
CASE REPORT
published: 20 May 2021

doi: 10.3389/fgene.2021.529236

Frontiers in Genetics | www.frontiersin.org 1 May 2021 | Volume 12 | Article 529236

Edited by:

Tarunveer Singh Ahluwalia,

Steno Diabetes Center Copenhagen

(SDCC), Denmark

Reviewed by:

Pedro Dorado,

University of Extremadura, Spain

Nancy Monroy-Jaramillo,

National Institute of Neurology and

Neurosurgery, Mexico

*Correspondence:

Gabriella Guzzo

gabriella.guzzo@chuv.ch

Salima Sadallah

salima.sadallah@chuv.ch

Specialty section:

This article was submitted to

Human and Medical Genomics,

a section of the journal

Frontiers in Genetics

Received: 03 April 2020

Accepted: 22 April 2021

Published: 20 May 2021

Citation:

Guzzo G, Sadallah S, Fodstad H,

Venetz J-P, Rotman S, Teta D,

Gauthier T, Pantaleo G,

Superti-Furga A and Pascual M (2021)

Case Report: A Rare Truncating

Variant of the CFHR5 Gene in IgA

Nephropathy.

Front. Genet. 12:529236.

doi: 10.3389/fgene.2021.529236

Case Report: A Rare Truncating
Variant of the CFHR5 Gene in IgA
Nephropathy
Gabriella Guzzo 1,2,3*, Salima Sadallah 2*, Heidi Fodstad 4, Jean-Pierre Venetz 1,

Samuel Rotman 5, Daniel Teta 3, Thierry Gauthier 6, Giuseppe Pantaleo 2,

Andrea Superti-Furga 4 and Manuel Pascual 1

1Organ Transplant Center, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland, 2 Service of

Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland, 3 Service of

Nephrology, Valais Hospital, Sion, Switzerland, 4Division of Genetic Medicine, Lausanne University Hospital, University of

Lausanne, Lausanne, Switzerland, 5 Service of Clinical Pathology, Lausanne University Hospital, University of Lausanne,

Lausanne, Switzerland, 6Hôpital Riviera Chablais, Vevey, Switzerland

IgA nephropathy (IgAN) is the most common primary glomerulonephritis worldwide.

Despite appropriate therapy, 20–40% of affected-patients evolve toward end-stage

kidney disease (ESKD). Mesangial IgA deposits are the hallmark of IgAN, and

complement deposition (C3) seems to differentiate latent IgA mesangial deposits from

active IgAN. Atypical hemolytic uremic syndrome (aHUS), another disease in which

complement plays an important role, is caused by inherited or acquired deregulation

of the alternative pathway (AP) of complement. A subgroup of IgAN shows thrombotic

microangiopathy (TMA) lesions in kidney biopsies, the histological characteristic of

aHUS. Genetic variants of complement Factor H (CFH), known to be present in aHUS,

have been associated with rapidly progressive forms of IgAN and a clinical pattern

of aHUS. Genome-wide association studies (GWAS) have confirmed that the 1q32

region, encoding for CFH and its related proteins, is an IgAN susceptibility locus. A

30 year-old man was admitted for seizures and malignant hypertension. The kidney

biopsy showed IgAN associated with features of TMA. Despite five plasma exchanges,

the patient remained dialysis-dependent, and ESKD was diagnosed. Functional and

genetic complement analysis were performed. A monoallelic protein-truncating, likely

loss-of-function variant was identified in the CFHR5 gene. Eculizumab is the treatment

of aHUS. As it has been successfully used in a few cases of rapidly progressive IgAN, it

was decided to administer eculizumab over a period of 12 months in addition to the usual

immunosuppression for renal transplantation. After a follow-up of 3 years, there was no

clinical disease recurrence. Systematic biologic and genetic screening of complement in

individuals with IgAN might be useful to better delineate the role of the AP of complement

in renal disease progression, and this may have therapeutic implications.
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INTRODUCTION

IgA nephropathy (IgAN) is the most common cause of end-
stage kidney disease (ESKD) among primary glomerulonephritis
(Donadio and Grande, 2002). Even though IgAN was first
described more than half a century ago by Berger et al.
the pathogenesis remains incompletely elucidated (Berger and
Hinglais, 1968).

