival prediction and might be involved in CRC through three key pathways (“Cell

cycle,” “Purine metabolism,” and “Spliceosome” KEGG pathways) identified by a KEGG

pathway enrichment analysis. What is more, we performed a co-expression analysis

between five hub genes and transcription factors to explore the upstream regulatory

region. Furthermore, we screened the potential drug-repurposing for the five hub genes

in CRC according to the Binding DB and ZINC15 databases. Taking together, we

constructed a five-gene signature to predict overall survival of CRC and found the

potential drug-repurposing, which may improve the outcome of CRC in the future.

Keywords: colorectal cancer, mechanisms, prognosis, drug-repurposing, WGCNA

INTRODUCTION

Colorectal cancer (CRC) is one of the most common types of tumors and is the third leading cause
of death among cancer patients worldwide (Siegel et al., 2020). Since the prognosis of CRC mainly
depends on the clinicopathological features or the tumor stage (Messersmith, 2019), many patients
are still diagnosed at advanced stages, and the 5-year survival rate is only ∼30% (Siegel et al.,
2020). Therefore, a better understanding of the molecular mechanism, to identify new promising
prognostic biomarkers, is essential for the development of effective treatment strategies in CRC.

Recent studies have documented some prognostic related biomarkers in CRC. For example,
upregulated CIP2A could contribute to tumor cell survival and a poor prognosis in CRC (Liu
et al., 2018). Moreover, overexpression of HOXB13 in CRC could inhibit the tumor growth and
be related to the poor outcome (Xie et al., 2019). Additionally, the expression of HOXB9 could
promote metastasis and indicate a poor prognosis in CRC (Huang et al., 2014). However, the

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.622659
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.622659&domain=pdf&date_stamp=2021-01-18
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:taol@mail.sysu.edu.cn
mailto:wangqin6@mail.sysu.edu.cn
http://orcid.org/0000-0002-7976-1640
https://doi.org/10.3389/fgene.2020.622659
https://www.frontiersin.org/articles/10.3389/fgene.2020.622659/full


Yang et al. A Five-Gene Signature in CRC

single biomarker might not be enough to predict the outcome
of CRC, due to the large individual differences. To address
this question, some multi-gene signatures have been identified
which help in predicting the cancer prognosis outcomes (Deng
et al., 2019; Yang et al., 2020). However, these findings were
constructed based on the differently expressed genes (DEGs)
or on small datasets. It is well-known that DEGs are screened
using an artificially set threshold, which would exclude some
important prognostic genes. Therefore, a systematic analysis
of mRNA expression with a large sample size using an
unsupervised analysis method may help in identifying more
effective prognostic signatures in CRC.

In this study, we aimed to confirm a detailed molecular
mechanism to identify the prognostic genes and potential
drug-repurposing for CRC, which might provide preliminary
bioinformatic evidence to better understand the complex
mechanism of CRC progression and which might help improve
the outcome of CRC.

MATERIALS AND METHODS

Data Collection
In order to maximize the sample size, the data involved in the
analysis was combined with the Cancer Genome Atlas (TCGA)
and the Genotype-Tissue Expression (GTEx) databases. The
Fragments Per Kilobase Million (FPKM) values of the mRNA
expression profile and clinical traits, containing 471 colorectal
cancer (CRC) and 349 normal control samples, were downloaded
from TCGA and GTEx. The GSE17536 dataset (Freeman et al.,
2012) was downloaded from the Gene Expression Omnibus
(GEO) database, containing 177 CRC samples, to further validate
independently of the analysis.

Study Design
The workflow of this study is shown in Figure 1. Briefly, we
applied Weighted Correlation Network Analysis (WGCNA) to
screen the genes that are significantly associated with CRC.
Subsequently, we employed Cox regression to build a five-
gene prognostic signature. To evaluate the prognostic model,
we then performed the Kaplan–Meier survival curve, the time-
dependent receiver operating characteristic (ROC), and the area
under the curve (AUC). Furthermore, to explore the molecular
mechanism of five hub genes involved in CRC, we performed a
pathway enrichment. We also identified the interactions among
the hub genes and core genes involved in key pathways using
the Protein-protein interaction (PPI) and shortest path analysis.
Furthermore, transcription factors (TFs)-mRNA’s regulatory
network was constructed by a co-expression analysis. Lastly, we
elucidated potential drug-repurposing for five genes according to
the Binding DB database and structure-based virtual screening
from the ZINC15 database.

Identification of Genes Related to CRC by
WGCNA
To obtain the modules related to CRC, WGCNA was performed
by R package WGCNA (Langfelder and Horvath, 2012). First, to
improve data analysis efficiency, we selected 6,442 genes from the

TCGA and GTEx databases for the analysis. These genes were
in the top 35% of median absolute deviation. Second, the power
value β was selected to determine a scale-free topology model.
The adjacency matrix was then transformed into the Topological
Overlap Matrix (TOM) to minimize effects of noise and spurious
associations. TOM-based dissimilarity was used to formmodules
by a dynamic tree cutoff (minModuleSize= 30, mergeCutHeight
= 0.2 and deepSplit = 3). Finally, according to a previous study
(Qiu et al., 2020), the CRC-associated module was identified with
the cutoff of the highest absolute correlation values and p < 0.05.
Furthermore, the correlated genes with module-membership >

0.5 and CRC-correlation value> 0.5, were thought to be putative
genes related to CRC.

