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Adverse drug reactions (ADRs) are a major public health concern, and early detection is

crucial for drug development and patient safety. Together with the increasing availability

of large-scale literature data, machine learning has the potential to predict unknown

ADRs from current knowledge. By the machine learning methods, we constructed a

Tumor-Biomarker Knowledge Graph (TBKG) which contains four types of node: Tumor,

Biomarker, Drug, and ADR using biomedical literatures. Based on this knowledge graph,

we not only discovered potential ADRs of antitumor drugs but also provided explanations.

Experiments on real-world data show that our model can achieve 0.81 accuracy of

three cross-validation and the ADRs discovery of Osimertinib was chosen for the clinical

validation. Calculated ADRs of Osimertinib by our model consisted of the known ADRs

which were in line with the official manual and some unreported rare ADRs in clinical

cases. Results also showed that our model outperformed traditional co-occurrence

methods. Moreover, each calculated ADRs were attached with the corresponding

paths of “tumor-biomarker-drug” in the knowledge graph which could help to obtain

in-depth insights into the underlying mechanisms. In conclusion, the tumor-biomarker

knowledge-graph based approach is an explainablemethod for potential ADRs discovery

based on biomarkers and might be valuable to the community working on the emerging

field of biomedical literature mining and provide impetus for the mechanism research

of ADRs.

Keywords: adverse drug reaction, biomarker, knowledge graph, antitumor drugs, explainable model

INTRODUCTION

Adverse drug reactions (ADRs) are a cause of significant morbidity and mortality in patients
and a source of financial burden in the healthcare system (Patton and Borshoff, 2018). In
tumor patients, pharmacokinetic parameters can be altered by the disease itself, or hepatic
or renal impairment, or reduction of serum-binding proteins due to malnutrition. They
experience a relatively high rate of ADRs from antitumor drugs and more easily experience
rare and severe ADRs, which could seriously impact the quality of life (Shrestha et al., 2017).
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The identification of rare and serious ADRs during the
premarket period is limited due to the limited sample size
and generalizability of clinical trials. Exploring the potential
ADRs is critical to decrease the incidence. Therefore, great
efforts have been devoted to detecting potential ADRs based
on the data mining of literature databases or electronic health
records (Bean et al., 2017; Lee and Chen, 2020). However,
there are still two challenges to achieving good performance: (1)
the unstructured biomedical literature contains many irrelevant
words and contexts, and how to extract ADR-related entities
and fully explore their relations (e.g., tumor-biomarker-drug) is
difficult; and (2) some predicted unseen ADRs are unexpected
and cause confusion, which means explainability and validation
become critically important for automatic detection.

A knowledge graph (Wang et al., 2017a,b) is a data model that
represents facts as nodes and relations between the nodes. Under
a general medical information network, objects such as diseases,
drugs, biomarkers, or treatments can all be linked together
through different types of referential relationships, which enable
the discovery of knowledge on a scale and at a speed that
traditional pharmacologic experiments or clinical trials cannot
approach. Recently, in addition to diagnosis and prognostication,
biomarker (Califf, 2018; Carr and Pirmohamed, 2018) has been

FIGURE 1 | Workflow for adverse drug reaction discovery using the Tumor-Biomarker Knowledge Graph (TBKG). (A) The construction process of TBKG. (B) The

results of ADR discovery based on TBKG. (C) Preclinical verification of the ADR discovery based on TBKG. (D) Clinical validation of the ADR discovery based on

TBKG.

widely in tumor treatment to offer the opportunity to accurately
and specifically predict therapeutic efficacy and safety during
the course of antitumor therapy, which can provide oncologists
with the opportunity to quickly modify a therapeutic regimen
in ways that would provide the best therapy for their patients.
However, there is little biomarker beginning to be applied
to assess the ADRs. The aim of this study is to discover
potential ADRs of anti-tumor drugs and provide explanations
by constructing knowledge graph using literature data source.
Figure 1 summarizes the workflow of our study.

METHODS

Data Source
The biomedical database employed in this study was the
MEDLINE database, which consists of more than 22 million
journal citations and abstracts. The database is maintained by the
National Library of Medicine (NLM). The MEDLINE corpus can
be acquired -in XML format from http://www.nlm.nih.gov/bsd/
licensee/access/medline_pubmed.html. Each citation contains
the bibliographical information of an article, such as the article
ID (PubMed Unique Identifier, PMID), article title, author list,
journal title, venue, publication type, and indexed MeSH terms.
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TABLE 1 | The concept category used to build the dictionary.

