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Background: Acute myocardial infarction (AMI) has high morbidity and mortality
worldwide. However, the pathogenesis of AMI is still unclear, and the impact of circular
RNAs (circRNAs) on AMI has rarely been recognized and needs to be explored.

Materials and Methods: The circRNA array was applied to investigate the expression
level of circRNAs in the blood samples of coronary arteries of three AMI patients and
three normal persons. Principal component analysis (PCA) and unsupervised clustering
analysis were performed to reveal the distinguished expression patterns of circRNAs.
The miRNA expression profiles of AMI patients were identified from a public dataset
from the Gene Expression Omnibus (GEO) database (GSE31568). The miRNA binding
sites on the circBNAs were predicted by miRanda. The miRNA enrichment analysis
and annotation tool were used to explore the pathways that the dysregulated circRNAs
may participate in.

Results: In total, 142 differentially expressed circRNAs, including 89 upregulated
and 53 downregulated in AMI samples, were identified by the differential expression
analysis. AMI patients had quite different circRNA expression profiles to those of
normal controls. Functional characterization revealed that circRNAs that had the
potential to regulate miBRNAs were mainly involved in seven pathways, such as the
Runt-related transcription factor-1 (RUNX1) expression and activity-related pathway.
Specifically, hsa_circRNA_001654, hsa_circRNA_091761, hsa_circRNA_405624, and
hsa_circRNA_406698 were predicted to sponge four miRNAs including hsa-miR-
491-3p, hsa-miR-646, hsa-miR-603, and hsa-miR-922, thereby regulating RUNX1
expression or activity.

Conclusion: We identified dysregulated blood circRNAs in the coronary arteries of AMI

patients and predicted that four upregulated circRNAs were involved in the regulation of
RUNX1 expression or activity through sponging four miRNAs.

Keywords: acute myocardial infarction, circRNA, miRNA, functional characterization, runt-related transcription
factor-1

Frontiers in Genetics | www.frontiersin.org

1 February 2021 | Volume 11 | Article 626492


https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.626492
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2020.626492
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.626492&domain=pdf&date_stamp=2021-02-03
https://www.frontiersin.org/articles/10.3389/fgene.2020.626492/full
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Zhao et al.

CircRNAs in Acute Myocardial Infarction

INTRODUCTION

Acute myocardial infarction (AMI) is a common life-
threatening disease that is manifested as myocardial necrosis
caused by a prolonged period of ischemia and hypoxia
in coronary arteries (Hirschl et al., 1996). Early diagnosis
and treatment are the keys to improve the survival and
prognosis of AMI patients (Vogel et al, 2019). Although
the mortality of AMI has decreased thanks to medical
developments in the modern era, there is still no radical
cure for AMI because of a poor understanding of its
pathogenesis and underlying mechanisms (Sulo et al., 2019).
Therefore, further experimental and clinical investigations
are urgently needed to provide new targets for the therapy or
diagnosis of AMI.

Circular RNAs (circRNAs) belonging to non-coding RNAs
with a closed continuous loop are heterogeneous transcripts
derived from reverse splicing, and they regulate gene expression
through multiple mechanisms (Memczak et al., 2013; Aufiero
et al, 2019). Although the functions of circRNAs are still
elusive, a certain number of circRNAs have been validated
as microRNA (miRNA) sponges to exert regulatory function.
Under specific circumstances, they bind to target miRNAs,
preventing their interaction with messenger RNA (mRNA), thus
regulating gene expression and signaling pathways (Hansen
et al, 2013; Aufiero et al, 2019). CircRNAs play important
roles in cardiovascular diseases. For instance, the heart-related
circRNA (HRCR) could prevent cardiac hypertrophy and heart
failure through sponging miR-233 to regulate the apoptosis
repressor with CARD (ARC) expression (Wang et al., 2016).
Circ-Foxo3, which is highly expressed in myocardial samples
of older mice, exerts regulatory roles in cellular senescence
(Du et al, 2017). The first study on circRNA and AMI
showed that myocardial infarction-associated circRNA (MICRA)
in peripheral blood can predict the left ventricular function
in patients with acute AMI (Vausort et al., 2016). Although
more studies on circRNA and cardiovascular diseases have been
reported, there are still few studies on the relationship between
circRNAs and AMI.

