
fgene-12-580190 February 1, 2021 Time: 11:34 # 1

ORIGINAL RESEARCH
published: 03 February 2021

doi: 10.3389/fgene.2021.580190

Edited by:
Mehdi Pirooznia,

National Heart, Lung, and Blood
Institute (NHLBI), United States

Reviewed by:
Tianzhou Ma,

University of Maryland, College Park,
United States

Dechao Bu,
Institute of Computing Technology,

Chinese Academy of Sciences (CAS),
China

*Correspondence:
Xiaoling Fang

fxlfxl0510@csu.edu.cn
Sandra Orsulic

SOrsulic@mednet.ucla.edu

Specialty section:
This article was submitted to

Computational Genomics,
a section of the journal

Frontiers in Genetics

Received: 06 July 2020
Accepted: 04 January 2021

Published: 03 February 2021

Citation:
Wu J, Xia X, Hu Y, Fang X and
Orsulic S (2021) Identification

of Infertility-Associated Topologically
Important Genes Using Weighted
Co-expression Network Analysis.

Front. Genet. 12:580190.
doi: 10.3389/fgene.2021.580190

Identification of Infertility-Associated
Topologically Important Genes Using
Weighted Co-expression Network
Analysis
Jingni Wu1,2, Xiaomeng Xia1, Ye Hu2, Xiaoling Fang1* and Sandra Orsulic2*

1 Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, China,
2 Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles,
Los Angeles, CA, United States

Endometriosis has been associated with a high risk of infertility. However, the underlying
molecular mechanism of infertility in endometriosis remains poorly understood. In
our study, we aimed to discover topologically important genes related to infertility in
endometriosis, based on the structure network mining. We used microarray data from
the Gene Expression Omnibus (GEO) database to construct a weighted gene co-
expression network for fertile and infertile women with endometriosis and to identify gene
modules highly correlated with clinical features of infertility in endometriosis. Additionally,
the protein–protein interaction network analysis was used to identify the potential 20
hub messenger RNAs (mRNAs) while the network topological analysis was used to
identify nine candidate long non-coding RNAs (lncRNAs). Functional annotations of
clinically significant modules and lncRNAs revealed that hub genes might be involved
in infertility in endometriosis by regulating G protein-coupled receptor signaling (GPCR)
activity. Gene Set Enrichment Analysis showed that the phospholipase C-activating
GPCR signaling pathway is correlated with infertility in patients with endometriosis.
Taken together, our analysis has identified 29 hub genes which might lead to infertility in
endometriosis through the regulation of the GPCR network.

Keywords: infertility in endometriosis, hub lncRNA, hub mRNA, WGCNA, biomarker

INTRODUCTION

Endometriosis, a gynecological disorder characterized by the growth of endometrial glands
and stroma outside the uterus, is clinically highly associated with infertility. However, the
mechanisms of infertility in endometriosis remain unclear. Increasing evidence has suggested that
endometriosis patients have an abnormal endometrial environment, such as dysregulated hormone
levels and activated inflammatory factors, which is unfavorable for embryo implantation and
pregnancy progression (de Ziegler et al., 2010; Lessey and Kim, 2017). However, some women
with endometriosis can conceive without difficulty while others are infertile. Hence, infertility
in endometriosis appears to be a complex multifactorial clinical condition. Current medical
treatments for endometriosis are not effective against infertility, and surgical treatment may
induce the failure of ovarian function. Identifying and understanding the molecular mechanisms
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of infertility in endometriosis will facilitate the development of
early diagnostic criteria and therapeutic targets for infertility in
women with endometriosis.

Microarray and high-throughput sequencing technologies
combined with the development of bioinformatic algorithms
have aided in the discovery of many potential molecular
biomarkers for various diseases and conditions. Previously, most
studies primarily focused on gene expression differences between
different sample groups, ignoring the intrinsic relationship
between genes. Networks, such as the co-expression network
and protein–protein interaction (PPI) network, can provide a
straightforward representation of gene interactions. Additionally,
application of structure network algorithms can identify
function-specific modules or sub-structures in these biological
networks based on topological importance, such as correlation
with clinical traits, degree, edge-clustering coefficient, or K-core
level (Chen et al., 2014; Bu et al., 2021). However, to avoid
the possible bias and limitations associated with single-network
analysis, integrative analysis of multiple independent networks
is recommended (Chen et al., 2014; Nangraj et al., 2020). The
utilization of multiple networks has been shown to improve the
understanding of the full spectrum of interactions, prioritize
biomarkers for targeted therapy, and identify complex biological
activities (Guney et al., 2016; Mahapatra et al., 2018). Weighted
gene co-expression network analysis (WGCNA) is used to cluster
highly correlated genes into the same co-expression module in
order to further investigate the relationship between the module
and disease types/clinical phenotypes. Therefore, WGCNA is able
to identify biologically relevant modules, potential diagnostic
biomarkers, and therapeutic targets. Recent examples of effective
applications of WGCNA include the identification of hub genes
associated with lung squamous cell carcinoma as well as hub
genes of the perineural invasion phenotype in head and neck
squamous cell carcinoma (Zhang et al., 2019; Gao et al., 2020).
The PPI network reveals physical binding between protein
pairs and uncovers the molecular mechanisms behind these
interactions by following a pattern of small-world network
from the shortest path, proximity to the center, and average
aggregation coefficient (Zheng et al., 2019). Molecular Complex
Detection (MCODE) has been used to illuminate the most critical
genes and finest clusters in the PPI network based on the k-core
algorithm. Li et al. (2015) successfully used the integration of the
gene co-expression network with the PPI network for mining
candidate hub genes for Alzheimer’s disease, and Feng et al.
(2019) performed pathway analysis for microRNAs in type 2
diabetes mellitus by integrating gene co-expression data and
PPI network information. Our goal was to apply WGCNA and
integrated networks to identify functionally relevant molecular
pathways associated with infertility in endometriosis.