Specific categories Category meaning Type in TBKG

T109 Organic Chemical Biomarker-type

T114 Nucleic Acid, Nucleoside, or Nucleotide Biomarker-type

T116 Amino Acid, Peptide, or Protein Biomarker-type

T121 Pharmacologic Substance Drug-type

T123 Biologically Active Substance Biomarker-type

T125 Hormone Biomarker-type

T126 Enzyme Biomarker-type

T129 Immunologic Factor Biomarker-type

T130 Indicator, Reagent, or Diagnostic Aid Biomarker-type

T191 Neoplastic Process Tumor-type

T192 Receptor Biomarker-type

T195 Antibiotic Biomarker-type

T200 Clinical Drug Drug-type

MEDLINE is used as a surrogate for full-text articles. Permission
to access the data were acquired by the 3rd Xiangya Hospital in
China in May 2016.

The Unified Medical Language System (UMLS)
Metathesaurus integrates the information of 216 source
vocabularies and brings together many different types of
biomedical vocabularies, mainly including 25% diagnosis,
25% procedures and supplies, 19% diseases and 14% drugs.
Metathesaurus refines these categories to 127 different
categories. As shown in Table 1, the category description of
T191 is “Neoplastic Process,” therefore, we fit it into tumor-
type nodes. The category descriptions of T121 and T200 are
“Pharmacologic Substance” and “Clinical Drug,” respectively,
we hence fit it into drug-type nodes. For ADR-type nodes, we
use the WHO source dictionary in UMLS because WHO is used
for coding clinical information related to adverse drug reactions
(Supplementary Table 1). Finally, for biomarker-type nodes,
there are many types of biomarker referring to the definition of
biomarker (Carr and Pirmohamed, 2018), including genomic,
immunogenetic, circulating protein, nucleic acid and so on.
Therefore, we fit the corresponding categories T109, T114, T116,
T123, T125, T126, T129, T130, T192, and T195 in Table 1 into
biomarker-type nodes.

Tumor-Biomarker Knowledge Graph-based
ADR Discovery
Entity Extraction
From MEDLINE, we downloaded the abstracts of papers from
1928 to 2020 with “cancer therapy” as the key word. The article
number, title, author, author unit, publication time, MeSH word,
journal title and publication type were saved, and short abstracts
were removed.

Four kinds of entities were extracted from the abstracts:
tumors, biomarkers, drugs, and ADRs. We used the
Metathesaurus 2020AA version provided by UMLS as the
dictionary for entity extraction. Apache’s open source tool
cTAKES, which is a natural language processing system for

FIGURE 2 | Structure of TBKG.

extracting information from medical free texts, was utilized to
extract entities. An entity mentioned positively was seen as an
entity that was related to each abstract. Here, we limited the
minimum frequency of entities to 50.

Relation Discovery
We used the entities extracted above to construct the Tumor-
Biomarker Knowledge Graph (TBKG). TBKG is defined as G
= (V, E), where G stands for TBKG, V is the set of vertices
in G, and E is the set of edges in G. V contains the vertices
of four entity types, namely tumor, biomarker, drug, and ADR.
E contains undirected weighted edges. Each edge connects two
different types of vertices. The weight on the edge represents the
correlation (distance) between the two vertices. A basic schema is
shown in Figure 2. Entities were transformed into matrix form.
Each row of the matrix represented a summary file, and whether
the entity appeared in the summary was represented by 0 and 1;
this matrix data was taken as the input of the model.

A naive Bayesian model (Murphy, 2012) was utilized to
explore correlations. The naive Bayesian model combined the
prior probability and the posterior probability at the same time
when building the graph, which could avoid the subjective bias
from using only the prior probability and avoided the overfitting
phenomenon from using the sample information alone at the
same time. The calculation method for each relationship was
the same, and we mainly used the calculation of the relationship
between tumor and biomarker to illustrate the principle of this
model. The parameter was learned by Maximum Likelihood
Estimation. We learned a model for each tumor, as shown in
Figure 3. An importancemeasure was used to determine whether
there was a relationship between the tumor and biomarker:

IMPTNB = log
(

p
(

xi = 1
∣

∣yj = 1
))

− log
(

p
(

xi = 1
∣

∣yj = 0
))

,(1)

where xi is 0 or 1 to indicate the presence of biomarker i and yj
is 0 or 1 to indicate the presence of tumor j. The reason why we
use the importance measure is that if the presence of a biomarker
makes it more likely that a tumor will be observed, we are more
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FIGURE 3 | Workflow of modeling the relationship between diseases and biomarkers.

confident that there is a relationship between them. Relationship
whose importance was greater than a certain threshold was
considered to exist.