Non-coding RNAs have been found to play important
roles in the pathophysiological process of AMI. However,
the existing studies only provide the functional circRNAs in
animal AMI models or the overall dysregulated circRNAs
in the peripheral blood of AMI (Sun et al., 2020; Zhang
et al., 2020). Little research has probed into the predominant
regulatory circRNAs in circRNA-miRNA networks that are
involved in vital regulatory pathways for the pathogenesis of
AMI. Moreover, the differential expressions of blood circRNAs
in the coronary arteries of AMI patients, and normal controls
have not been reported. Thus, we aimed to investigate
the abnormally expressed circRNAs in coronary arteries to
explore the potential circRNAs-miRNAs networks in AMI
patients and to identify the critical regulatory circRNAs. This
study provides novel therapeutic or diagnostic targets for
further research.

MATERIALS AND METHODS

Ethics Statement

Written informed consent was obtained from all enrolled
participants before applying the clinical records. All protocols
adopted here were approved by the Ethics Committee at Shanghai
East Hospital (ID: 2019057).

CircRNA Profiling From circRNA Array
Analysis

Arraystar human circRNA array was applied to detect and
quantify circRNAs in the six samples of three AMI patients and
three normal controls. The clinical data of the six participants
were summarized in Table 1.

Blood samples were collected from the coronary arteries of
six participants [three with ST-elevation myocardial infarction
(STEMI) and three without AMI] undergoing percutaneous
coronary intervention (PCI) due to undiagnosed chest pain,
and they were then prepared according to the arraystar’s
standard protocols. Total RNA was extracted from whole blood
with TRIzol reagent and tested for purity and concentration
on Nanodrop 3000. After purification with an RNase-Free
DNase set, RNAs were treated with RNase R to digest
and remove linear RNAs. Next, microarray hybridization was
conducted according to the manufacturer’s instructions, and
the array images were obtained and analyzed in Agilent
supporting software. CircRNAs were identified by performing
an annotation strategy from the microarray dataset. The
circRNA data were categorized by using linear or circular
when a circRNA absenting or presenting in a sample. The
categorized circRNAs were suitable for a generalization of
principal component analysis, which generates a combined plot
showing both patients and circRNAs closer together. An R
programming tool was applied to standardize the array profile.
The differential expression analysis was conducted by student
t-test and fold change methods.

The microRNA Expression Data From

Gene Expression Omnibus (GEO)

Database

The normalized miRNA expression data of blood samples from
18 AMI patients and 18 normal controls were downloaded
from GEO database with accession GSE31568. The differentially
expressed miRNAs were identified using the GEO2R analysis
tool under a filter condition with adjusted P < 0.05 and fold
change (FC) >2.

Prediction of miRNA Binding Sites on the
circRNAs

The miRNA binding sites on the circRNAs were predicted by
miRanda (Miranda et al., 2006) with default options. Specifically,
the miRNA and circRNA sequences were collected from the
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TABLE 1 | The clinical data of the six personals.

No. Age (years) Gender Killip Coronary Complicated Coronary Smoking D-to-B Drug-diluted Stent Culprit artery
angiography di di (minutes) (number)

1 55 Male | Positive Hypertension STEMI Yes 85 1 LAD

2 52 Male | Positive Hypertension STEMI Yes 80 1 LAD

3 47 Male | Positive Hypertension STEMI Yes 90 1 LAD

4 49 Male | Negative Hypertension Normal Yes 0 0 Negative

5 53 Male | Negative Hypertension Normal Yes 0 Negative

6 55 Male | Negative Hypertension Normal Yes 0 0 Negative

STEMI, ST-segment elevation myocardial infarction; D-to-B, door-to-balloon time; LAD, left anterior descending coronary artery.

miRbase (Griffiths-Jones et al., 2008)" and circRNA microarray
annotation file, respectively.