The hallmark of IgAN is the mesangial deposition of IgA1
immunoglobulins with an aberrant glycosylation (Moldoveanu
et al., 2007).While over 50% of patients with IgANhave increased
IgA1 serum level compared to healthy controls, this alone is not
sufficient to cause the disease. The mesangial accumulation of

IgA1 has been described as the first step of a “4-hit process,”
which finally leads to complement activation (Suzuki et al., 2011).
The second hit is the occurrence of IgG or IgA1 autoantibodies
directed against the antigenic galactose deficient IgA1 (Gd-IgA1).
Formation of circulating immune complexes (CIC) containing

Gd-IgA1 then occur (third hit) and their mesangial deposition
(fourth hit) triggers cells hyperplasia and hypertrophy, release
of inflammatory cytokines and chemokines with complement

activation. The frequent post-transplant disease recurrence
confirmed the CIC mediated nature of IgAN (Ortiz et al., 2012).
Conversely, IgA deposits are rapidly cleared from kidneys with
donor-derived IgAN when transplanted in recipients without
IgAN as cause of ESKD (Sanfilippo et al., 1982; Ponticelli et al.,
2001).

The co-localization of C3 and IgA deposits in 90% of IgAN
kidney biopsies indicates complement activation by Gd-IgA1.
Therefore, complement plays a key role in the pathogenesis
of IgAN (Maillard et al., 2015). IgA mesangial deposition
mostly occurs in active kidney disease (Suzuki et al., 2003),
and C3 co-deposition may be considered as a biomarker
of nephritogenic IgA1 deposition, where local and systemic
evidence of complement activation are prognostic marker of
IgAN (Hastings et al., 2013).

Clinical and pathological manifestations of IgAN can
vary widely, with a 20–40% subgroup evolving to ESKD.
The identification of clinical, biological and/or histological
prognostic markers at diagnosis could thus help tailoring
the best treatment option to the given patient’s risk profile
(Barbour et al., 2019).

Complement in IgAN is activated by both the alternative
pathway (AP) and the lectin pathway (LP), as demonstrated
by the variable immunohistochemical positivity for properdin,
complement factor H (CFH), complement FH related proteins
(CFHRs), C4d, mannose binding lectin (MBL), MBL-associated
serine proteases (MASPs), L-ficolin and C5b-9 (Maillard et al.,
2015). The classical pathway of complement does not seem to
contribute to the pathogenic process, indeed C1q deposits are
rarely found and only confined in sclerotic areas (Lee et al., 2013).

An interesting question is whether dysfunctional regulation of
complement activation may have a significant role in the rapid
progression to ESKD in some forms of IgAN (Tortajada et al.,
2019). Two genome-wide association studies (GWAS) identified
and confirmed 1q32 as a locus of IgAN susceptibility (Gharavi
et al., 2011; Kiryluk et al., 2012). The 1q32 region codes for CFH,
the major regulator of complement in soluble phase, and five

CFHRs, which can compete with CFH and deregulate the AP
of complement.

Higher plasma CFHR5 protein levels (Zhu et al., 2018) and
increased CFHR5 glomerular deposition have been associated
with progressive IgAN (Medjeral-Thomas et al., 2017), but no
genetic analysis was performed in both studies. A severe form
of IgAN was associated with CFH mutations and a clinical
pattern of atypical hemolytic uremic syndrome (aHUS), and
eculizumab was successfully employed in the treatment of this
patient (Nakamura et al., 2018).

We report a case of rapidly progressive IgAN associated with
a clinical pattern of aHUS and thrombotic microangiopathy
(TMA) features on kidney biopsy, leading to ESKD. Genetic
complement screening identified CFH-H3, MCP-H2, CFHR1∗B
polymorphisms, known to constitute moderate risk factors for
aHUS, together with a rare deleterious variant in the CFHR5
gene. Treatment with eculizumab successfully prevented clinical
recurrence of the disease, with a follow-up of 3 years after
renal transplantation.