ADR Discovery
For the ADR discovery based on TBKG, we collected all drugs
and determined the corresponding ADR to form drug-ADR pairs
as the calculated ADRs. The Depth First Search (DFS) algorithm
was utilized to find every path between the drug andADR, such as
(drug, biomarker, ADR). Each output of ADR discovery contains
a drug-ADR pair and all corresponding paths.

Experimental Settings
Accuracy With Cross-Validation
Three-fold cross-validation, which is mainly used to prevent
overfitting caused by themodel being too complex, was utilized to
verify the effect of graph construction. The basic idea is to divide
the original data into a training set to train the model and a test
set to test the training results. The original data were randomly
divided into three groups and each time, two groups were selected
as the training set and the remaining group was used as the test
set. This validation was repeated three times, and we took the
average accuracy as the evaluation of the model.

Comparison With Co-Occurrence Analysis
We conducted a co-occurrence analysis (Callon et al., 1986)
on the summaries and performed clinical verification on this
result, which was compared with ADR discovery based on
TBKG. The basic principle of co-occurrence analysis is to
reflect the correlation strength between keywords by counting
the co-occurrence of word pairs or noun phrases in the
literature. According to this principle, we conducted frequency
statistics and sorted the word pairs for all entities. Through
clinical verification, we can compare the difference between the
two results.

Clinical Validation
Clinical validation was performed to validate the efficacy of
our model. Osimertinib is a third-generation epidermal growth

TABLE 2 | Numbers of entities and relationships in TBKG.

Relationships Entity numbers Edge numbers

Tumor-Biomarker 1,179–2,550 30,065

Tumor-Drug 1,179–1,806 21,293

Tumor-ADR 1,179–756 8,913

Drug-Biomarker 1,806–2,550 46,052

Drug-ADR 1,806–756 13,653

Biomarker-ADR 2,550–756 19,278

factor receptor tyrosine kinase inhibitor that is used to treat
non-small-cell lung carcinomas with specificmutations (Odogwu
et al., 2018). This medication was approved as an antitumor
treatment in 2017 by both the Food and Drug Administration
and the European Commission. As a novel antitumor drug,
neither clinical trials nor real-world studies had enough data to
provide an early warning of ADRs after marketing. Thus, we
chose osimertinib as an example.

First, the results of our model was compared with the reported
ADRs from the official manual (Supplementary Table 2) and
EGFR-TKI ADR Management Chinese Expert Consensus (Anti-
Cancer Association, 2019). The ADRs of osimertinib were
calculated for different literature quantities from 10,667 literature
abstracts on “cancer therapy” since osimertinib appears in the
literature in 2014. The ADRs ranked in the top 5% according
to our model were defined as important ADRs, and those
ranked in the bottom 5% were defined as unlikely ADRs. Kappa
index, sensitivity and specificity were used to determine the
reliability of our model with the official manual of osimertinib.
The difference in ADR discovery was evaluated among different
literature quantities, and the difference between our model and
co-occurrence analysis was also measured. All analyses were
performed using SPSS (version 23.0) statistical software.

Second, we also compared the results of our model with
the reported ADRs of all clinical cases from the 3rd Xiangya
Hospital. The clinical data were retrospectively extracted
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FIGURE 4 | A portion of the network extracted from TBKG.