Establishment of the Prognostic Model and
Validation
CRC patients with an overall survival of <30 days were
excluded for the construction of the prognostic model. To select
prognostic genes, we applied Univariate Cox regression analysis
by R package survival (https://github.com/therneau/survival)
with a cut-off of p < 0.05. The whole data set was randomly
separated into the training dataset and the test dataset through
R package caret (https://github.com/topepo/caret). Afterwards,
we employed the Lasso-penalized Cox regression model to
further select the most useful prognostic markers. We then
built the prognostic model using a linear combination of the
regression coefficient coming from the Lasso Cox regression
model coefficients (β), multiplied with its mRNA expression
value. According to the expression of the outcome-related genes
and the coefficient in the prognosis model, we calculated the
risk score for each sample. Subsequently, samples were separated
into a low-risk or high-risk group based on the median value
of the risk score. Finally, we used the R package survivalROC
(Heagerty et al., 2000) to evaluate the prognostic performance
of the model using the ROC curve. Second, we performed the
Kaplan–Meier survival curve and a log-rank test to assess the
survival difference by the R package survival. The predictive
value of the prognostic hub-gene signature was then further
investigated in the testing set, the whole set, and the independent
GSE17536 cohort. Additionally, we explored the expression of
hub genes in TCGA and GTEx databases and the subcellular
location in the UniProt database (UniProt, 2019).

Identification of Key Signaling Pathways by
Pathway Enrichment Analysis
To understand the molecular mechanism of hub genes involved
in CRC, we performed a pathway enrichment analysis. The
KEGG over-representation test was performed by KOBAS 3.0
(Xie et al., 2011) based on the genes related to CRC with the
cut-off of p < e−8. To increase the reliability and credibility
of the results, we employed the Gene Set Enrichment Analysis
(GSEA) (Subramanian et al., 2005), which targeted the whole
gene’s expression to further explore the potential molecular
mechanisms based on the threshold with FDR < 0.05 and p
< 0.05. Finally, we identified the key pathways of hub genes
involved in CRC using the two methods.
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FIGURE 1 | The workflow of the study. TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus; GTEx, Genotype-Tissue Expression; KEGG, Kyto

Encyclopedia of Genes and Genomes; WGCNA, Weighted correlation network analysis; GSEA, Gene Set Enrichment Analysis; PPI, Protein-protein interaction; ROC,

Receiver operating characteristic; TF, Transcription factor.

Protein-Protein Interaction and
Shortest-Path Analysis
For the purpose of finding possible interactions among the hub
genes and the core genes involved in the signaling pathways
of interest, we first built the PPI based on the genes related to
CRC from the String database (Szklarczyk et al., 2017). Second,
according to a previous study (Yang et al., 2018), the shortest path
was considered to be the minimum number of edges required to
travel from one node in the PPI network. We then performed a
shortest-pathway analysis using the Python package NetworkX
(http://networkx.github.io) to find the shortest path among the
hub genes and core genes involved in the key pathways.

Constructing the Transcription Factors and
Hub Genes Network
In order to explore regulatory links between TFs and hub
genes, we obtained all the TFs related to cancer from Cistrome
Cancer (Mei et al., 2017). Differentially expressed TFs were then
calculated using the R package limma (Ritchie et al., 2015) based
on the TCGA and GTEx databases. The threshold for screening
the differentially expressed TFs was set at |logFC| > 1 and
p < 0.05. Subsequently, we calculated the correlation between
differentially expressed TFs and hub genes with the cut-off of the
|pearson correlation value| > 0.35 and p < 0.05. We visualized
the results using Cytoscape 3.7.1 (Shannon et al., 2003).

Potential Drug-Repurposing
According to the previous study (Gordon et al., 2020), we used
two approaches to identify the drugs that modulate the hub genes
in the present study. (1) We downloaded the drug targets from

the Binding DB (Gilson et al., 2016).We then constructed the PPI
network among drug targets and hub genes based on the String
database, with a cut-off of the interaction score > 0.7. We ranked
the drug targets based on the interaction score and the results
were visualized by Cytoscape 3.7.1. (2) We performed structure-
based virtual screening and molecular docking to find the
potential drug of hub genes. We obtained the 3D structure of hub
genes from the PDB or SWISS-MODEL databases and predicted
the active sites of hub genes using Schrodinger maestro. A library
with 2,106 Food andDrugAdministration (FDA) approved drugs
was then built on the ZINC15 database (Irwin et al., 2012).
Afterwards, we screened the potential drug repurposing of hub
genes using the docking scores.

Statistical Analysis
All statistical analyses were conducted using R 3.5.3 (https://
www.r-project.org/). The Cox proportion hazard regression
method was used to identify genes that are significantly related
to overall survival of CRC with p< 0.05. The Lasso penalized cox
analysis was used to construct the gene signature. The Kaplan–
Meier survival curve analysis and a log-rank test were used to
compare differences in overall survival time between the high-
risk group and low-risk group. The calculations of p-values were
two-sided, and p < 0.05 was defined as statistically significant.
The time-dependent ROC curve was calculated to compare the
sensitivity and specificity of survival prediction based on the
nearest neighbor method. Additionally, the DEGs were screened
using the limma package with empirical Bayes methods. The co-
expression analysis, using the Spearman correlation method, was
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applied to exam the TFs-mRNA’s regulatory relationship with a
cut-off of |person correlation value| > 0.35 and p < 0.05.