Long non-coding RNAs (lncRNAs) are non-coding transcript
clusters longer than 200 nucleotides. Recently, lncRNAs
have been shown to play important roles in various cellular
functions, including epigenetic regulation, transcription, and
cell cycle control, and are emerging as potential diagnostic
and therapeutic biomarkers for diseases (Fatica and Bozzoni,
2014; Yin et al., 2020). Previous studies have revealed that,
compared to normal controls, eutopic endometria from

infertile women with endometriosis present aberrant molecular
expression, such as decreased expression of lncRNA H19, which
might regulate the H19/Let-7/IGF1R pathway contributing to
impaired endometrium receptivity for pregnancy in women with
endometriosis (Ghazal et al., 2015). However, the expression
pattern and roles of lncRNAs in infertility in women with
endometriosis remain unknown.

In this study, we evaluated potential biomarkers in the
diagnosis and treatment of infertility in endometriosis patients
by comparing differential expression profiles of lncRNAs and
mRNAs in fertile and infertile patients with endometriosis.
Then, we used bioinformatics algorithms, including WGCNA,
PPI, and topological analyses, to identify hub lncRNA and
mRNAs and their functions. After removing genes that were
also differentially expressed between fertile and infertile patients
without endometriosis, we identified hub genes specific to
endometriosis-associated infertility (EAI). Our study might
provide new insights into the molecular mechanisms of infertility
in endometriosis. The flowchart of the analyses is shown
in Figure 1.

MATERIALS AND METHODS

Data Collection and Pre-processing
The microarray dataset GSE120103 analyzing the gene expression
profile of infertility in endometriosis (Bhat et al., 2019)
was downloaded from the Gene Expression Omnibus (GEO)
database. Microarray analysis in the GSE120103 dataset was
performed on the GPL6480 platform (Agilent-014850 Whole
Human Genome Microarray 4 × 44K G4112F, Santa Clara, CA,
United States). The dataset consisted of 36 samples that included
nine fertile women without ovarian endometriosis (OE), nine
infertile women without OE, nine fertile women with stage IV
OE, and nine infertile women with stage IV OE. Both fertile and
infertile patients with stage IV OE had no evidence of recurrence
or any other endocrinological disorder or other complications
of comorbidities. All patients were in the secretory menstrual
phase and enrolled for surgical intervention. To recognize hub
genes and co-expression networks associated with infertility in
endometriosis patients, we selected 18 samples (nine fertile and
nine infertile) with stage IV OE. Hub genes that were also
differentially expressed in fertile and infertile women without
endometriosis were screened out to explore the EAI-associated
genes. All data were pre-processed by linear models for the
microarray data (limma) package (Ritchie et al., 2007), including
background correct function and avereps function, to correct for
the background and summarize the probes.

Differentially Expressed Genes
Screening
The R package limma was applied to identify differentially
expressed genes (DEGs), including differentially expressed
mRNAs (DEMs) and differentially expressed lncRNAs (DELs), in
different comparison groups. A false discovery rate (FDR) < 0.05
and | log2FC| ≥ 1 were defined as the cut-off criteria
for screening DEGs.
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FIGURE 1 | Flowchart of strategy used in this study for data preparation, pre-processing, and analysis. WGCNA, weighted gene co-expression analysis; GO, Gene
Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI, protein–protein interaction; lncRNA, long non-coding RNA; mRNA, messenger RNA.

Gene Set Enrichment Analysis
Gene Set Enrichment Analysis (GSEA) is a computational
method used to annotate gene functions. It evaluates whether
a previously defined gene set is statistically significant between
two biological states. The “ClusterProfiler” package in R1 was
used to perform GSEA based on the Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) databases
for all expressed genes. The threshold for screening differentially
expressed gene sets was set as FDR < 0.05.