from the structured hospital information system (HIS) of the
3rd Xiangya Hospital, Central South University (Changsha,
China), which provides patient health record information,
e.g., information regarding the Enterprise Master Patient
Index (EMPI), laboratory tests, International Classification
of Disease (ICD-10) clinical diagnosis, medical records and
so on. All patients treated with osimertinib in our hospital
(n = 8) from May 2017 to September 2020 were included
in this study. ADRs (Edwards and Aronson, 2000) refer to
adverse medical events that occur after a patient receives a
drug but that do not necessarily have a causal relationship
with the experimental drug. ADRs that meet the definition
of Common Terminology Criteria for Adverse Events v4.0
(CTCAE) (US Department of Health Human Services, 2009)
include the following: (1) existing exacerbations of chronic
or intermittent diseases, including increased frequency
and/or increased disease severity; (2) new diseases detected
or diagnosed after the administration of the experimental drug,
although they may have existed before the study began; (3)
signs, symptoms or clinical sequelae due to suspected drug

interactions; and (4) signs, symptoms, or clinical sequelae
resulting from suspected overdose of an experimental drug
or combination of drugs (overdose itself is not reported as an
adverse event/serious adverse event). All ADRs of osimertinib
during hospitalization were recorded. The Institutional
Review Board of the 3rd Xiangya Hospital approved this
study (No. 2020-S662).

In addition, the assumption in our study is that drugs have
effects on some biomarkers and that these biomarkers are
associated with the specific ADRs. And we applied TBKG to
discover the adverse reactions of osimertinib and tried to find
relative biomarkers that link the drugs with ADRs.

RESULTS

We constructed the TBKG, which is a weighted heterogeneous
graph with four types of objects extracted from the MEDLINE
corpus: tumor, biomarker, drug, and ADR. Six relationships were
built between them (Table 2). Then, the naive Bayes model was
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FIGURE 5 | The explainable pathway between osimertinib and one of its ADRs. This figure shows the pathways between osimerinib, top 1% related biomarkers and

parts of ADRs. We only highlights the pathways between osimerinib, nephrosclerosis and three biomarkers: “Cytotoxic Granule Protein,” “Epidermal Growth Factor

Receptor,” and “Macrophage-Activating Factors”.

used to determine whether relationship exist. We show a part of
the TBKG in Figure 4.

We use the biomarkers and ADRs related to the drug
“osimertinib” as an example to show the TBKG results.
The correlation between “osimertinib” and one of its ADRs,
“Nephrosclerosis” is 4.31. The correlation result means that
in the case of “osimertinib” appearing, the probability of
“Nephrosclerosis” is 10.4%, while in the case of “osimertinib”
not appearing, the probability of “Nephrosclerosis” is 0.5%. The
greater the correlation, the more likely it is that “osimertinib” but
no other factors will cause ADRs.

Biomarkers which link the drugs with ADRs were found
in TBKG. As shown in Figure 5, the correlations between
“osimertinib” and the biomarkers “Cytotoxic Granule Protein,”
“Epidermal Growth Factor Receptor,” and “Macrophage-
Activating Factors” are 3.49, 3.64, and 4.59, respectively.
The corresponding correlations between these three tumor
factors and the adverse reaction “Nephrosclerosis” are
5.11, 1.44, and 6.25. Compared with epidermal growth
factor receptor and cytotoxic granule protein, macrophage

activating factors seems to mediate the incident of osimertinib
induced nephrosclerosis.

According to the calculations of our model, 775 ADRs were
included in the current study, and the most important ADRs
for osimertinib were ordered as follows: dry skin, paronychia
inflammation, visual field defects, interstitial lung diseases, and
so on. Supplementary Table 3 lists the calculation results. Our
model had moderate consistency with the reports in the official
manual (Kappa= 0.68, Figure 6), and better than co-occurrence
(Kappa = 0.4). And compared with co-occurrence, our model
had better specificity than sensitivity.

Furthermore, our model could find rare and serious ADRs
that had not been reported in the official manual. Eight lung
adenocarcinoma patients had received osimertinib treatment
in our hospital since 2017. The characteristics of the included
patients are shown in Table 3. The mean age of the total
population was 61 years, and 50% of the patients were female.
The median follow-up time was 6 months. The most common
adverse reactions in the clinical cases were lymphocytopenia
(3/8), anemia (3/8), and constipation (3/8). From Figure 7, it
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FIGURE 6 | The concordance evaluation of the ADR discovery based on

TBKG. (A) The Kappa index of TBKG compared with the co-occurrence

analysis. (B) The sensitivity and specificity of TBKG compared with the

co-occurrence analysis.

is worth noting that some serious ADRs that has never been
reported before and could be calculated by our model, for
example, patient 8 developed renal failure and needed dialysis 1
week after taking osimertinib.