Functional Characterization of circRNAs
by miRNA Enrichment Analysis

The miRNA enrichment analysis was conducted on the web
server of miRNA Enrichment Analysis and Annotation Tool
(miEAA)* under a filter condition with adjusted P < 0.05.
The interaction network between circRNAs and miRNAs was
visualized by Cytoscape3.7.2.

Principal Component Analysis (PCA) and

Hierarchical Clustering

Principal component analysis was conducted based on the
expression profiles of all circRNAs and implemented in R
packages FactoMineR and Facto Extra. Hierarchical clustering
was conducted on the differentially expressed circRNAs and
visualized by the R package heatmap.

Statistical Analysis

Statistical analyses were conducted by Student’s ¢-test, one-way
analysis of variance (ANOVA), and a Tukey-Kramer multiple
comparison test on R programming. All data are shown as
mean =+ standard deviation (SD).

RESULTS

CircRNA Expression Profiles in AMI

Patients and Controls

The blood samples were collected from the coronary arteries of
three STEMI patients and three normal controls during PCI,
and the clinical characteristics are summarized in Table 1. Little
difference was found in age, gender, underlying diseases, or
smoking history between the two groups.

Principal component analysis based on circRNA expression
profiles was performed to investigate whether the expression
patterns of circRNA between AMI patients and normal controls
can be distinguished. A clear separation between the AMI group
and the control group was observed (Figure 1), suggesting that

Uhttp://www.mirbase.org/
Zhttps://ccb- compute2.cs.uni-saarland.de/mieaa2/

AMI patients had quite different circRNA expression profiles
from the normal controls and that circRNAs may potentially
regulate the pathogenesis of AMI. These data strongly imply that
microarrays along with PCA are probably effective approaches
for distinguishing AMI patients and normal people.

Identification of Differentially Expressed

circRNAs

To further identify the dysregulated circRNAs in AMI patients,
we conducted differential expression analysis on the circRNA
expression profiles. Specifically, a total of 142 differentially
expressed circRNAs were identified by microarray with fold
change >2 and adjusted p < 0.05, including 89 upregulated and
53 downregulated circRNAs compared with the control group
(Figure 2A). Consistently, the hierarchical clustering revealed
that AMI patients and normal controls can be classified by the
differentially expressed circRNAs, and which were significantly
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FIGURE 1 | Relative distances between samples from AMI patients (red
symbol) and controls (green symbol) by PCA. The top two principal
components of the circRNA expression profiles.
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FIGURE 2 | Differentially expressed circRNAs between AMI patients and controls. (A) The volcano plot of 142 circRNAs with a significant difference between groups.
(B) Heatmap of dysregulated circRNAs by hierarchical clustering. N = 3, P < 0.05. ctrl, normal control (the same below).
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different between AMI patients and normal controls (Figure 2B), To further explore the biological function of the dysregulated
suggesting these circRNAs were involved in the progress of AMI.  circRNAs, we identified the differentially expressed miRNAs

between AMI patients and controls from the Gene Expression
Omnibus (GEO) database with accession GSE31568. Specifically,

CircRNA-miRNA Interaction Network 97 interactive miRNA-circRNA pairs were predicted by miRanda

Analysis

(Supplementary Table 1), including 97 circRNAs and 54

The predominant function of circRNA is to regulate gene miRNAs. With the miRNAs potentially binding to circRNAs,
expression by sponging specific miRNAs (Hansen et al., 2013). we applied miRNA set enrichment analysis to characterize
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the function of circRNAs. Specifically, the circRNAs were
primarily enriched in signaling pathways of mesenchymal-to-
epithelial transition, Golgi-to-endoplasmic reticulum retrograde
transport, the nucleotide-binding oligomerization domain-like
receptor protein 3 (NLRP3) inflammasome, inflammasomes, pre-
NOTCH expression and processing, pre-NOTCH transcription
and translation, and regulation of Runt-related transcription
factor-1 (RUNXI1) expression and activity (Figure 3A). In