Weighted Gene Co-expression Network
Construction
The WGCNA package in R was used to establish the scale-
free co-expression network (Langfelder and Horvath, 2008) for
all expressed lncRNAs and mRNAs from fertile and infertile
women with endometriosis. To ensure the network was reliable,
unqualified genes were removed. An appropriate soft threshold
power (β) was selected based on a scale-free topology criterion
with which adjacencies between all genes in the module were
calculated by a power function. Then, the adjacency matrix was
transformed into the topological overlap matrix (TOM). TOM
measures connectivity of paired genes to all other network-
generated genes. Higher TOM values show that paired genes

1http://www.bioconductor.org/packages/release/bioc/html/clusterProfiler.html

may be highly correlated with each other and connect with
many shared genes (Li and Horvath, 2007; Yip and Horvath,
2007). This correlation method is more powerful than the
Spearman/Pearson correlation, thus creating more robust co-
expression relationships (Li and Horvath, 2007; Mähler et al.,
2017). The genes were clustered hierarchically according to the
TOM-based dissimilarity (1-TOM) measurement. The highly
connected genes were then grouped into the same module.

Clinically Significant Modules
Identification
After the clinical information was imported into the network,
its correlation with modules was investigated by the WGCNA
module–trait relationship analysis. The modules most relevant
to the clinical phenotypes could be identified. Here, we were
interested in the infertility-associated yellow and blue modules.

Functional Annotations of the Significant
Modules
To explore the functional annotations of the genes in the yellow
and blue modules, we used Metascape2 can integrate several data
resources, including GO, KEGG, and UniProt, to annotate gene

2http://metascape.org/gp/index.html

Frontiers in Genetics | www.frontiersin.org 3 February 2021 | Volume 12 | Article 580190

http://www.bioconductor.org/packages/release/bioc/html/clusterProfiler.html
http://metascape.org/gp/index.html
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-580190 February 1, 2021 Time: 11:34 # 4

Wu et al. Infertility-Associated Hub Genes in Endometriosis

function (Zhou et al., 2019). Terms with P < 0.01, count ≥3, and
enrichment factor >1.5 were considered statistically significant
(Li et al., 2019).

Construction of the PPI Network and
Identification of Hub mRNAs
After identifying the clinically significant modules, we calculated
the gene significance (GS) and module membership (MM) of
each gene in the modules. The module eigengene was the most
important component of the module’s gene expression matrix.
GS was defined as the correlation between the gene and clinical
phenotype of interest. MM represents the association of gene
expression profile with module eigengene. We set the threshold
of | MM| > 0.8 and | GS| > 0.8 for screening candidate hub genes
(mRNAs and lncRNAs) that strongly associated with infertility in
a module (Dai et al., 2020). A search tool database for the retrieval
of interacting genes (STRING)3 was used to construct the PPI
network based on the most significantly regulated DEMs. The
PPI network was visualized by Cytoscape and further screened
by MCODE (cut-off MCODE score = 10) (Liu et al., 2019) to
identify candidate hub DEMs. Finally, we used Venn diagrams
to identify the common hub mRNAs screened from the PPI
network and module. The common hub mRNAs were defined
as the hub mRNAs.

Topological Analysis of the
Co-expression Network and Selection of
Hub lncRNAs
With the threshold of TOM-based | correlation coefficient| > 0.4,
the weighted gene co-expression networks of the yellow and blue
modules were visualized by Cytoscape. The topological analysis
of lncRNAs was conducted to explore the central nodes of these
networks. Generally, a higher degree indicates that the node is
involved in more interactions. A higher betweenness suggests
that the node acts as a bridge connecting different network
modules. A better closeness indicates that the node is likely to
be the center of the network (Özgür et al., 2008). Cytoscape with
CentiScaPe 2.2 plug-in was applied to calculate the topological
parameters (degree, betweenness, and closeness) in our analysis.
The top-ranked lncRNAs (top five were shown in our study) in
degree, betweenness, and closeness of the co-expression network
and the previously analyzed hub lncRNAs from each module
were compared. The common hub lncRNAs in the topological
analysis and module were identified as the hub lncRNAs.

Validation of Hub Genes
The GSE26787 dataset was used for validation of the hub
mRNAs. The GSE26787 dataset includes 10 infertile women with
recurrent miscarriages or implantation failures and five fertile
control patients. We used the “ggplot2” (Ito and Murphy, 2013)
R package to show the expression of the identified infertility-
associated hub genes.

3http://string-db.org/

Functional Prediction of lncRNAs
Long non-coding RNAs may regulate the expression of
neighboring and distant protein-coding genes (Bonasio and
Shiekhattar, 2014). To clarify the biological roles of the hub
lncRNAs, the lncRNA co-expressed mRNAs calculated by
WGCNA were analyzed by the plug-in ClueGO in Cytoscape for
GO biological processes and KEGG pathways. ClueGO was used
to visualize the relationship between the genes and GO terms. A P
value < 0.05 was set as the screening condition.

RESULTS

Identification of DEGs and Gene Set
Enrichment Analysis
A total of 12,282 DEGs (7,671 upregulated and 4,611
downregulated), including 665 lncRNAs (529 upregulated
and 136 downregulated), and 11,617 mRNAs (7,142 upregulated
and 4,475 downregulated), were identified between infertile and
fertile women with endometriosis. The volcano plot and heatmap
show the variation of DEGs (Figures 2A,B).

