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N6-Methyladenosine (m6A) is one of the most prominent modification regulating RNA
processing and metabolism. Increasing studies have illuminated the vital role of m6A
methylation in carcinogenesis. However, little is known about the interaction between
m6A-related genes and survival of ovarian cancer (OC) patients. The purpose of this
study was to obtain more reliable m6A-related genes that could be used as prognostic
markers of OC using bioinformatics analysis performed on the RNA-seq data of OC.
Gene expression datasets of all m6A-related genes as well as corresponding clinical
data were obtained from the International Cancer Genome Consortium (ICGC) and
The Cancer Genome Atlas (TCGA) databases. We detected differential expressed
m6A-related candidate genes as well as their relationship and interaction. m6A RNA
methylation regulator ALKBH5 and 35 m6A-related genes are dysregulated in OC.
A gene set that could be used as a potential independent prognostic risk feature was
further screened including NEBL, PDGFRA, WDR91, and ZBTB4. The results of mRNA
expression analysis by PCR were consistent with those of bioinformatics analysis. We
applied consensus clustering analysis on the expression of the four prognostic genes
and obtained four OC subgroups TM1-TM4. There were significant differences in age,
stage and grade among the subgroups, and the overall survival (OS) as well as Disease-
free survival (DFS) of TM2 group were shorter than those of the other three groups.
Further GO and KEGG enrichment analysis indicated that these differential genes were
closely related to biological processes and key signaling pathways involved in OC.
In summary, our study has indicated that m6A-related genes are key factors in the
progression of OC and have potential effects on the prognostic stratification of OC and
the development of treatment strategies.

Keywords: subgroup, prognosis, m6A-related genes, m6A RNA methylation regulators, ovarian cancer

INTRODUCTION

Ovarian cancer (OC) ranks the seventh most common cancer worldwide, with a total incidence
of 239,000 each year (Bray et al., 2018). It is the leading cause of gynecologic cancer-related
deaths among women, causing 152,000 deaths yearly (Torre et al., 2018). Due to the missing early
symptoms and the absence of effective early detection strategies, approximately 70% of OC patients
were diagnosis at advanced stage presenting with metastases (Oldak et al., 2019). Although the
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treatment for OC has been greatly improved in recent decades,
the recurrence is frequent and the 5-year overall survival rate
remains poor (Coleman et al., 2019). Hence, it’s urgent to explore
specific early diagnostic and prognostic biomarkers and improve
the unfavorable prognosis of patients suffering from OC.

N6-Methyladenosine (m6A) modification, the most
prominent chemical modifications in eukaryotic mRNA
and noncoding RNA (lncRNA), is a dynamic reversible process
that regulates RNA processing and metabolism (Deng et al.,
2018; Yu J. et al., 2018). m6A modification on RNAs was
labeled by methyltransferases (writers), preferentially recognized
and transmitted by binding proteins (readers), and erased by
demethylases (erasers) (Zhao et al., 2020; Jiang et al., 2021).
METTL3, METTL14, WTAP, KIAA1429, ZC3H13, and RBM15
are writers that catalyze the methylation of m6A into RNAs
(Wang T. Y. et al., 2020). Readers are capable of selectively
recognizing m6A-modified RNAs to mediate the translation and
degradation of RNAs, including HNRNPC, YTHDC1, YTHDC2,
YTHDF1, and YTHDF2 (Shi et al., 2019). Finally, FTO and
ALKBH5, considered as erasers, can remove the methyl group
from target RNAs to achieve the dynamics and reversibility of
the m6A modification process (Livneh et al., 2020).