CASE REPORT

A 30 year-old Asian man, born in Sri-Lanka, was referred to
our hospital for a kidney pre-transplant evaluation. At the age of
16, he presented a unique episode of gross hematuria and lower
limb oedema, which was not furtherly investigated. Of note, the
patient showed no family history of TMA, IgA nephropathy or
other kidney diseases. At the age of 28, he was admitted to
the hospital for recurrent generalized seizures and oliguria, as
a manifestation of malignant hypertension. Laboratory analysis
revealed hemolytic anemia (hemoglobin 71 g/L; schistocytes 9‰,
LDH 348 U/L, haptoglobin < 0.10 g/L), thrombocytopenia (70
× 103/µL) and severe kidney failure (creatinine 2,013 µmol/l)
with proteinuria (2.26 g/mmol from urine protein/creatinine
ratio). Kidney biopsy showed diffuse glomerular sclerosis (90%),
interstitial fibrosis (90%) and tubular atrophy, associated with
severe vascular lesions characteristic of TMA (Figures 1, 2).
Immunofluorescence was positive for abundant mesangial IgA
(Figure 3) and C3 deposits, with focal IgA staining in some
arterioles. In addition, deposits of C5b-9, were present with
IgA and C3 deposits, within the mesangium and the wall of
small arterioles.

IgAN associated with TMA was diagnosed. Five plasma
exchanges were performed without improvement of renal
function, and the patient remained dialysis-dependent.

COMPLEMENT ASSAYS AND GENETIC
ANALYSIS

One year after starting dialysis, no abnormality was detected in
the complement screening (C4, CH50, CFH, Factor I, CD46,
or anti-CFH autoantibodies). At the time of pre-transplant
evaluation, he had persistently low platelet counts and low C3
level (0.66 g/L; reference range > 0.75 g/L).

Given the suspicion of aHUS, functional evaluation of
complement and molecular genetic analysis were performed.
We used an in-house genetic panel that we routinely apply at
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FIGURE 1 | Light microscopy. Early stage of thrombotic microangiopathy: this

artery shows oedematous intima and few myointimal cells corresponding to

“mucoid intimal hyperplasia” (FAOG, 400x).

FIGURE 2 | Light microscopy. Later changes of thrombotic microangiopathy:

the artery contains fibro-oedema with few collagen fibers within intima revealed

in blue with trichome FAOG (FAOG, 400x).

FIGURE 3 | Immunofluorescence microscopy. IgA deposits are observed

within mesangium and glomerular membranes (400x).

our institutions to individuals with aHUS suspected to have a
genetic origin. This panel, that includes a NGS [Next-Generation
Sequencing using a TruSight One Expanded Sequencing Panel
(Illumina, USA)] analysis of ADAMTS13, C3, CD46, CFB,
CFD, CFH, CFHR1, CFHR2, CFHR3, CFHR4, CFHR5, CFI,
CFP, HOXA2, MMACHC, THBD, has been assembled by our
nephrologists, pediatric nephrologists and geneticists and is quite
similar to that used in diagnostic laboratories worldwide.

The patient was found to be a carrier of the haplotypes
CFH-H3 and MCP-H2 and the CFHR1∗B polymorphism
(homozygous), which are common and have been associated

with a slightly increased risk for aHUS (Abarrategui-Garrido
et al., 2009). More significantly, he was found to be heterozygous
for a very rare CFHR5 variant (Chr.1: 196953197-TC>T;
NM_030787.4, c.361delC, p.Gln121Lysfs∗10, rs778029757),
which leads to a frameshift/premature stop codon [dbSNP
Database, 2021; Genome Aggregation Database (gnomAD),
2021]. It predicts the synthesis of a CFHR5 protein with a
normal amino acid sequence from the N-terminus up to the
SCR 2 domain, followed by a short stretch of 10 missense
amino acids and then terminating abruptly, leading to the
absence of two-thirds of the protein. Such proteins are frequently
unstable. Alternatively, a stop codon occurring in the first
third of the mRNA might likely lead to nonsense-mediated
mRNA decay (NMD). In both cases, haploinsufficiency would
be the consequence. However, in absence of cellular studies,
it cannot be formally excluded that the variant may induce
a dominant negative effect on CFHR5 function (see section
Discussion, below).