To annotate gene functions, we performed GSEA for all
expressed genes; 1,455 significantly enriched gene sets were
obtained. Figures 2C–H show the most enriched ontology
biological processes and enriched pathways, which include
the phospholipase C-activating G protein-coupled receptor
signaling pathway, positive regulation of ion transmembrane
transporter activity, and negative regulation of the leukocyte
differentiation pathway.

Weighted Gene Co-expression Network
Construction
To identify all co-expressed genes, we chose β = 12 (scale-
free R2 = 0.85) as the soft threshold to construct a scale-free
weighted gene co-expression network (Figure 3A). lncRNAs and
mRNAs with similar expression patterns were assigned to co-
expression modules; 19 co-expression modules were identified
and are shown in different colors (Figure 3B).

Identification of Clinically Significant
Modules and Functional Annotations
The module-trait relationship is shown in Figure 3C. Of the 19
modules, the yellow module was the most negatively correlated
with infertility in women with endometriosis (R = −0.91,
p = 7 × 10−6), while the blue module was the most positively
correlated with infertility in women with endometriosis (R = 0.9,
p = 1 × 10−5). Therefore, we chose the yellow and blue modules
as the clinically relevant modules. Subsequent GO analysis
revealed that the most enriched biological process in the yellow
module was mRNA processing (Supplementary Figure 1A),
while the biological process enriched in the blue module was
meiotic cell cycle nuclear division (Supplementary Figure 1C).
KEGG analysis revealed that the most enriched pathways in
the yellow module were the autophagy and estrogen signaling
pathway (Supplementary Figure 1B), while the most enriched
pathways in the blue module were cell cycle and DNA replication
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FIGURE 2 | Identification of DEGs and Gene Set Enrichment Analysis. (A,B) Volcano plots of differentially expressed genes that include lncRNAs and mRNAs
(DEGs), differentially expressed lncRNAs (DELs), and differentially expressed mRNAs (DEMs) as well as heatmaps of the top 500 genes (including lncRNAs and
mRNAs), top 500 lncRNAs, and top 500 mRNAs based on the value of |logFC| in infertile and fertile women with endometriosis. (C–H) Gene Set Enrichment Analysis
(GSEA)-identified biological processes with significant enrichment in infertile patients with endometriosis.
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FIGURE 3 | Weighted gene co-expression network analysis of lncRNAs and mRNAs associated with infertility in women with endometriosis. (A) Analysis of the
scale-free fit index and the mean connectivity for various soft threshold powers (β). (B) Dendrogram for all expressed lncRNAs and mRNAs clusters based on a
dissimilarity measure (1-TOM). (C) Determination of module–trait relationship of infertility in endometriosis. Each row indicates a module eigengene (the principal
component of gene expression), while the heatmap represents a clinical trait of infertility in endometriosis. (D,E) Scatterplots of module eigengenes related to
infertility in women with endometriosis in the yellow and blue co-expression modules.
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TABLE 1 | The GO and KEGG pathway analysis of genes in the yellow module.

Category Term Description Log (p-value)

GO biological
processes

GO:0006397 mRNA processing −13.1387329

GO biological
processes

GO:0051603 Proteolysis involved in
cellular protein catabolic
process

−11.941189

GO biological
processes

GO:0022411 Cellular component
disassembly

−9.70675281

GO biological
processes

GO:0016570 Histone modification −9.19579349

GO biological
processes

GO:0006914 Autophagy −8.37033415

GO biological
processes

GO:0042176 Regulation of protein
catabolic process

−7.74011458

GO biological
processes

GO:0007346 Regulation of mitotic cell
cycle

−7.19546552

GO biological
processes

GO:0070646 Protein modification by
small protein removal

−6.99274833

GO biological
processes

GO:1903827 Regulation of cellular
protein localization

−6.91574071

GO biological
processes

GO:0016055 Wnt signaling pathway −6.42998855

GO biological
processes

GO:0045022 Early endosome to late
endosome transport

−6.09245453

GO biological
processes

GO:0019439 Aromatic compound
catabolic process

−6.06027019

GO biological
processes

GO:0034660 ncRNA metabolic process −5.94825625

GO biological
processes

GO:0034976 Response to endoplasmic
reticulum stress

−5.86412414

GO biological
processes

GO:1903008 Organelle disassembly −5.82566573

GO biological
processes

GO:0022613 Ribonucleoprotein complex
biogenesis

−5.76102653

GO biological
processes

GO:0006281 DNA repair −5.74297374

GO biological
processes

GO:1990778 Protein localization to cell
periphery

−5.5607251

GO biological
processes

GO:0043254 Regulation of protein
complex assembly

−5.43340442

GO biological
processes

GO:0080135 Regulation of cellular
response to stress

−5.34445314

KEGG pathway hsa03040 Spliceosome −8.58414093

KEGG pathway hsa04140 Autophagy–animal −5.26931505

KEGG pathway hsa04142 Lysosome −3.3383058

KEGG pathway hsa04962 Vasopressin-regulated
water reabsorption

−3.27003669

KEGG pathway hsa03015 mRNA surveillance
pathway

−3.24114684

KEGG pathway hsa03050 Proteasome −3.1516681

KEGG pathway hsa00511 Other glycan degradation −3.05682556

KEGG pathway hsa03420 Nucleotide excision repair −2.86058099

KEGG pathway hsa04915 Estrogen signaling pathway −2.79128101

KEGG pathway hsa04144 Endocytosis −2.75350872

KEGG pathway hsa04621 NOD-like receptor signaling
pathway

−2.63019526

KEGG pathway hsa00561 Glycerolipid
metabolism

−2.60170601

(Continued)