RESULTS

Identification of CRC Related Genes by
WGCNA
To identify genes associated with CRC, we collected 820
samples (471 tumor and 349 normal tissues) from the
TCGA and GTEx databases to do WGCNA. When the soft
thresholding was set at seven and the scale-free topology
fit index reached 0.85, 12 modules were identified through
a one-step network construction method and are shown in
different colors (Figure 2A). Based on the cutoff of the highest
absolute correlation values and p < 0.05, the blue module
was screened as being significantly related to CRC (Figure 2B,
Supplementary Table 1). Finally, a total of 801 genes in the
blue module (Supplementary Table 2) were identified as being
significantly related to CRC based on the thresholds of the
correlation of module-membership value > 0.5 and CRC-
correlation value > 0.5.

Establishing and Validating the Five-Gene
Based Prognostic Signature
Four-hundred-and-twenty-four patients (Supplementary

Table 3) with a survival time >1 month and 801 CRC
related genes were included to construct the prognostic
model. The whole data set was randomly separated into a
training set (n = 212) and a testing set (n = 212) using the R
package caret. The baseline characteristics are summarized in
Supplementary Tables 4, 5, respectively. The clinical parameters
were not significantly different from the training set and testing
set. We found that 26 genes were significantly related to the
overall survival using the Univariate Cox regression model (p <

0.05). The five-gene prognostic signature was then built using
the Lasso-penalized Cox analysis. The prognostic signature
included five hub genes: PGM2, PODXL, RHNO1, SCD, and
SEPHS1 (Supplementary Table 6). The risk score = 0.032757
× the expression value of PODXL + 0.020453 × the expression
value of RHNO1 + 0.002886 × the expression value of SCD
+ 0.05689 × the expression value of SEPHS1 – 0.14089 × the
expression value of PGM2. Depending on the medium risk score
in the training set, the patients were separated into a high- and
low-risk groups. In order to assess the prognostic capacity of
the five-gene signature, time-dependent ROC and Kaplan-Meier
curve were performed. Similar analytic methods were employed
in the testing set, the whole set, and the GSE17536 cohort to
assess the performance of the five-gene prognostic model. The
area under the ROC curve (AUC) for overall survival was 0.789,
0.714, 0.738, and 0.7 for the training set (Figure 3A), testing set
(Figure 3C), the whole set (Figure 3E), and the GSE17536 cohort
(Figure 3G), respectively. Moreover, the high-risk group was
significantly associated with a poorer overall survival compared
to the low-risk group in the training set, test set, the whole set,
and the GSE17536 cohort (all p < 0.05, Figures 3B,D,F,H).
Furthermore, we found that all five hub genes were significantly

higher expressed in the CRC group than in the normal group,
using the DEGs analysis (p < 0.05, Supplementary Table 7).

Potential Transcription Regulatory
Mechanism of Five Hub Genes
Eight-hundred-and-one CRC related genes were significantly
enriched in three pathways (Figure 4A) using the KEGG
over-representation test in the KOBAS 3.0 database: “Cell
cycle,” “Spliceosome,” and “Purine metabolism” KEGG pathways.
Simultaneously, according to the results of GESA with the cut-off
of FDR< 25% and p< 0.05, 12 and 64 pathways were enriched in
the CRC group and the normal group (Supplementary Table 8),
respectively. Three shared pathways including “Cell Cycle,”
“Purine metabolism,” and “Spliceosome” KEGG pathways
(Figure 4B) were identified by the two pathway enrichment
methods. We constructed the PPI network to further explore the
connections among five hub genes and core genes involved in
the three key KEGG pathways. There were 881 nodes and 14,520
edges in the PPI network. We then performed the shortest-path
analysis based on the PPI network. As showed in Figure 4C,
PGM2, SEPHS1, and RHNO1 could directly interact with the
core genes involved in the three-key pathways, SCD1 and
PODXL should, through other genes, crosstalk with the three-
key pathways. Moreover, to explore regulatory links between
transcription factors (TF) and five hub genes, we downloaded
318 TFs related to cancer (Supplementary Table 9). We then
screened 119 differentially expressed TFs in CRC (|logFC| >

1 and p < 0.05, Supplementary Table 10). Subsequently, we
employed the co-expression analysis to identify the expressed
relationships between TFs and five hub genes based on the
cutoff of the absolute value of correlation > 0.35 and p < 0.05
(Supplementary Table 11). As shown in Figure 4D, TFs might
regulate the expression of hub genes (Green indicated positively
regulate, Blue suggested negatively regulate).