Currently, increasing studies have demonstrated the roles of
m6A methylation in various carcinogenesis processes including
cell self-renewal (Dai et al., 2018), differentiation (Sun et al.,
2019), cell proliferation (Liu et al., 2020), migration (Cheng
et al., 2019; Liu et al., 2020), invasion (Cheng et al., 2019),
autophagy (Wang et al., 2019), apoptosis (Ianniello and
Fatica, 2018), and metastasis (Yue et al., 2019). For instance,
overexpression of METTL3 in AML significantly inhibits cancer
cell differentiation and apoptosis via activating PI3K/AKT
pathway (Ianniello and Fatica, 2018). ALKBH5 erases m6A
modification of tumor suppressor gene FOXM1 to promote
cancer cell maturation and tumorigenicity in glioblastoma
(Zhang et al., 2017). The aberrant m6A modifications were
reported to contribute to multiple cancers, including lung
cancer (Li et al., 2019), breast cancer (Niu et al., 2019),
glioblastoma (Zhang et al., 2017), acute myeloid leukemia
(AML) (Ianniello and Fatica, 2018), liver cancer (Cheng et al.,
2019), gastrointestinal cancer (Ni et al., 2019; Sun et al., 2019),
endometrial cancer (Liu et al., 2018), et al. Thus, m6A has great
potential as promising markers in the diagnosis, prognosis and
personalized targeted therapies of cancers. Since the effects of
m6A-related genes in OC have not been mentioned yet, we
conducted our study to shed light on the expression pattern,
prognostic value and potential mechanisms of m6A-related
genes in OC patients.

MATERIALS AND METHODS

The Expression Pattern of m6A-Related
Genes in OC Patients
Data Source
We downloaded the RNA-seq transcriptome data and
corresponding clinical information of 308 OC samples

from the TCGA database from the UCSC’s xena database1.
At the same time, RNA-seq data from 200 OC samples from
the ICGC database independent of the samples used in the
TCGA dataset were also obtained. The original RNA-seq
data was standardized data, and it was uploaded online
(DOI: 10.6084/m9.figshare.14399900), and the all TCGA
codes of the patients used in this study was displayed in
Supplementary Table 1. The corresponding clinical information
of the validated ovarian cancer samples were downloaded, as
shown in Table 1.

Identification of Functionally m6A-Modified Genes
We first collected some m6A RNA methylation related genes
from the known literature, which could be divided into three
types according to the role they played in the methylation
process: methyltransferases, binding proteins (readers) and
erasers. A total of 21 methylation related genes were obtained,
they are: METTL3, WTAP, ZC3H13, RBM15, METTL14,
YTHDC1, YTHDC2, YTHDF2, YTHDF3, HNRNPA2B1,
HNRNPC, HNRNPG, FTO, ALKBH5, IGF2BP2, IGF2, IGF2,
ZNF217, elF3H, elF3J (Yang et al., 2018; Lence et al., 2019).
Then, in the existing m6A database m6Avar2, there were 296
m6A-related genes related to OC disease. The two data sets
of m6A-related genes were integrated together, after removing
duplicates and genes that had no expression value in the sample
or expression values that were less than 80% of all samples. The
resulting m6A-related gene set contained a total of 267 m6A-
related genes, including 18 m6A RNA methylation regulators
and 249 m6A-related genes.

Expression Data
In order to determine the m6A RNA methylation regulatory
factors that were differentially expressed according to different
stages of OC, we compared the expression values of the
TCGA data using the one-way ANOVA (p ≤ 0.05) with R
language, version 3.6.0. UQ-FPKM (Upper-Quartile Fragments
Per Kilobase Million reads) normalization allows for cross-
sample comparison, thus we conducted a one-way ANOVA of the
previously normalized absolute expression values in this study.
The analysis workflow of our study is shown in Figure 1. First, we
preprocessed the TCGA data and selected pathological features
of stage (Stage I, Stage II, Stage III, Stage IV) from RNA-seq
expression data set of m6A RNA methylation regulators and
m6A-related genes related to OC, a data matrix containing 267
genes and 306 samples was obtained.