DISCUSSION

Our study opens up a new direction for ADR discovery that
combines the following features.

• This is the first knowledge graph-based approach to discover
potential adverse reactions of antitumor drugs. By exploring
the relations among tumors, biomarkers, and drugs in the

knowledge graph, our approach is able to provide explanations
for the potential of supervised machine learning methods.

• We contribute a dataset to study knowledge graphs for ADRs
by entity extraction and relation building. We verified the
efficacy of this approach with clinical data and released the
data and the codes that might be valuable to the community
working on emerging fields of biomedical literature mining.

Multiple scientific disciplines have been addressing the ADRs
discovery problems from different perspectives (Tan et al.,
2016). Not only clinical trials before marketing and reports of
adverse reactions after marketing, but the detection of metabolic
enzyme-related genes has also been used to discover ADRs
with the development of pharmacogenomics (Phillips et al.,
2001). In the data mining area (Rastegar-Mojarad et al., 2016;
Santiso et al., 2018; Shen et al., 2018; Zhang et al., 2019),
leveraged the existing information of the drugs and ADRs
as the input for a machine learning classifier (e.g., logistic
regression, decision tree, and support vector machine), which
outputs a binary prediction. Recently, several methods have
employed deep learning approaches (Fan et al., 2020) to detect
possible ADRs with an effective integration of heterogeneous and
multidimensional drug data sources. However, ADR discovery
should not be as narrow as a simple true or false question. The
reasons behind the ADR in the real world also exist in rich and
variant biomedical literature.

Here, we proposed and verified a knowledge graph method
based on literature data, that can calculate potential ADRs that
never reported before. A knowledge graph is a data model
that represents facts as nodes (e.g., drugs, diseases, tumors, side
effects, and biomarkers) and relations between the nodes (e.g.,
drug-biomarker relations). Graph representations are not only
able to reveal how individual semantic entities are related to each
other but also appealing for human conceptual understanding.
This graph structure opens up a new approach to model the
abundance of ADR-related information and introduces structural
information to determine whether an ADR exists for a tumor
drug. It’s proved to be feasible that knowledge source extraction
and knowledge discovery (Rotmensch et al., 2017; Li et al., 2019;
Malas et al., 2019) (e.g., drug prioritization, drug interaction, rare
disease classification) by constructing health knowledge graphs.
And the experimental results in this study showed that the naive
Bayesian model combined building the knowledge graph could
outperformed the co-occurrence analysis. Moreover, similar to
a few of studies (Guney et al., 2016; Bean et al., 2017), we
calculated the potential ADRs by measuring the distance in the
graph between the drug, biomarkers, diseases and ADRs (i.e., the
drug that cures a disease that are associated with an ADR).The
underlying assumption was that a short distance between drugs
and ADRs meant that the drug was likely to cause the ADRs.

Our findings not only uncover simple ADRs but also provide
explanations, i.e., the paths of “tumor-biomarker-drug” in the
knowledge graph. Capturing detailed ADR informationmay help
to obtain in-depth insights into the underlying mechanisms.
Previous studies focused on the integration of drug structure or
chemical features (Frid and Matthews, 2010; Pauwels et al., 2011)
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TABLE 3 | Clinical characteristics of patients who received osimertinib at the 3rd Xiangya Hospital.

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6 Patient 7 Patient 8

Age at osimertinib

treatment (years)

73 49 57 71 48 56 81 55

Sex Male Female Male Female Male Male Female Female

Diagnosis Adenocarcinoma of

right lung

Bronchial

adenocarcinoma

Adenocarcinoma of

right lung

Adenocarcinoma of left

lung

Adenocarcinoma of

right lung

Lung cancer* Lung cancer* Lung cancer*

Duration of cancer

history

1 month 4 months 12 months 12 months 20 months 1 months 10 months 8 months

Complications Benign prostatic

hyperplasia

/ COPD Hypertension CKD; hypertension / Postoperative colon

cancer; gallstone;

remote cerebral

infarction

/

Drug combination Tiotropium bromide,

tamsulosin, finasteride

/ Morphine, ampeptide

elemente

Tramadol, celecoxib Ulbenemax,

mosapride, calcium

malate, montelukast

/ Mecobalamin,

trimetazidine,

magnesium potassium

aspartate, atorvastatin,

aspirin

/

Relative gene Undetected EGFR (–) EGFR (+) EGFR (+) EGFR (+) Undetected EGFR (+) EGFR (–)