addition, seven downregulated miRNAs in AMI patients
were predicted to participate in regulating one or more
signaling pathways (Figure 3B). Notably, hsa-miR-603, hsa-
miR-330-3p, hsa-miR-646, and hsa-miR-922 can be sponged
by multiple circRNAs (Figure 3C). These results indicated
that the circRNAs may regulate RUNX1 expression and
activity via sponging hsa-miR-603, hsa-miR-330-3p, hsa-miR-
646, and hsa-miR-922.
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CircRNAs Involved in RUNX1 Regulation

To further evaluate the regulatory circRNAs in circRNA-
miRNA networks, we identified hsa_circRNA_001654,
hsa_circRNA_091761, hsa_circRNA_405624, and
hsa_circRNA_406698 as critical regulators in the networks, as
they may sponge two or more miRNAs involved in the regulation
of RUNXI1 expression and activity (Figure 4A). Additionally,
all of the four regulatory circRNAs were upregulated in
AMI (Figure 4B). Particularly, three of the circRNAs were
transcribed from the intragenic regions of protein-coding
genes, including CNPY3, BCAP31, and ABCA5, while only
hsa_circRNA_406698 was transcribed from intergenic regions.
These results indicate that both intragenic and intergenic
circRNAs have the potential to regulate RUNXI expression and
activity in the pathogenesis of AML.

DISCUSSION

Circular RNAs were identified to be key regulators in the
pathogenesis of AMI, and their abnormal expressions can
significantly affect the disease progression (Zhang et al., 2020).
In this study, we profiled the differentially expressed circRNAs

in the blood of AMI patients and predicted the dysregulated
circRNA-miRNA pairs involved in the regulation of AMI related
signaling pathways. Further bioinformatic analysis identified
four upregulated circRNAs in AMI patients, which might
regulate RUNXI1 expression or activity through sponging the
miRNAs. Unlike previous studies, blood samples taken from
the coronary artery were not conventional. However, we aimed
to investigate the underlying regulatory function of circRNAs
in AMI. Peripheral blood is relatively easy to collect and
is more susceptible to the internal environment. Thus, the
ncRNAs in readily available peripheral blood were thought to
be more representative as biomarkers but less helpful for the
understanding of molecular mechanism in the pathogenetic
process of AMI. The analysis of the ncRNAs in coronary blood
is more useful and direct for us to understand their regulatory
function in AMI. Even so, we still think that both coronary
blood and peripheral blood could be used to study the functional
roles of circRNAs in AMI. In future analysis, the research of
circRNAs in both coronary blood and peripheral blood should
compensate for each other.

We presented four candidate circRNAs and four miRNAs
probably involved in RUNXI expression, which is critical
in the regulation of various cellular processes, especially in
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FIGURE 4 | CircRNA-miRNA networks involved in RUNXT regulation. (A) Interaction networks between targeted miRNAs in the regulation of RUNX1 and circRNAs.
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hematopoiesis (Okuda et al., 2001; Ichikawa et al., 2013). The
RUNXI1 expression in adult hearts is significantly lower than in
neonatal hearts (Eulalio et al., 2012). However, the re-activated
RUNXI1 in the infarct border zone of AMI patients has been
widely recognized (McCarroll et al., 2018). RUNX1 upregulation
is related to impaired cardiac contractile function and cardiac
remodeling (McCarroll et al., 2018). RunxI knock-out can protect
against adverse cardiac remodeling after AMI in mice (Riddell
et al., 2020). Moreover, Runx] mRNA expression increases in
the blood of AMI patients (Mao et al., 2017). The RUNX1
dysregulation after AMI occurs as early as 1 day post-AMI and
can serve as a marker of early myocardial injury (Kubin et al,
2011). Our study demonstrates that hsa-miR-491-3p, hsa-miR-
646, hsa-miR-603, and hsa-miR-922 are involved in regulation
of RUNXI. As is well-known, miRNAs can inhibit translation
to regulate gene expression via inducing the degradation of
target mRNA (Bartel, 2004). Moreover, the predominant function
of circRNAs is to bind to target miRNAs and prevent their
interaction with mRNA, thus regulating gene expression. These
four candidate miRNAs were down-expressed in AMI patients
and were involved in regulatory networks with four upregulated
circRNAs. Thus, hsa_circRNA_001654, hsa_circRNA_091761,
hsa_circRNA_405624, and hsa_circRNA_406698 were identified
to participate in regulating RUNX1 through targeting miRNAs.
The interactions between circRNAs and microRNAs will be
detected by luciferase reporter assay and RNA pull-down assay
in our future research.