The Prognostic Value of m6A-Related
Genes in OC Patients
Consensus Clustering
Consensus clustering analysis was conducted to classify OC
samples, utilizing the m6A-related candidate gene set related
to the prognosis of OC. Patients were then divided into
subgroups according to age, stage, grade, new neoplasm
event type, BRCA1 mutation status, BRCA2 mutation

1http://xena.ucsc.edu/
2http://m6avar.renlab.org/
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TABLE 1 | The clinical information of the validated ovarian cancer samples.

Datasets data_source Parameter Subtype Patients n

Clinical pathological characteristics of patients with OC

TCGA UCSC_xena Age (years) >58 147

≤58 161

Gender Female 308

Pathologic stage I 1

II 22

III 245

IV 38

Unknown 2

Grade G1 1

G2 37

G3 261

G4 1

Unknown 8

new_neoplasm_event_type Metastasis 1

Locoregional Disease 4

Recurrence 146

Progression of Disease 12

Unknown 145

ICGC UCSC_xena Age (years) >59 97

≤59 103

Gender Female 200

disease_status_last_followup complete remission 49

Progression 42

Unknown 109

status, 19q13.2 CNV mutation and 19q13.42 mutation.
Then, we conducted comparative analysis of subgroup
survival differences.

Survival Analysis
Univariate Cox regression analysis was performed for each
functional m6A modifier using R “Survival” package to screen
gene sets related to prognosis, and genes with p ≤ 0.05 were
candidate genes with potential independent prognostic efficacy.
We applied LASSO regression to further screen for potential
prognostic risk characteristics. Multivariate Cox regression
analysis of risk characteristics was conducted to further screen
for genes that were significantly related to survival. Meanwhile,
risk scores were calculated based on the constructed risk
characteristics (Supplementary Table 2). Each OC Risk score
is calculated as follows: Risk Score =

∑n
i=1 Coefi ∗ Expi (Coef:

regression coefficient; Exp: expression value; n: total number of
samples; i:the identifier of the ith selected sample). Next, we
split the patients with OC into low- and high-risk groups in
terms of median risk score, and modeled these two categories as
continuous variables to obtain the Hazard Ratio. Then, Kaplan-
Meier test was adopted to test the significance of survival
curves, and survival curves were drawn. Similarly, we analyzed
the survival of OC samples in different clusters and compared
the differences in survival between different subgroups. The
predictive power of risk characteristics for 1-5-years survival
estimates was achieved using nomogram. Nomograms utilize

biological and clinical variables (such as tumor grade and
patient age) to graphically depict statistical prognostic models
that generate the likelihood of clinical events (such as cancer
recurrence or death) for a given individual (Balachandran et al.,
2015). The nomogram can visually display the results of Cox
regression analysis.

The Potential Mechanisms of
m6A-Related Genes in OC Patients
Construction of Interaction Networks
The interactions between the m6A-related genes were
analyzed and proved with STRING database3. Meanwhile,
correlations with a correlation coefficient threshold
|r| > = 0.3 and a rank-sum test p ≤ 0.01 were selected using
Spearman analysis.

Functional and Pathway Enrichment
Analysis
To analyze potential functions and pathways of m6A RNA
methylation related genes in OC, Enrichr4 was used for
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis of m6A-related
genes related to OC.

3http://www.string-db.org/
4http://amp.pharm.mssm.edu/Enrichr/
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FIGURE 1 | Analysis workflow of this study.

Validation of Clinical Samples
Tissue Samples
For tissue microarray (TMA) cohort, tumor tissues including 8
OC tissue specimens and 8 normal ovarian tissue specimens, were
obtained from May 2020 to July 2020 at the Shengjing Affiliated
Hospital of China Medical University, China. None of the
patients was administered any chemotherapy, immunotherapy,
or radiotherapy prior to surgery. Patients with other types of
malignant tumors, cardiovascular and cerebrovascular diseases,
and mental illness were also excluded. Our study was approved
by the Health Research Ethics Board of the Shengjing Affiliated
Hospital of China Medical University, and all the cases were
pathologically confirmed. The volume of a single tissue sample
was about 0.5 cm3. Tissue samples were sharp dissected during
surgery and quickly frozen with liquid nitrogen within 15 min
after restriction, and then stored at−80◦C until RNA extraction.