The variant is represented in the gnomAD database [Genome
Aggregation Database (gnomAD), 2021] with 12 alleles on a
total of ∼250,000 (allelic frequency 0.000048, or 0.0048%; one
individual in ∼11,000) and all carriers are of South Asian
origin (our patient is from Sri Lanka). It has not been seen
at homozygosity and has not been reported in association
with IgAN so far. In spite of its deleterious effect on the
protein, its classification, according to the ACMG guidelines, is
between variant of unknown significance or likely benign variant
(because of the presence of 12 heterozygous presumably healthy
individuals in gnomAD). However, this does not exclude its role
as a disease predisposing factor (see below).

PATIENT OUTCOMES

After a pre-transplant work-up, the patient received a kidney
allograft from a living unrelated donor. The day of transplant,
complement analysis revealed a low CH50 (59%; normal value
> 70%) and C3 (0.64 g/L). AP50, MBL, CFH, circulating C5b-9
were normal and there were no CFH autoantibodies.

Crossmatch assays were negative by both complement
dependent cytotoxicity (CDC) and flow cytometry techniques.
HLA match was of 2/6 antigens (A24, DQ5). Induction
and maintenance immunosuppression consisted of basiliximab
(20mg at days 0 and 4), steroids, mycophenolate mofetil
(MMF) and tacrolimus. Considering the possible risk of aHUS
recurrence associated with the multiple complement genetic
abnormalities found, prophylactic eculizumab was administered
peri- and post–transplant. Initially he received a weekly dose of
eculizumab (600mg, D1 and D8), followed by one intravenous
administration approximately every 3 weeks (900mg), to
maintain a CH50 < 10%. No acute rejection occurred.
Eculizumab was discontinued after 1 year post-transplant.

So far, an excellent allograft function has been observed,
with no clinical evidence of IgA recurrence after transplantation
and the patient is currently doing well with a serum creatinine
of 92 µmol/l (eGFR by CKD-EPI of 92 ml/min/1.73 m2) and
no proteinuria.

Frontiers in Genetics | www.frontiersin.org 3 May 2021 | Volume 12 | Article 529236

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Guzzo et al. CFHR5 in IgAN With TMA

DISCUSSION

Over the years, evidence has accumulated on the pathogenic role
of complement in IgAN. Already in 1994, Stad et al. showed that
complement depletion induced by cobra venom factor abolished
glomerular inflammation, proteinuria and C3 deposition in a rat
model of IgAN (Stad et al., 1994).

Furthermore, hereditary or acquired deregulation of the AP
of C may exacerbate the prognosis of IgAN (Gharavi et al.,
2011; Kiryluk et al., 2012; Zhai et al., 2016; Medjeral-Thomas
et al., 2017; Nakamura et al., 2018; Zhu et al., 2018; Tortajada
et al., 2019). The 1q32 gene locus has been associated with IgAN.
It codes for CFH and the five CFH-related (CFHR) proteins
(Gharavi et al., 2011; Kiryluk et al., 2012). These proteins have
a high degree of gene sequence identity, particularly in the C-
terminal regions, which together with the gene locus proximity
favor non-homologous recombination and gene rearrangements.
Abnormal CFHRs may compete with CFH, interfering with its
inhibitory activity and potentially causing deregulation of the
AP of complement. A study conducted in 500 IgAN patients
confirmed a possible role of CHFR5 role in IgAN, with higher
soluble CFHR5 levels being associated with an increased risk of
IgAN progression (Zhai et al., 2016; Zhu et al., 2018). Moreover,
progressive IgAN has been associated with an increased
glomerular CFHR5 deposition (Medjeral-Thomas et al., 2017).
In 2010, a monoallelic (heterozygous) variant characterized
by a two-exon duplication in the CFHR5 gene was described
in patients of Cypriot origin with familial glomerulonephritis
(Gale et al., 2010). This “CFHR5 nephropathy,” which is
morphologically a C3 glomerulopathy (C3G), shares a similar
clinical course with IgAN, with persistent microscopic hematuria
and progressive ESKD, but without the pathognomonic IgA
mesangial deposits. This Cypriot CFHR5 variant predicts an
abnormally large protein with duplicated dimerization domains.
The pathogenesis is thought to be secondary to the hetero-
dimerization competing with the AP inhibitory activity of CFH
(Goicoechea de Jorge et al., 2013). However, as Gale and Maxwell
have commented, the link between CFHR5 variants and C3G
is not fully understood. The two most likely possibilities are a
reduction in the effective concentration of active CFHR5 protein,
or that the mutant CFHR5 protein acts in a dominant negative
manner (Gale and Maxwell, 2013).