Potential Drug-Repurposing Based on the
Hub Genes for CRC
To explore the possibilities of potential drug-repurposing
based on the hub genes for CRC, we constructed the PPI
using the hub genes and targets of drugs in the Binding DB
database. The cutoff of PPI was set at a score > 0.7. The most
probable targets of drugs for PGM2, PODXL, RHNO1, SCD, and
SEPHS1 were TKT, CNTN1, BRCA1, FADS2, and TXNRD1,
respectively (Figure 5A, Supplementary Table 12). Moreover,
we also screened the potential agent-repositioning depending
on the 2,106 approved drugs by the FDA using structure-
based virtual screening. According to the docking score, the
potential drugs for PGM2 (Supplementary Table 13), PODXL
(Supplementary Table 14), RHNO1 (Supplementary Table 15),
SCD (Supplementary Table 16), and SEPHS1
(Supplementary Table 17) were ZINC0000000020240,
ZINC000003927870, ZINC000001530948, ZINC000003830947,
and ZINC000003939013, respectively. Furthermore, according
to the subcellular location in the UniProt database, only SEPHS1
was in cell membrane, which was more likely to be a drug target.
We then performed molecular docking between SEPHS1 and
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FIGURE 2 | Identification of genes associated with Colorectal cancer (CRC) by Weighted Correlation Network Analysis (WGCNA). (A) Clustering dendrogram of 6,442

genes and 12 merged modules from 820 samples. (B) Correlation between modules and CRC scores. The upper row in each cell indicates the correlation coefficient

ranging from – 1 to 1 of the correlation between a certain module and CRC. The lower row in each cell indicates the p-value.

ZINC000003939013 and the ligand-protein complex had five
H-bonds (Figure 5B).

DISCUSSION

CRC is believed to bring great challenges to, and have important
impacts on, current public health. There is, therefore, currently
an urgent need to identify more accurate prognostic models for
CRC patients. However, previous studies have mostly focused
on a single biomarker (Liu et al., 2018; Dong et al., 2019; Jary
et al., 2020) or the results have been generated from small
sample sizes (Huang et al., 2020; Yang et al., 2020) or have been
based on DEGs (Huang et al., 2020; Yang et al., 2020), which
might lower the performance of the prognostic biomarkers.
In the present study, a five-gene signature was identified and
validated based on the TCGA, GTEx, and GSE17536 cohort
with a large sample seize (Figure 1). Furthermore, we explored
potential drug repurposing, targeting five hub genes using two
methods, which might expand possible therapeutic strategies and
improve the prognosis of CRC patients. Finally, we explored
the potential mechanism of five hub genes involved in CRC
using pathway enrichment, PPI, and the shortest pathway and
co-expression analysis.

In the present study, we found five hub genes (PGM2, PODXL,
RHNO1, SCD, and SEPHS1) using WGCNA and Cox regression
analysis. The five-gene signature model could efficiently stratify
patient’s overall survival and its efficacy was validated in the
TCGA and the GSE17536 cohort, indicating a robust high
prognostic value of the signature, especially when compared with

the previous single biomarker (Dong et al., 2019; Jary et al., 2020).
Moreover, other multigene-based models were mostly based on
the differently expressed genes (DEGs) (Huang et al., 2020; Yang
et al., 2020). It is well-known that DEGs have been screened
using an artificially set threshold, which would exclude some
important prognostic genes before constructing the prognostic
model and which would eventually lower the performance of the
model. In the present study, the prognostic signatures in CRC
were screened by WGCNA, an unsupervised analysis method.
Altogether, we established a robust five-gene prognostic model
to guide the outcome of CRC.

We found that the five hub genes were all upregulated in
CRC patients (p < 0.05). Moreover, the high expression of
PODXL, RHNO1, SCD, and SEPHS1 were related to a poor
prognosis in CRC (p < 0.05). The downregulated PGM2 was
associated with the poor outcome in CRC, which was line with
the formula of risk score. Several previous studies have revealed
that PODXL, RHNO1, and SCD play an important role in CRC
cancer. For example, overexpression of PODXL was reported
to increase CRCs aggressive and metastatic capabilities and
is associated with poor survival (Larsson et al., 2013; Kaprio
et al., 2014). Moreover, upregulated PODXL might be crucial
in the initiation of colorectal carcinogenesis by the disruption
of the multigene network system regulating cell adhesion and
the cytoskeleton (Naishiro et al., 2005). High expression of SCD
was required for tumor development in mice by regulating
synthesis of oleate in the enterocytes and by maintaining fatty
acid homeostasis (Ducheix et al., 2018). Upregulated SCD could
cause the epithelial-mesenchymal transition program in CRC
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FIGURE 3 | The construction and validation of the five-gene prognostic signature in CRC. Time-dependent ROC analysis and Kaplan–Meier curve of five-gene

signature in training set (A,B), testing dataset (C,D), the whole dataset (E,F), and the GSE17536 cohort (G,H). ROC, receiver operating characteristic.
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FIGURE 4 | The signaling pathways of five hub genes implicated in CRC were evaluated by the KEGG pathway enrichment analysis. (A) The enriched pathways of

CRC related genes in KOBAS 3.0 (p < e−8) with the KEGG over-representation test. (B) The shared pathways of GSEA between high- and low-risk groups according

to the threshold of FDR < 25% and p < 0.05. (C) The molecular connections among five hub genes and key pathways through PPI and shortest path analysis. (D)

Five Hub genes interacted with differently expressed TFs. KEGG, Kyto Encyclopedia of Genes, and Genomes; TFs, Transcription factors; PPI, Protein-protein

interaction; GSEA, Gene Set Enrichment Analysis.

cells (Sanchez-Martinez et al., 2015). Moreover, inhibition of the
expression of SCD could induce cell death in CRC stem cells
(Potze et al., 2016). High expression of SEPHS1 is related to
the poor outcome of CRC (Choi et al., 2011). Although PGM2
and RHNO1 have not been reported in CRC, they are involved
in other tumor developments (Marshall et al., 1979; Kim et al.,

2010). Altogether, our findings are consistent with the results of
previous studies showing that the five hub genes are functionally
important for the prognosis of CRC.