Real-Time PCR Array
Trizol reagent (Invitrogen, CA, United States) was utilized to
extract total RNA according to the manufacturer’s protocol.
For the quantification of 4 m6A prognostic risk model genes,
total RNA was then reverse-transcribed into the complementary
DNAs (cDNAs) with the PrimeScriptTM RT Reagent Kit with
gDNA Eraser (TaKaRa, Dalian, China) and amplified by GoTaq R©

qPCR Master Mix (Promega, Madison, WI, United States) using
the ABI ViiA 7 Real-time PCR system (Applied Biosystems,
United States). The specific primer sequences are listed in
Supplementary Table 3. GAPDH was used as an internal
control for the normalization of Gene expression. 2−11CT

method was used to calculate the relative fold change of
expression for samples.

Statistical Analysis
Statistical Analysis
We performed statistical analyses using SPSS 23.0 software (IBM
Corp., Armonk, NY, United States) and GraphPad Prism 7 (San
Diego, CA, United States). When the p-value (two-sided) ≤ 0.05,
the difference was considered statistically significant.

RESULTS

Expression Analysis of m6A RNA
Methylation Regulators and m6A-Related
Genes
Through univariate analysis of m6A-related genes related to
OC in samples with different stages, a total of 36 candidate
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genes with significant differences in expression between different
stages were selected from 267 m6A-related genes related to
OC (p ≤ 0.05), of which 1 was an m6A methylation regulator
ALKBH5 (Supplementary Figure 1).

Risk Model and Prognostic Analysis of
m6A-Related Genes
In order to study the prognostic role of genes related to m6A
RNA methylation regulation in OC, we used 306 samples with
survival information in the TCGA dataset as the training data
set, and all 36 related candidate genes were preliminarily screened
for prognostic risk characteristics using Cox univariate regression
analysis. We have initially obtained 5 genes that had potential
effects on the survival of the samples. The expression level
of WDR91 was positively correlated with the survival of OC
patients, while the expression levels of NEBL, PDGFRA, ZBTB4,
and FAM190A were negatively correlated with the survival
of OC patients. The corresponding p-value and Hazard Ratio
values of these 5 genes are shown in Supplementary Table 4
and Figure 2A, and the regression coefficients are shown in
Figure 2B. LASSO regression analysis further proved that these
five genes could constitute risk characteristics and the regression
coefficients were obtained (Figure 2C). According to the median
risk score calculated, samples were segregated into low- and
high-risk groups, and survival differences between these two
groups were statistically significant (p = 0.0002; Figure 2D).
In order to eliminate the interference of other factors, we
performed multivariate Cox regression analysis of candidate risk
characteristics on these 5 genes using clinicopathological features
such as age, stage, grade, etc. And 4 genes with significant impact
on sample survival were obtained (p≤ 0.05), respectively, NEBL,
PDGFRA, WDR91, and ZBTB4. And these 4 genes could be used
as independent prognostic markers. Subsequently, samples were
split into low- and high-risk groups, and meaningful differences
in survival were observed between the two groups (p = 0.0009;
Figure 2E).

Moreover, we used 200 samples from the ICGC test dataset
to further validate the stability of the risk model and the
potential independent prognostic efficacy of m6A-related genes.
The results demonstrated that these genes could effectively
distinguish the survival of low- and high-risk groups (p = 0.0072;
Figure 2F). The sample survival and the model risk score in the
TCGA training set and the ICGC validation set are shown in
Figures 2G,H.