Metastasis site Adrenal gland; bone;

mediastinal lymph

nodes; pleura; right

subclavian lymph

nodes

Lung; pleura Mediastinal lymph

nodes; right subclavian

lymph nodes

Bone; liver Lymph nodes;

pericardium; pleura;

enterocoelia

Bone; lung No metastasis Adrenal gland; bone;

brain

Relative gene Undetected EGFR (–) EGFR (+) EGFR (+) EGFR (+) Undetected EGFR (+) EGFR (–)

Start date of

osimertinib treatment

2016/12/28 2019/1/29 2019/12/10 2019/6/20 2019/10/28 2020/4/15 2020/4/22 2019/10/13

Follow-up time 5 months 6 months 2 months 14 months 7 months 1 months 5 months 7 months

* = Without pathological diagnosis; / = Not mentioned in the electronic health records.
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FIGURE 7 | Adverse drug reactions of clinical patients receiving osimertinib. *Not mentioned in the official manual of osimertinib, but mentioned in TBKG.

or gene expression (Wang et al., 2016) or drug target (Párez-
Nueno et al., 2015) to optimize ADR prediction models. Risk
factors of drug-induced organ damage include drug overdose,
drug-drug interactions and drug-related adverse effects, and the
discovery of the early biomarkers and development of accurate
diagnostic methods are effective prevention strategies for organ
damage (Wu and Huang, 2018).

Few studies focus on molecular mechanisms’ interpretability
in ADR discovery (Hristovski et al., 2016). The spread through
relevance in the knowledge graph provides convenience for
interpretability. The assumption in our study is that drugs
have effects on some biomarkers (proteins, enzymes, and so
on) and that these biomarkers are associated with the specific
ADRs. Therefore, we try to find biomarkers link the drugs
with ADRs in TBKG. The quality of the explanations for the
ADRs provided in our approach largely depends on the precision
of this knowledge graph, which have been validated whether
from the model performance or clinical perspective in this
study. Thus, our method can offer better understanding of the
biomarkers of ADRs, which could not only significantly predict
the potential ADRs before the drug development, but can also
provide oncologists with the opportunity to quickly predict
patients’ sensitivity to the ADRs.

Although important discoveries have been revealed by the
current study, there are also limitations. First, the calculated
drug-biomarker combinations cannot distinguish between a
drug-treatment relationship, a drug-ADR relationship, or a “is
not a target drug” type of relationship. However, this is one of
major shifts of the big data mindset–a growing emphasis on
correlations rather than a continuing quest for elusive causality.
In traditional clinical trials, both causal investigations and
correlation analysis begin with a hypothesis that is tested to be
falsified or verified with little data available. In the age of big
data, this type of noncausal analysis will help us understand the
“what” rather than the “why.” Nonetheless, the construction of
relation extraction templates based on the domain knowledge
graph (e.g., increasing risk, causing) is encouraging. Second, this

study lacks the attention to drug-drug interaction. The use of
antitumor drugs often results in the use of other agents to reduce
or prevent ADRs and cancer itself increases the need for more
medications, which could increase the risk of ADRs. Third, this
study focused on ADR discovery based on medical literature.
Although compared with the detection of ADRs using clinical
data alone, the ADR discovery based on literature have the
potential to find the unreported ADR as in our study. For future
research, we will improve this knowledge graph-based approach
by data fusion and knowledge representation. Finally, these
types of recommendations should be assessed by studying the
following questions: How many clinicians read them? Are they
applied? How effective have they been in reducing the incidence
of the complications of hypertension and adverse drug effects?
Further prospective clinical trials evaluating the effectiveness of
this type of decision support will be explored as the next steps.

CONCLUSION

In summary, the approach described a reliable method for
ADR discovery of antitumor drugs and provided explanations
of predicted ADRs by exploring the relations among tumors,
biomarkers, and drugs in the knowledge graph. This study
contributes a dataset to study knowledge graphs for ADRs
by entity extraction and relation building; and releases the
data and the codes that might be valuable to the community
working biomedical literature mining. These findings also
provide impetus for the mechanism research of ADRs and
therefore offer biomarkers to predict ADRs.
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