TABLE 1 | Continued

Category Term Description Log (p-value)

KEGG pathway hsa00230 Purine metabolism −2.59658367

KEGG pathway hsa04141 Protein processing in
endoplasmic reticulum

−2.52148975

KEGG pathway hsa04070 Phosphatidylinositol
signaling system

−2.47102038

KEGG pathway hsa04120 Ubiquitin-mediated
proteolysis

−2.43043309

KEGG pathway hsa04371 Apelin signaling pathway −2.43043309

KEGG pathway hsa04210 Apoptosis −2.36203062

KEGG pathway hsa05169 Epstein-Barr virus infection −2.25136927

KEGG pathway hsa04150 mTOR signaling pathway −2.24370941

GO biological processes, Gene Ontology analysis of biological process; KEGG,
Kyoto Encyclopedia of Genes and Genomes.

(Supplementary Figure 1D). These functional annotations for
the yellow and blue modules are listed in Tables 1, 2, respectively.
Our findings indicate that genes in the yellow and blue modules
may play crucial roles in the pathogenesis of infertility in women
with endometriosis.

Identification of Hub Genes
The scatterplot of GS (y-axis) vs. MM (x-axis) is shown in the
yellow (R = −0.75, p < 1 × 10−200) and blue modules (R = 0.87,
p < 1 × 10−200) (Figures 3D,E). MM had a highly significant
correlation with GS in these two modules, which implies that
the hub genes in the yellow and blue co-expression modules are
highly correlated with infertility in endometriosis. In our study,
885 candidate hub genes (19 lncRNAs and 866 mRNAs) in the
yellow module and 970 candidate hub genes (84 lncRNAs and
886 mRNAs) in the blue module were identified.

For the identification of hub mRNAs associated with infertility
in women with endometriosis, we constructed a PPI network
and screened four clusters comprising 204 significant candidate
hub mRNAs (Supplementary Table 1) containing 60 nodes
(Figure 4A), 49 nodes (Figure 4B), 61 nodes (Figure 4C), and
34 nodes (Figure 4D) using the MCODE scoring system with
a threshold of k-score > 10. Furthermore, we compared these
204 candidate hub mRNAs in the PPI network to the hub
genes screened from the modules and identified two overlapping
hub mRNAs in the yellow module (Figure 4E) and 18 in the
blue module (Figure 4F). These 20 hub mRNAs are listed
in Table 3.

For the identification of hub lncRNAs associated with
infertility in women with endometriosis, we analyzed the
topological characteristics of weighted gene co-expression
networks with degree, closeness, and betweenness. lncRNAs with
a high degree of connectivity are closer to the center of the
co-expression networks (Figures 5A,B). We identified lncRNAs
with the top five degrees that also belonged to the hub genes
identified by WGCNA and the top five lncRNA lists of closeness
and betweenness. There were four and five lncRNAs that satisfied
these criteria in the yellow and the blue modules, respectively
(Figures 5C,D). The nine hub lncRNAs are listed in Table 4.
Heatmaps revealed distinct expression patterns of the 20 hub
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TABLE 2 | The GO and KEGG pathway analysis of genes in the blue module.

Category Term Description Log (p-value)