Validation of TCGA Expression Results
Using Clinical Specimens
We examined the expression of 4 potential independent
prognostic genes by qRT-PCR in 8 OC tissues and 8 normal
ovarian tissues. We applied the unpaired t test to assess
the differences between the two groups. The results showed
that NEBL, PDGFRA and ZBTB4 were upregulated in OC
tissues compared to in normal ovarian tissues, whereas WDR91
were downregulated in tumor tissues (Figure 3A). The mRNA
expression results of qRT-PCR validation in 8 patients with OC

were supporting effect on the establishment of the four-gene
prognostic risk signature in OC.

Prognostic Risk Score and
Clinicopathological Features in OC
The heat map depicted the expression of four candidate
m6A-related genes in high-risk patients (Figure 3B). We
studied the clinicopathological characteristics of OC in the
low- and high-risk groups, including age, stage, grade, new
neoplasm event type, BRCA1 mutation status, BRCA2 mutation
status, 19q13.2 CNV status, and 19q13.42 CNV status. The
results illuminated that no meaningful difference was observed
in the clinicopathological characteristics between the two
groups containing stage, grade, new neoplasm event type,
19q13.2 CNV status, and mutation status of BRCA1 and
BRCA2. However, there was significant difference found
in 19q13.42 CNV status (p = 0.0390) and different ages
(p = 0.0023).

Additionally, we also detected the relationship between risk
score and each clinicopathological feature, and found that the risk
score was significantly different among patients of different ages
(p = 0.0043; Figure 3C), and the difference was also significant
among patients at different stages (p = 0.0342; Figure 3D).

We used nomograms to further demonstrate the 1–5 years
survival rate predicted by the risk score, including the risk of
sample illness, age, stage, and other factors, visualizing the results
of Cox regression analysis. A more accurate understanding of
survival by looking at the total number of points corresponding
to a sample of a certain condition, and the predicted survival
rate of the sample in 1–5 years is shown in Figure 3E. Survival
differences between different new tumor states are illuminated in
Figure 3F, including one case of distant metastasis, four cases of
local regional disease, 12 cases of disease progression, and 146
tumor recurrences.

Consensus Clustering of m6A-Related
Genes and Related Clinicopathological
Characteristics and Survival Outcomes
To study the function of candidate m6A-related genes in OC,
we separated the 308 TCGA OC samples into several subgroups
using the expression similarity of 36 candidate m6A-related
genes through the R "ConsensusClusterPlus" package. Based
on the similarity of their expressions, k = 4 was the best k
value for relatively stable clustering in a clustering range from
2 to 10 (Supplementary Figures 2A–C). All subgroups were
named TM1, TM2, TM3, and TM4, respectively. After using
Chi-Square test to analyze the clinicopathological characteristics
of samples from the four subgroups of TM1 to TM4, it was
found that the four subgroups had significant differences in
age, stage and grade (p ≤ 0.05). But there was no notable
difference in new neoplasm event type, BRCA1 mutation status,
BRCA2 mutation status, 19q13.2 CNV status, and 19q13.42 CNV
status. We further investigated the survival status between the
four subgroups and uncovered that the difference in survival
rates between these subgroups was not significant (p = 0.0998).
What’s more, we separated the samples into several subgroups
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FIGURE 2 | Construction of the prognostic signature with four m6A-related genes. (A) p-value, Hazard Ratio value and confidence interval for all risk genes with
potential independent prognostic efficacy obtained by univariate Cox regression analysis. (B) Regression coefficients of 5 m6A related genes obtained by univariate
Cox regression analysis. (C) LASSO regression map of 5 m6A related genes. (D) Survival curve drawn by dividing the TCGA training datasets into high and low risk
groups based on the risk score calculated by the feature matrix constructed from the 5 candidate m6A-related genes. (E) Survival curve drawn by dividing the TCGA
training datasets into high and low risk groups based on the risk score calculated by the feature matrix constructed from the 4 candidate m6A-related genes.
(F) Survival curve drawn by dividing the ICGC validation datasets into high and low risk groups based on the risk score calculated by the feature matrix constructed
from the 4 candidate m6A-related genes. (G) Survival time and risk store in TCGA training datasets. (H) Survival time and risk store in ICGC validation datasets.
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FIGURE 3 | Relationship between prognostic risk score and clinicopathological characteristics of ovarian cancer. (A) Expression of 4 prognostic predictors in ovarian
cancer tissues and normal tissues. (B) The expression profile of clinical characteristics of high and low risk groups. The horizontal axis is four candidate prognostic
genes. Red and blue indicate the expression value of each gene corresponding to each sample, and the vertical axis is the sample. Each top is shown from top to
bottom. Age, stage, and risk score information for each sample, where all samples are ranked according to risk score from low to high. (C) Differences in risk scores
between patients of different ages. (D) Differences in risk scores between patients of different stages. (E) Predicting patients 1–5-years survival with risk scores using
nomograms. (F) Survival curves between different new tumor event samples in TCGA datasets.