It is a well-established fact that the development of a new
drug is a long, complex, and costly process. Therefore, drug-
repurposing has attracted a lot of attention, and reduces the
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FIGURE 5 | Potential drug-repurposing based on the hub genes for CRC. (A) The PPI network of five hub genes and targets of drugs from the Binding DB database.

(B) The ZINC000003939013-SEPHS1 docking complex.

need for additional toxicological experiments (Sleire et al., 2017).
Recent studies have shown that Thalidomide and Raloxifene have
already been approved for treatment of myeloma (Luo et al.,
2017) and breast cancer (Pinsky et al., 2018), respectively. So,
we wanted to take a step from the analysis of establishing gene

prognostic models in CRC. We then used two methods to screen
the potential drug-repurposing of five hub genes in CRC. In one
method, we constructed the PPI using hub genes and targets of
drugs in the Binding DB database—in an indirect manner. In the
other method we directly found the potential drug repurposing
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using structure-based virtual screening and molecular docking.
We hope to provide a faster and cheaper strategy for expanding
the arsenal of approved cancer drugs.

To provide insight into the molecular mechanism of the
five hub genes involved in CRC, we first performed the KEGG
pathway enrichment using KOBAS 3.0 and GSEA. Three shared
pathways were identified by the pathway enrichment analysis:
“Cell cycle,” “Purine metabolism,” and “Spliceosome” KEGG
pathways. Second, we further obtained the interactions among
hub genes and three-key pathways (Figure 4) through PPI and
shortest pathway analysis. Depending on the KEGG database,
“Cell cycle,” “Purine metabolism,” and “Spliceosome” KEGG
pathways were related to Cell growth and death, and Metabolism
and Transcription, respectively. We then speculated that the
three pathways might be involved in the regulation of cell
growth, cell cycle progression, and metastasis in CRC. Moreover,
recent studies have demonstrated that these pathways play
an important role in CRC (Buolamwini, 2000; Pedley and
Benkovic, 2017; Mabonga and Kappo, 2019). Altogether, we
indicated that five hub genes might be involved in CRC through
three-key pathways. Accumulating evidence suggests that Purine
metabolism and Spliceosome are fundamental and necessary for
tumor cell proliferation (Di Virgilio, 2012; Camici et al., 2019),
which have been suggested to be associated with Cell cycle. In
line with previous studies, we suggest that the three pathways
might crosstalk with each other through five hub genes in CRC.
However, large numbers of verification experiments are still
needed in the future.

Simultaneously, we explored the upstream mechanism of five
hub genes in CRC. Several TFs were co-expression with five hub
genes. Based on previous studies (Muller and Rao, 2010; Mei
et al., 2017; Lambert et al., 2018), TFs have been suggested to
be involved in various physiological pathways including “Cell
cycle,” “Purine metabolism,” and “Spliceosome” KEGG pathways
in CRC. Altogether, the results might partly explain the upstream
mechanism of five hub genes in CRC. However, further well-
designed experiments are required to prove this hypothesis.

CONCLUSION

In summary, we established that a signature of five genes
corrected with progression and prognosis in CRC, depends on
the gene expression profile datasets (TCGA, GTEx, and GEO

databases) and bioinformatics analysis. Moreover, we confirmed
the molecular details of connections among hub genes (PGM2,
PODXL, RHNO1, SCD, and SEPHS1) and three key pathways
(“Cell cycle,” “Purine metabolism,” and “Spliceosome”) and a co-
expression relationship between hub genes and TFs to obtain
a better understanding of molecular mechanisms involved in
CRC. Furthermore, we screened the potential agent-repurposing
based on the hub genes for CRC according to the Binding DB
and ZINC15 databases. Altogether, we constructed a five-gene
signature to significantly distinguish overall survival of CRC and
found the potential drug-repurposing, which may improve the
outcome of CRC in the future.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories
and accession number(s) can be found in the
article/Supplementary Material.

AUTHOR CONTRIBUTIONS

QW and FY conceived the project, designed the study, and
drafted the manuscript. LT directed the study. SC and LL
collected the public data. HZ revised the manuscript. All authors
read and approved the final manuscript.

FUNDING

This work was supported by the National Natural Science
Foundation of China (Grant No. 81473234), the Joint Fund
of the National Natural Science Foundation of China (Grant
No. U1303221), the Fundamental Research Funds for the
Central Universities (Grant No. 16ykjc01), and a grant from the
Department of Science and Technology of Guangdong Province
(Grant No. 20160908).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2020.622659/full#supplementary-material

REFERENCES

Buolamwini, J. K. (2000). Cell cycle molecular targets in novel anticancer drug

discovery. Curr. Pharm. Des. 6, 379–392. doi: 10.2174/1381612003400948

Camici, M., Garcia-Gil, M., Pesi, R., Allegrini, S., and Tozzi, M. G. (2019).