In 2012, Vernon et al. have reported on a 7-year old girl
with “persistent post-infectious glomerulonephritis” who had a
monoallelic (heterozygous) CFHR5 variant (Vernon et al., 2012)
(p.Glu163Argfs∗34), that is very similar to the one observed in
our patient (p.Gln121Lysfs∗10). That variant, which in gnomAD
is ∼40 times more frequent than the variant of our patient, was
associated with reduced serum CFHR5 levels. Interestingly, the
variant was also present in her sister and mother, who were
clinically healthy and who had a normal level of the CFHR5
protein (Vernon et al., 2012).

The subject of our study carries a CFHR1∗B allele, that
determines a slightly higher risk of developing aHUS compared
with the CFHR1∗A allele (Nakamura et al., 2018). However,
this haplotype is extremely common (∼30–40% of the general

population) and cannot be considered pathogenic per se. In
contrast, the CFHR5 variant identified in our case is very rare (see
above). By analogy to the variant observed by Vernon et al. it can
be predicted that this variant results in partial CFHR5 deficiency.
The circumstantial evidence of the role of similarCFHR5 variants
in different complement-mediated nephropathies suggests its
pathogenic potential. However, this variant can be present,
although very rarely, among healthy individuals. To summarize
the evidence from genetic epidemiology, our observation seems
to support and extend previous reports on the role of genetic
variants of complement in the rapid progression of some cases
of IgAN. However, the rare observation of these variants in
healthy individuals indicates that no single variant so far seems
to be sufficient to induce renal disease per se at the heterozygous
state. The variants may increase the predisposition to develop the
glomerulopathy or they could exacerbate the course of the disease
(Kaartinen et al., 2019). The disease itself is likely triggered by
other factors. The fact that CFHR5 variants have been observed
in association with different types of nephropathies (namely,
C3G, persistent post-infectious GN, HUS, and –as in this case-
IgAN) further supports the concept that they may contribute to
glomerular disease rather than triggering it.

In view of the potential pathogenic consequences of the
patient’s genetic profile, we administered eculizumab up to 1
year post-transplant in order to prevent recurrence of the IgAN.
Eculizumab, a humanized monoclonal antibody directed against
C5, is the treatment of choice of aHUS, and has been employed
in some cases of rapidly progressive IgAN associated with aHUS
and CFH variant. In our patient, it was discontinued after 1 year
post-transplant, because the genetic risk profile of the patient did
not justify this long-term costly treatment and because its role in
avoiding the recurrence of IgAN has not been established.

In summary, we report a case of IgAN associated with CFH-
H3, MCP-H2, CFHR1∗B polymorphisms, known to constitute
moderate risk factors for aHUS, together with a very rare
and deleterious CFHR5 gene variant. This finding prompted
us to use eculizumab, in parallel with the usual induction and
maintenance transplant treatment. Over 3 years post-transplant
the patient does not show clinical recurrence of IgAN. Biological
and genetic screening of complement is currently part of the
aHUS diagnostic process. We suggest that it should also be
considered in rapidly progressive IgAN cases, to determine more
precisely the prevalence of genetic and/or acquired complement
abnormality, as this may have therapeutic implications in the
future (Harris et al., 2018).
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NOMENCLATURE

aHUS: atypical haemolytic uremic syndrome
AP: alternative pathway
CIC: circulating immune complexes
CFH: complement Factor H
CFHR5: CFH-related 5
IgAN: IgA nephropathy
CFHRs: complement FH related proteins (CFHRs)
ESKD: end-stage kidney disease
Gd-IgA1: galactose-deficient IgA1
GWAS: genome-wide association studies
LP: lectin pathway
TMA: thrombotic microangiopathy
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