GO biological
processes

GO:0051321 Meiotic cell cycle −11.2637016

GO biological
processes

GO:0000280 Nuclear division −9.21239795

GO biological
processes

GO:0044786 Cell cycle DNA replication −8.07277536

GO biological
processes

GO:0051301 Cell division −7.722935

GO biological
processes

GO:0022412 Cellular process involved in
reproduction in multicellular
organism

−7.20796891

GO molecular
functions

GO:0015077 Monovalent inorganic
cation transmembrane
transporter activity

−6.4096854

GO biological
processes

GO:0006268 DNA unwinding involved in
DNA replication

−6.00120718

GO molecular
functions

GO:0015291 Secondary active
transmembrane transporter
activity

−5.94025842

GO biological
processes

GO:0009566 Fertilization −5.79872588

GO biological
processes

GO:0048664 Neuron fate determination −5.60456786

GO biological
processes

GO:0071103 DNA conformation change −5.52974904

GO biological
processes

GO:0050953 Sensory perception of light
stimulus

−4.95474684

GO biological
processes

GO:0006820 Anion transport −4.3658481

GO biological
processes

GO:0006281 DNA repair −4.33202885

GO molecular
functions

GO:0004222 Metalloendopeptidase
activity

−4.32958972

GO biological
processes

GO:0048839 Inner ear development −4.21246032

GO molecular
functions

GO:0005104 Fibroblast growth factor
receptor binding

−4.20391833

GO biological
processes

GO:0019730 Antimicrobial humoral
response

−4.01810702

GO molecular
functions

GO:0003774 Motor activity −3.93572584

GO biological
processes

GO:0009314 Response to radiation −3.75992358

KEGG pathway hsa04110 Cell cycle −8.16036184

KEGG pathway hsa04976 Bile secretion −5.32999244

KEGG pathway hsa03030 DNA replication −4.46482567

KEGG pathway hsa04080 Neuroactive ligand-receptor
interaction

−4.27513306

KEGG pathway hsa05034 Alcoholism −3.18218307

KEGG pathway hsa03460 Fanconi anemia pathway −2.89472976

KEGG pathway hsa04975 Fat digestion and
absorption

−2.62975136

KEGG pathway hsa05218 Melanoma −2.58189181

KEGG pathway hsa05203 Viral carcinogenesis −2.55804795

KEGG pathway hsa05033 Nicotine addiction −2.22606437

KEGG pathway hsa04060 Cytokine–cytokine receptor
interaction

−2.07603943

(Continued)

TABLE 2 | Continued

Category Term Description Log (p-value)

KEGG pathway hsa04742 Taste transduction −2.07554483

KEGG pathway hsa03410 Base excision repair −1.88407149

KEGG pathway hsa04657 IL-17 signaling pathway −1.88229346

KEGG pathway hsa05016 Huntington’s disease −1.88122179

KEGG pathway hsa04115 p53 signaling pathway −1.8248744

KEGG pathway hsa03060 Protein export −1.82430999

KEGG pathway hsa03018 RNA degradation −1.73111307

KEGG pathway hsa05031 Amphetamine addiction −1.54416154

KEGG pathway hsa04950 Maturity-onset diabetes of
the young

−1.53379589

mRNAs and the nine hub lncRNAs in infertile and fertile women
with endometriosis (Figures 6A,B).

To further explore the hub genes specifically associated
with EAI, the 29 identified hub genes were compared to
the DEGs between the fertile and infertile women without
endometriosis. The Venn diagram shows the 19 overlapping
hub genes (including 14 mRNAs and five lncRNAs) that were
associated with infertility irrespective of endometriosis status
(Supplementary Figure 2A). Ten hub genes (including five
mRNAs and five lncRNAs) were specific to EAI (Supplementary
Figure 2A), suggesting that these genes might play unique roles
in infertility caused by endometriosis.

Validation of Hub Genes
Since there is no other publicly available transcriptome
dataset with information about fertility status in women with
endometriosis, the infertility-associated 14 overlapping hub
mRNAs were selected for validation using the GSE26787 dataset
in which the fertility status of the patients was known. It is
unknown, however, if any of the patients had endometriosis.
Eight hub genes were differentially expressed between fertile
and infertile women (Supplementary Figure 3A); six genes
were associated with recurrent miscarriages and two were
associated with implantation failures. As expected, the specific
EAI-associated five hub mRNAs were not differentially expressed
in this dataset. These results support the validity of our
bioinformatics analysis.

Function Prediction of the Hub lncRNAs
The hub lncRNAs in the same module had similar potential
functions (data not shown). In our topological analysis of
the co-expression modules, LOC100505854 was the first-
ranked lncRNA in the yellow module and LOC390705 was
the first-ranked lncRNA in the blue module. Functional
annotations for these two lncRNAs and co-expressed
mRNAs are shown in Figures 6C–F. The GO terms and
KEGG pathways of LOC100505854 were enriched in the
nucleobase-containing compound metabolic process, RNA
processing, and the spliceosome pathway (Figures 6C,D),
while the GO terms and KEEG pathways of LOC390705
were mainly enriched in G protein-coupled receptor

Frontiers in Genetics | www.frontiersin.org 8 February 2021 | Volume 12 | Article 580190

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-580190 February 1, 2021 Time: 11:34 # 9

Wu et al. Infertility-Associated Hub Genes in Endometriosis

FIGURE 4 | Protein–protein interaction network cluster analysis and identification of hub mRNAs. A PPI network containing 1,174 nodes and 12,150 edges was
constructed by filtering the 1,990 DEGs using STRING. Shown are four clusters in the network that had the highest scores (k-score > 10). (A) Cluster 1 consists of
69 nodes and 1,766 edges. (B) Cluster 2 consists of 49 nodes and 652 edges. (C) Cluster 3 consists of 61 nodes and 464 edges. (D) Cluster 4 consists of 34
nodes and 200 edges. (E,F) Venn diagrams of common hub mRNAs in the yellow and blue modules. The nodes or hub mRNAs in green represent down-regulated
genes and those in red represent up-regulated genes in infertile women with endometriosis compared with fertile women with endometriosis.
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TABLE 3 | Common hub mRNAs of WGCNA and PPI analysis in the yellow and blue modules.