Purine-metabolising enzymes and apoptosis in cancer. Cancers 11:1354.

doi: 10.3390/cancers11091354

Choi, S. Y., Jang, J. H., and Kim, K. R. (2011). Analysis of differentially expressed

genes in human rectal carcinoma using suppression subtractive hybridization.

Clin. Exp. Med. 11, 219–226. doi: 10.1007/s10238-010-0130-5

Deng, J. L., Xu, Y. H., andWang, G. (2019). Identification of potential crucial genes

and key pathways in breast cancer using bioinformatic analysis. Front. Genet.

10:695. doi: 10.3389/fgene.2019.00695

Di Virgilio, F. (2012). Purines, purinergic receptors, and cancer. Cancer Res. 72,

5441–5447. doi: 10.1158/0008-5472.CAN-12-1600

Dong, Y., Zhang, Y., Kang, W., Wang, G., Chen, H., Higashimori, A., et al. (2019).

VSTM2A suppresses colorectal cancer and antagonizes Wnt signaling receptor

LRP6. Theranostics 9, 6517–6531. doi: 10.7150/thno.34989

Ducheix, S., Peres, C., Hardfeldt, J., Frau, C., Mocciaro, G., Piccinin, E., et al.

(2018). Deletion of Stearoyl-CoA Desaturase-1 from the intestinal epithelium

promotes inflammation and tumorigenesis, reversed by dietary oleate.

Gastroenterology 155, 1524–1538 e1529. doi: 10.1053/j.gastro.2018.07.032

Freeman, T. J., Smith, J. J., Chen, X., Washington, M. K., Roland, J. T., Means,

A. L., et al. (2012). Smad4-mediated signaling inhibits intestinal neoplasia

by inhibiting expression of beta-catenin. Gastroenterology 142, 562–571 e562.

doi: 10.1053/j.gastro.2011.11.026

Frontiers in Genetics | www.frontiersin.org 9 January 2021 | Volume 11 | Article 622659

https://www.frontiersin.org/articles/10.3389/fgene.2020.622659/full#supplementary-material
https://doi.org/10.2174/1381612003400948
https://doi.org/10.3390/cancers11091354
https://doi.org/10.1007/s10238-010-0130-5
https://doi.org/10.3389/fgene.2019.00695
https://doi.org/10.1158/0008-5472.CAN-12-1600
https://doi.org/10.7150/thno.34989
https://doi.org/10.1053/j.gastro.2018.07.032
https://doi.org/10.1053/j.gastro.2011.11.026
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Yang et al. A Five-Gene Signature in CRC

Gilson, M. K., Liu, T., Baitaluk, M., Nicola, G., Hwang, L., and Chong, J. (2016).

BindingDB in 2015: a public database for medicinal chemistry, computational

chemistry and systems pharmacology. Nucleic Acids Res. 44, D1045–1053.

doi: 10.1093/nar/gkv1072

Gordon, D. E., Jang, G. M., Bouhaddou, M., Xu, J., Obernier, K., White, K. M.,

et al. (2020). A SARS-CoV-2 protein interaction map reveals targets for drug

repurposing. Nature 583, 459–468. doi: 10.1038/s41586-020-2286-9

Heagerty, P. J., Lumley, T., and Pepe, M. S. (2000). Time-dependent ROC curves

for censored survival data and a diagnostic marker. Biometrics 56, 337–344.

doi: 10.1111/j.0006-341X.2000.00337.x

Huang, K., Yuan, R., Wang, K., Hu, J., Huang, Z., Yan, C., et al.

(2014). Overexpression of HOXB9 promotes metastasis and indicates

poor prognosis in colon cancer. Chin. J. Cancer Res. 26, 72–80.

doi: 10.3978/j.issn.1000-9604.2014.01.11

Huang, R., Mao, M., Lu, Y., Yu, Q., and Liao, L. (2020). A novel immune-

related genes prognosis biomarker for melanoma: associated with tumor

microenvironment. Aging 12, 6966–6980. doi: 10.18632/aging.103054

Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S., and Coleman, R. G. (2012).

ZINC: a free tool to discover chemistry for biology. J. Chem. Inf. Model 52,

1757–1768. doi: 10.1021/ci3001277

Jary, M., Hasanova, R., Vienot, A., Asgarov, K., Loyon, R., Tirole, C., et al. (2020).

Molecular description of ANGPT2 associated colorectal carcinoma. Int. J.

Cancer 145, 2238–2248. doi: 10.1002/ijc.32993

Kaprio, T., Fermer, C., Hagstrom, J., Mustonen, H., Bockelman, C., Nilsson, O.,

et al. (2014). Podocalyxin is a marker of poor prognosis in colorectal cancer.

BMC Cancer 14:493. doi: 10.1186/1471-2407-14-493

Kim, J. W., Fukukawa, C., Ueda, K., Nishidate, T., Katagiri, T., and Nakamura, Y.

(2010). Involvement of C12orf32 overexpression in breast carcinogenesis. Int.