using the expression similarity of 4 prognostic genes. Utilizing
consistent cluster analysis, the samples could be clearly divided
into four categories with four prognostic genes, as shown
in Figures 4A,B. Figure 4C demonstrated that the inflection
point was larger when k = 4 and could be divided into
four categories. What’s more, it was found that the new four

subgroups had significant differences in age, stage and grade
(p ≤ 0.05) (Figure 4D). We also investigated the survival
status between the four subgroups and uncovered that the
OS and DFS of TM2 group were significantly shorter than
those of the other three groups (p = 0.0003, p = 0.002;
Figures 4E,F).
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FIGURE 4 | Identification of consensus clusters by 4 prognostic genes. (A) Relative change in area under CDF curve for k = 2–10 classified by the prognostic risk
model. (B) Consensus clustering cumulative distribution function (CDF) for k = 2–10 classified by the prognostic risk model. (C) Consensus clustering matrix for
k = 4. (D) Heat maps and significant clinical features of the four subgroups. (E) Kaplan–Meier overall survival (OS) curves for 308 samples in the four subgroups
classified by 4 prognostic genes. (F) Kaplan–Meier disease-free survival (DFS) curves for 308 samples in the four subgroups classified by four prognostic genes.

Interaction and Correlation Analysis of
m6A Candidate Gene set
To further understand the interactions between the 36 m6A-
related genes, we analyzed the interactions and correlations
between these genes. The interactions between the 36 m6A-
related genes are demonstrated in Figure 5A. When the

correlation coefficient threshold of the expression amount was set
to | r | ≥ 0.3, and the p-value of the rank sum test was set to
p ≤ 0.01, a total of 67 pairs of significantly correlated interaction
factors were obtained (Supplementary Table 5). The results of
the correlation analysis of all 36 candidate genes are shown in
Figure 5B, in which the blue ones are positive and the red ones
are negative.
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FIGURE 5 | The interaction and correlation among m6A-related genes. (A) PPI network was constructed to evaluate the interaction among m6A-related genes.
(B) The Pearson correlation analysis was used to determine the correlation among m6A-related genes.

GO and KEGG Pathway Analyses of
Differentially Expressed m6A-Related
Genes
We performed differential gene analysis on candidate genes
between the four subgroups of TM1 to TM4 to find m6A-related
genes that were differentially expressed in the four subgroups. We
identified 9 genes with significant differential expression among

the 36 m6A-related genes using one-way ANOVA (p ≤ 0.05;
Supplementary Table 6). We performed GO and KEGG
functional annotation of differential genes using functional
enrichment analysis tool (Supplementary Tables 7, 8). The
results demonstrated that these differentially expressed genes
were significantly related to biological functions including
regulation of actin filament organization, sphingomyelin
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FIGURE 6 | Functional enrichment analysis of differentially expressed genes between subgroups. (A) GO function analysis of differential genes among four
subgroups. (B) KEGG pathway analysis of differential genes among four subgroups.

metabolism, transcription of DNA templates, and apoptotic
signaling pathways (Figure 6A). Meanwhile, the differential
genes were closely related to sphingolipid metabolism pathways,
which were vital pathways involved in OC initiation (Figure 6B).