Gene description WGCNA PPI analysis Limma analysis

Module GS GS P-value MM MM P-value K Score Log2FC FDR Up or Down

ADCY6 Adenylate cyclase 6 Yellow −0.88914374 2.10176E-05 0.977029022 2.01881E-09 Cluster 1: 59.864 −4.32322549 1.62E-13 Down

FSTL3 Follistatin like 3 Yellow −0.86138354 7.54665E-05 0.975307638 3.10296E-09 Cluster 2: 27.167 −6.06007779 1.09E-12 Down

ADCY1 Adenylate cyclase 1 Blue 0.815437991 0.000378522 0.888705991 2.14994E-05 Cluster 1: 59.864 4.540162745 8.07E-12 Up

CASR Calcium sensing receptor Blue 0.889887433 2.02E-05 0.851114402 0.000113203 Cluster 1: 59.865 4.154828687 0.000000007 Up

CCKAR Cholecystokinin A receptor Blue 0.85841125 8.51358E-05 0.892040065 1.80473E-05 Cluster 2: 27.170 5.33799687 3.77E-12 Up

CFTR CF transmembrane
conductance regulator

Blue 0.877568366 3.71619E-05 0.916502067 4.07889E-06 Cluster 3: 15.467 6.435926076 1.21E-13 Up

CRH Corticotropin releasing
hormone

Blue 0.850563948 0.000115593 0.930216776 1.43E-06 Cluster 2: 27.172 4.785431728 1.38E-11 Up

ENAM Enamelin Blue 0.900736051 1.11178E-05 0.941971756 4.86E-07 Cluster 3: 15.467 4.953118924 2.71E-12 Up

GLP1R Glucagon-like peptide 1
receptor

Blue 0.850921895 0.000114034 0.866580845 6.07E-05 Cluster 2: 27.172 6.07312786 4.19E-13 Up

GLRA1 Glycine receptor alpha 1 Blue 0.839537197 0.000172792 0.878336963 3.58E-05 Cluster 3: 15.467 4.287442801 2.79E-11 Up

GPR55 G protein-coupled receptor 55 Blue 0.855998273 9.37062E-05 0.909933263 6.33E-06 Cluster 1: 59.864 4.930381688 9.49E-12 Up

GPRC6A G protein-coupled receptor
class C group 6 member A

Blue 0.832428091 0.000220505 0.918722191 3.49E-06 Cluster 2: 27.167 4.303509957 4.51E-12 Up

HCRTR2 Hypocretin receptor 2 Blue 0.836214917 0.00019392 0.915205528 4.46E-06 Cluster 2: 27.167 4.558044205 2.09E-11 Up

HTR5A 5-Hydroxytryptamine receptor
5A

Blue 0.874246266 4.33124E-05 0.952672218 1.46E-07 Cluster 1: 59.864 4.038237249 9.38E-12 Up

KRT2 Keratin 2 Blue 0.880981394 3.16052E-05 0.956618535 8.76E-08 Cluster 3: 15.467 4.448300733 4.48E-11 Up

LCE1E Late cornified envelope 1E Blue 0.866279363 6.1499E-05 0.957508323 7.75E-08 Cluster 3: 15.467 4.542418549 2.47E-11 Up

TAAR1 Trace amine associated
receptor 1

Blue 0.839448887 0.000173328 0.947895963 2.58E-07 Cluster 2: 27.167 4.62537402 4.84E-13 Up

TAS2R3 Taste 2 receptor member 3 Blue 0.878360965 3.58053E-05 0.939606798 6.15E-07 Cluster 1: 59.864 4.106640312 5.95E-12 Up

TAS2R41 Taste 2 receptor member 41 Blue 0.905530556 8.34943E-06 0.887652146 2.27E-05 Cluster 1: 59.865 4.606795778 1.14E-11 Up

VSTM2B V-set and transmembrane
domain containing 2B

Blue 0.801793908 0.000562628 0.867303193 5.89E-05 Cluster 4: 12.121 5.226197818 4.11E-12 Up

WGCNA, weight gene co-expression network analysis; PPI, protein–protein interaction; GS, gene significance; MM, module membership; log2FC, log2 (fold-change) values of differentially expressed genes between
fertile and infertile women with endometriosis.
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FIGURE 5 | Identification of hub lncRNAs. (A) The lncRNAs with more than 100, 400, or 700 connections in the weighted gene co-expression network in the yellow
module are highlighted as yellow dots as visualized by Cytoscape. (B) The lncRNAs with more than 50, 150, or 450 connections in the weighted gene co-expression
network in the blue module are highlighted as blue dots as visualized by Cytoscape. (C,D) Venn diagrams of common hub lncRNAs among WGCNA and top five
lncRNA lists of degree, betweenness, and closeness in the yellow and blue modules. The hub lncRNAs in red font represent up-regulated genes and hub lncRNAs in
green font represent down-regulated genes in infertile women with endometriosis compared with fertile women with endometriosis.
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FIGURE 6 | Heatmaps of the hub genes and functional predication of the hub lncRNAs. (A) Heatmap of the expression of hub mRNAs in infertile and fertile women
with endometriosis. (B) Heatmap of the expression of hub lncRNAs in infertile and fertile women with endometriosis. (C) GO biological processes of LOC100505854
co-expressed mRNAs in the yellow module. (D) KEGG pathways of LOC100505854 co-expressed mRNAs in the yellow module. (E) GO biological processes of
LOC390705 co-expressed mRNAs in the blue module. (F) KEGG pathways of LOC390705 co-expressed mRNAs in the blue module.
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(GPCR) activity, fertilization, and the GPCR ligand binding
pathway (Figures 6E,F).