J. Oncol. 37, 861–867. doi: 10.3892/ijo_00000737

Lambert, M., Jambon, S., Depauw, S., and David-Cordonnier, M. H. (2018).

Targeting Transcription factors for cancer treatment. Molecules. 23:1479

doi: 10.3390/molecules23061479

Langfelder, P., and Horvath, S. (2012). Fast R functions for robust correlations and

hierarchical clustering. J. Stat. Softw. 46, 1–17 doi: 10.18637/jss.v046.i11

Larsson, A. H., Nodin, B., Syk, I., Palmquist, I., Uhlen, M., Eberhard, J.,

et al. (2013). Podocalyxin-like protein expression in primary colorectal

cancer and synchronous lymph node metastases. Diagn Pathol. 8:109.

doi: 10.1186/1746-1596-8-109

Liu, C. Y., Hsu, C. C., Huang, T. T., Lee, C. H., Chen, J. L., Yang, S. H., et al. (2018).

ER stress-related ATF6 upregulates CIP2A and contributes to poor prognosis

of colon cancer.Mol. Oncol. 12, 1706–1717. doi: 10.1002/1878-0261.12365

Luo, J., Gagne, J. J., Landon, J., Avorn, J., and Kesselheim, A. S. (2017). Comparative

effectiveness and safety of thalidomide and lenalidomide in patients with

multiple myeloma in the United States of America: a population-based cohort

study. Eur. J. Cancer 70, 22–33. doi: 10.1016/j.ejca.2016.10.018

Mabonga, L., and Kappo, A. P. (2019). The oncogenic potential of small nuclear

ribonucleoprotein polypeptide G: a comprehensive and perspective view. Am.

J. Transl. Res. 11, 6702–6716. doi: 10.1007/s12551-019-00570-x

Marshall, M. J., Neal, F. E., and Goldberg, D. M. (1979). Isoenzymes of

hexokinase, 6-phosphogluconate dehydrogenase, phosphoglucomutase and

lactate dehydrogenase in uterine cancer. Br. J. Cancer 40, 380–390.

doi: 10.1038/bjc.1979.192

Mei, S., Meyer, C. A., Zheng, R., Qin, Q., Wu, Q., Jiang, P., et al. (2017). Cistrome

cancer: a web resource for integrative gene regulation modeling in cancer.

Cancer Res. 77, e19–e22. doi: 10.1158/0008-5472.CAN-17-0327

Messersmith, W. A. (2019). NCCN guidelines updates: management of

metastatic colorectal cancer. J. Natl. Compr. Canc. Netw. 17, 599–601.

doi: 10.6004/jnccn.2019.5014

Muller, M. R., and Rao, A. (2010). NFAT, immunity and cancer: a transcription

factor comes of age. Nat. Rev. Immunol. 10, 645–656. doi: 10.1038/nri2818

Naishiro, Y., Yamada, T., Idogawa, M., Honda, K., Takada, M., Kondo, T.,

et al. (2005). Morphological and transcriptional responses of untransformed

intestinal epithelial cells to an oncogenic beta-catenin protein. Oncogene 24,

3141–3153. doi: 10.1038/sj.onc.1208517

Pedley, A. M., and Benkovic, S. J. (2017). A new view into the regulation

of purine metabolism: the purinosome. Trends Biochem. Sci. 42, 141–154.

doi: 10.1016/j.tibs.2016.09.009

Pinsky, P. F., Miller, E., Heckman-Stoddard, B., and Minasian, L. (2018).

Use of raloxifene and tamoxifen by breast cancer risk level in a

Medicare-eligible cohort. Am. J. Obstet. Gynecol. 218, 606 e601–606 e609.

doi: 10.1016/j.ajog.2018.03.031

Potze, L., di Franco, S., Kessler, J. H., Stassi, G., and Medema, J. P. (2016). Betulinic

acid kills colon cancer stem cells. Curr. Stem Cell Res. Ther. 11, 427–433.

doi: 10.2174/1574888X11666151203223512

Qiu, W., Liu, X., Yang, F., Li, R., Xiong, Y., Fu, C., et al. (2020).

Single and joint toxic effects of four antibiotics on some metabolic

pathways of zebrafish (Danio rerio) larvae. Sci. Total Environ. 716:137062.

doi: 10.1016/j.scitotenv.2020.137062

Ritchie,M. E., Phipson, B.,Wu, D., Hu, Y., Law, C.W., Shi,W., et al. (2015). Limma

powers differential expression analyses for RNA-sequencing and microarray

studies. Nucleic Acids Res. 43:e47. doi: 10.1093/nar/gkv007

Sanchez-Martinez, R., Cruz-Gil, S., Gomez de Cedron, M., Alvarez-Fernandez,

M., Vargas, T., Molina, S., et al. (2015). A link between lipid metabolism and

epithelial-mesenchymal transition provides a target for colon cancer therapy.