Among these differential genes, NEBL is a candidate gene
with potential independent prognostic efficacy. The design of
subsequent experiments for these genes can be considered to
further investigate the potential pathological value of these genes
and the design of new drug targets.

DISCUSSION

OC is one of the three most prevalent cancer types of female
genitalia with the highest mortality rate, yet its pathogenesis is
still unclear (Bamford and Webster, 2017). Thus, uncovering
the intrinsic molecular mechanisms of OC tumorigenesis is of
great significance. Aberrant expression of m6A-related genes
has been identified in multiple cancers, which is proved to be
closely related to pathological processes in cancer, including
tumorigenesis, metastasis, and drug resistance (Ma et al., 2019).
However, m6A-related genes have rarely been studied in OC.
Thus, we conducted this study to investigate their roles in OC.
Differential expression patterns for most m6A-related genes were
identified in OC patients compared with controls based on RNA
sequencing data from TCGA and ICGC. Significant difference
was found in survival between the risk groups of samples. What’s
more, a four-gene risk signature including NEBL, PDGFRA,
WDR91 and ZBTB4 was confirmed, and this risk signature was
considered as an independent predictor for prognosis of OC
patients. Subsequently, we identified consensus clustering into

four subgroups based on the expression of these four prognostic
genes, and uncovered statistically significant differences of age,
stage and grade among the subgroups. Moreover, the OS and
DFS of TM2 group were shorter than those of the other
three groups.

In terms of data from TCGA, m6A RNA methylation regulator
ALKBH5 and other 35 m6A-related genes were dysregulated
in OC patients, which indicated that m6A RNA methylation
related genes might play a role in OC. Similar results were
previously reported. Zhu et al. suggested that ALKBH5 regulated
the proliferation, invasion and autophagy of OC cells via EGFR-
PIK3CA-AKT-mTOR pathway and Bcl-2 (Zhu et al., 2019). In
addition, METTL3 stimulates epithelial-mesenchymal transition
(EMT) of cancer cells by stimulating receptor tyrosine kinase
AXL, thereby enhancing the invasion and metastasis of OC (Hua
et al., 2018). Han et al. (2020) studied the prognostic value
of high-frequency genetic alterations of m6A RNA methylation
regulators in OC. While we mainly focused on the prognostic
value of m6A-related genes themselves for OC, and we identified a
four-gene risk signature (Han et al., 2020). We also demonstrated
distinct relationship between the expression of m6A-related genes
and clinicopathological features in OC, such as 19q13.2_CNV, age
and stage. 19q13.2_CNV was reported associated with decreased
OC risk (Walker et al., 2017). What’s more, there were significant
difference of age, stage and grade among the four subgroups
using consensus clustering analysis, and the OS as well as DFS
of TM2 group were shorter than those of the other three groups.
The results above illustrate that m6A-related genes are likely to
serve a vital function in the development/progression of OC,
and further in-depth research is warranted to determine the
underlying molecular mechanisms.
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We then evaluated the effects of m6A-related gene alterations
on survival of OC patients. Abundant studies have reported
that the dysregulation of m6A-related genes was related to the
prognosis of various cancers, such as breast cancer, gastric cancer,
renal cell carcinoma, etc. (Liu et al., 2019; Su et al., 2019; Wang J.
et al., 2020) In our study, we obtained 4 m6A-related genes that
could be used as a feature of potential independent prognostic
risk from the 36 candidate genes. Our four−gene prognostic
signature implied that the expression level of NEBL, PDGFRA,
ZBTB4 was negatively correlated with the survival of OC patients.
Previous studies indicated that ZBTB4 and PDGFRA played
roles in tumor progression, same as our prediction (Kim et al.,
2012; Kang et al., 2015; Roussel-Gervais et al., 2017; Yu Y.
et al., 2018; Ye et al., 2019). ZBTB4 is a mammalian DNA-
binding protein acting as a transcriptional repressor (Yu Y. et al.,
2018). ZBTB4 overexpression inhibits cancer cell proliferation
and induces cell cycle arrest at G1 phase as well as apoptosis in
Ewing’s sarcoma (Yu Y. et al., 2018). Roussel-Gervais et al. (2017)
reported that decreased ZBTB4 expression correlated with the
high genome instability among many frequent human cancers,
which altered mitotic checkpoint, increased aneuploidy and
promoted tumorigenesis. Similarly, underexpression of ZBTB4
is correlated with poor survival of breast cancer patients (Kim
et al., 2012). PDGFRA is a gene encoding cell surface tyrosine
kinase receptor (Ye et al., 2019). For PDGFRA, PDGFRA can
promote downstream activation of the Notch1 pathway as well
as the angiogenesis, proliferation and invasion of OC cells (Ye
et al., 2019). And mutations in PDGFRA have been related to
a variety of other cancers, including glioblastoma, melanoma,
neuroendocrine carcinoma, etc. (Kang et al., 2015). However, the
role of NEBL in cancer is complex. NEBL is a member of nebulin
family of actin binding proteins (Zhang and Zhang, 2019).
Zhang et.al found that NEBL promoted cancer cell proliferation,
migration and invasion in cervical cancer by regulating PI3K/Akt
pathway (Zhang and Zhang, 2019). On the contrary, upregulation
of NEBL inhibited cancer cell migration and invasion and
reversed TGF-β-induced EMT in prostate cancer (Wang et al.,
2017). These indicate that m6A RNA methylation related genes
might play different roles as tumor promoter or suppressor agents
in different types of cancer, which need to be further elaborated.