Acute myocardial infarction can be hardly distinguished
from diseases presented chest pain, such as acute pulmonary
embolism, acute pericarditis, and aortic dissection. Until now,
invasive coronary angiography is still the gold standard in
diagnosing AMI, and the biological markers in blood such as
CK-MB and cTnT have some deficiencies in AMI diagnosis.
Thus, more approaches and biological markers should be
identified for the development of AMI diagnosis. Herein, the
circRNA expression patterns in the blood of AMI patients
were separated from normal controls, providing the probability
of microarray along with PCA as effective approaches for
distinguishing AMI patients and normal persons. CircRNAs
are stably and highly conserved across species and are valuable
biomarkers in diagnosing diseases (Zhang et al., 2018; Miao
et al, 2019). Hsa_circRNA_001654, hsa_circRNA_091761,
hsa_circRNA_405624, and  hsa_circRNA_406698 were
significantly increased in the blood of AMI and can serve as
potential biomarkers for early diagnosis of AMI. Nevertheless,
the potential role of these circRNAs as biomarkers should be
further validated.

Apart from the regulation of RUNXI expression and activity,
other candidate pathways were also identified. Hsa-miR-330-
3p, hsa-miR-491-3p, and hsa-miR-139-5p were all predicted
to be involved in regulating the NOTCH pathway, a crucial
mediator of cardiac repair and regeneration after AMI (Li
et al., 2010; Wu et al.,, 2017). Moreover, the NOTCH signaling
pathway is strongly connected with the RUNXI expression
in various diseases (Richard et al., 2013; Rodriguez-Caparros
et al., 2019), which further indicates the profound roles of
the candidate circRNAs in AMI regulatory networks. All the

underlying signaling pathways are critical in cardiomyocytes of
AMI and interact among cardiovascular diseases, which trigger
us to speculate that the candidate circRNAs are released into
the blood during myocardial damage and then exert feedback
function on cardiomyocytes. In this research, we have predicted
four circRNAs that could regulate the RUNXI expression by
sponging four miRNAs in AMI. Nevertheless, the underlying
mechanisms of these circRNAs in the regulation of AMI warrant
further investigation, which may facilitate the development of
new targets for the treatment of AMI. To further investigate this
biological process, we will test the expression of these ncRNAs
in more coronary blood from AMI patients and explore their
function in experimental models in future works.

LIMITATIONS

There are some limitations in the study due to the limited
research conditions: (1) The sample size in the circRNA array
analysis was too small; (2) No experiment was conducted
to verify the results of the circRNA array and bioinformatic
analysis. In the future, more qualified samples should be enrolled
into our analysis, and experiments will be carried out to
validate our findings.

CONCLUSION

We identified the differentially expressed circRNAs and potential
circRNA-miRNA networks in AMI patients. Four upregulated
circRNAs (hsa_circRNA_001654, hsa_circRNA_091761,
hsa_circRNA_405624, and hsa_circRNA_406698) in the blood
of AMI patients exerted regulatory function on RUNXI
expression or activity through sponging four downregulated
candidate miRNAs (hsa-miR-491-3p, hsa-miR-646, hsa-miR-603,
and hsa-miR-922).
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