Oncotarget 6, 38719–38736. doi: 10.18632/oncotarget.5340

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage,

D., et al. (2003). Cytoscape: a software environment for integrated

models of biomolecular interaction networks. Genome Res. 13, 2498–2504.

doi: 10.1101/gr.1239303

Siegel, R. L.,Miller, K. D., Goding Sauer, A., Fedewa, S. A., Butterly, L. F., Anderson,

J. C., et al. (2020). Colorectal cancer statistics, 2020. CA Cancer J. Clin. 70,

145–164, doi: 10.3322/caac.21601

Sleire, L., Forde, H. E., Netland, I. A., Leiss, L., Skeie, B. S., and Enger,

P. O. (2017). Drug repurposing in cancer. Pharmacol. Res. 124, 74–91.

doi: 10.1016/j.phrs.2017.07.013

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette,

M. A., et al. (2005). Gene set enrichment analysis: a knowledge-based approach

for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S A

102, 15545–15550. doi: 10.1073/pnas.0506580102

Szklarczyk, D., Morris, J. H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M.,

et al. (2017). The STRING database in 2017: quality-controlled protein-protein

association networks, made broadly accessible. Nucleic Acids Res. 45, D362–

D368. doi: 10.1093/nar/gkw937

UniProt, C. (2019). UniProt: a worldwide hub of protein knowledge. Nucleic Acids

Res. 47, D506–D515. doi: 10.1093/nar/gky1049

Xie, B., Bai, B., Xu, Y., Liu, Y., Lv, Y., Gao, X., et al. (2019). Tumor-suppressive

function and mechanism of HOXB13 in right-sided colon cancer. Signal

Transduct. Target Ther. 4:51. doi: 10.1038/s41392-019-0086-1

Xie, C., Mao, X., Huang, J., Ding, Y., Wu, J., Dong, S., et al. (2011).

KOBAS 2.0: a web server for annotation and identification of enriched

pathways and diseases.Nucleic Acids Res. 39, W316–W322. doi: 10.1093/nar/gk

r483

Yang, F., Qiu, W., Li, R., Hu, J., Luo, S., Zhang, T., et al. (2018). Genome-wide

identification of the interactions between key genes and pathways provide

new insights into the toxicity of bisphenol F and S during early development

in zebrafish. Chemosphere 213, 559–567. doi: 10.1016/j.chemosphere.2018.0

9.133

Yang, S., Liu, T., Nan, H., Wang, Y., Chen, H., Zhang, X.,

et al. (2020). Comprehensive analysis of prognostic immune-

related genes in the tumor microenvironment of cutaneous

melanoma. J. Cell Physiol. 235, 1025–1035. doi: 10.1002/jcp.2

9018

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Yang, Cai, Ling, Zhang, Tao and Wang. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Genetics | www.frontiersin.org 10 January 2021 | Volume 11 | Article 622659

https://doi.org/10.1093/nar/gkv1072
https://doi.org/10.1038/s41586-020-2286-9
https://doi.org/10.1111/j.0006-341X.2000.00337.x
https://doi.org/10.3978/j.issn.1000-9604.2014.01.11
https://doi.org/10.18632/aging.103054
https://doi.org/10.1021/ci3001277
https://doi.org/10.1002/ijc.32993
https://doi.org/10.1186/1471-2407-14-493
https://doi.org/10.3892/ijo_00000737
https://doi.org/10.3390/molecules23061479
https://doi.org/10.18637/jss.v046.i11
https://doi.org/10.1186/1746-1596-8-109
https://doi.org/10.1002/1878-0261.12365
https://doi.org/10.1016/j.ejca.2016.10.018
https://doi.org/10.1007/s12551-019-00570-x
https://doi.org/10.1038/bjc.1979.192
https://doi.org/10.1158/0008-5472.CAN-17-0327
https://doi.org/10.6004/jnccn.2019.5014
https://doi.org/10.1038/nri2818
https://doi.org/10.1038/sj.onc.1208517
https://doi.org/10.1016/j.tibs.2016.09.009
https://doi.org/10.1016/j.ajog.2018.03.031
https://doi.org/10.2174/1574888X11666151203223512
https://doi.org/10.1016/j.scitotenv.2020.137062
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.18632/oncotarget.5340
https://doi.org/10.1101/gr.1239303
https://doi.org/10.3322/caac.21601
https://doi.org/10.1016/j.phrs.2017.07.013
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1093/nar/gkw937
https://doi.org/10.1093/nar/gky1049
https://doi.org/10.1038/s41392-019-0086-1
https://doi.org/10.1093/nar/gkr483
https://doi.org/10.1016/j.chemosphere.2018.09.133
https://doi.org/10.1002/jcp.29018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	Identification of a Five-Gene Prognostic Model and Its Potential Drug Repurposing in Colorectal Cancer Based on TCGA, GTEx and GEO Databases
	Introduction
	Materials and Methods
	Data Collection
	Study Design
	Identification of Genes Related to CRC by WGCNA
	Establishment of the Prognostic Model and Validation
	Identification of Key Signaling Pathways by Pathway Enrichment Analysis
	Protein-Protein Interaction and Shortest-Path Analysis
	Constructing the Transcription Factors and Hub Genes Network
	Potential Drug-Repurposing
	Statistical Analysis

	Results
	Identification of CRC Related Genes by WGCNA
	Establishing and Validating the Five-Gene Based Prognostic Signature
	Potential Transcription Regulatory Mechanism of Five Hub Genes
	Potential Drug-Repurposing Based on the Hub Genes for CRC

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