Our GO analysis demonstrated that differentially expressed
genes were significantly related to biological functions including
regulation of actin filament organization and reorganization,
sphingomyelin metabolic process, cardiac myofibril assembly,
etc. Meanwhile, our KEGG analysis indicated that the differential
genes were closely related to sphingolipid metabolism pathways.
Previous studies have indicated that sphingolipid metabolic
pathway participated in the regulation of vital cancer cellular
processes, such as cell proliferation, migration, invasion,
apoptosis and autophagy, playing an important role in the
occurrence and development of OC (Hannun and Obeid, 2018;
Jacob et al., 2018; Ogretmen, 2018). Meanwhile, key enzymes of
sphingolipid metabolism were thought to be directly related to
drug resistance in OC (Huang et al., 2016). These suggest that
sphingolipid metabolism pathways may be a possible vital link in
m6A-related genes involved in regulating OC.

However, there are also some potential limitations in the
current study. First, there were no available datasets of tissues

adjacent to OC from TCGA, and we used OC and normal
ovarian tissue samples to verify the expression. Second, p ≤ 0.05
was considered statistically significant in our study which might
have influence on the reliability and accuracy of the results
(Colquhoun, 2017). Thus p ≤ 0.005 should be applied for our
future research. Third, the m6A-related genes related to OC that
we included were directly generated from the m6Avar database,
and their regulatory functions might not have been verified
enough. Subsequent experiments are needed to further verify
the specific functioning mechanisms of these m6A-related genes,
especially the 4 prognostic biomarkers we analyzed in this study.

CONCLUSION

In conclusion, our study for the first time analyzed the expression
of m6A-related genes in OC, and discovered that m6A-related
genes were tightly relevant to the prognosis of OC patients,
highlighting their roles as prognostic biomarkers in OC patients,
as well as their potential functions in the occurrence and
progression of OC. Further research is required to investigate the
regulatory mechanisms of m6A modification in OC, which will
help develop m6A RNA methylation related genes as valuable
therapeutic targets.
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