DISCUSSION

Endometriosis is associated with female infertility, but the
molecular mechanisms underlying infertility are poorly
understood. Although current medical and surgical treatments
may help treat endometriosis symptoms, such as pelvic
pain and dysmenorrhea, there has been no evidence that
they enhance fertility. In fact, ovulation-suppressing agents
may indirectly negatively affect fertility by minimizing
the window of opportunity when fertility treatments are
still effective (Practice Committee of the American Society
for Reproductive Medicine, 2012). Thus, it is imperative
to identify diagnostic biomarkers and therapeutic targets
for the effective management of infertility in women with
endometriosis. Our study identified infertility-associated
hub RNAs in women with endometriosis using lncRNA and
mRNA expression profile data from the GEO database4. Our
findings elucidate potential molecular alterations associated
with infertility in women with endometriosis and provide
a useful resource for the identification of biomarkers of
infertility, which may improve specificity and accuracy in
the early diagnosis and treatment of infertility in women
with endometriosis.

With the improvement of omics technologies, novel
qualitative and quantitative measures have been developed
to evaluate various biological systems. It is estimated that
biomarkers identified through the analysis of the entire
underlying network structure are more robust and better
reflect the involved complex biology (Sung et al., 2012). Also,
integrative analysis of diverse biological networks can eliminate
potential biases of single-omics analyses (Al-Anzi et al., 2017;
Nangraj et al., 2020). In this study, we used the PPI network
and WGCNA as multi-omics strategies to uncover infertility-
related biological mechanisms. To reveal the biological basis of
infertility associated with endometriosis, these networks were
further evaluated based on their relationship to phenotypic
traits (module analysis), MCODE score (hub analysis), or degree
centrality (degree analysis). Compared to other bioinformatics
methods, WGCNA is more reliable and the results have greater
biological significance (Wang Y. et al., 2019). WGCNA can
predict a cluster of co-expressed genes associated with a
specific biological function or tissue type, and these highly
correlated nodes are representative genes that contribute to
a phenotype or disease. In our study, WGCNA proved to
be an effective method to recognize the biologically relevant
modules and diagnostic biomarkers of infertility in women with
endometriosis. Further functional analysis showed that genes
clustered in the yellow and blue modules were predominantly
involved in infertility, which confirmed the reliability of
module analysis in recognizing clinically significant genes
(Landfors et al., 2016; Rumi et al., 2017; Wang W. et al., 2019).

4https://www.ncbi.nlm.nih.gov/geo/info/linking.html
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In addition, lncRNAs are emerging as promising biomarkers
that can form complex networks with many genes and may
regulate their co-expressed mRNAs in the modules (Liao
et al., 2011). Topological parameters (degree, betweenness,
and closeness) were analyzed to identify central lncRNAs in
the infertility-associated co-expression networks. Additionally,
the PPI network based on DEMs was constructed to identify
functional gene connections. Its densely connected regions
containing hub mRNAs were found by MCODE based on a
scoring system. This method allowed for the identification of
20 hub mRNAs that highly correlated with infertility in the
module analysis and had the highest number of connections in
the PPI network.

Some of the hub mRNAs, such as TAS2R3, TAS2R41, CASR,
CCKAR, GPR55, HCRTR2, CFTR, and ENAM, were also
identified as gene sets with core enrichment, which confirmed the
biological importance of hub mRNAs. Some hub mRNAs in this
study, including CASR, CCKAR, CFTR, CRH, FSTL3, GLP1R,
GPR55, and TAAR1, have been reported to play important
roles in the pathogenesis of infertility. For instance, CFTR was
shown to be involved in aromatase activation and estrogen
production, both of which play important roles in infertility
in women with endometriosis (de Ziegler et al., 2010; Chen
et al., 2012). CASR could potentially influence a variety of
reproductive processes, such as proliferation, maturation, or
mobility of germ cells and implantation of the zygote (Ellinger,
2016). FSTL3, which was identified as a specific hub gene
of EAI in our analysis, has previously been shown to be
downregulated in endometriosis (May-Panloup et al., 2012)
and might regulate endometrium receptivity, a key factor of
EAI (Xu et al., 2020). Our findings indicate that hub mRNAs
may have different roles in the mechanisms of infertility
in women with endometriosis. These hub mRNAs could
affect hormone levels and inflammatory status in the eutopic
endometrium and cause infertility due to sperm dysfunctions
and embryo implantation failure, which is consistent with
the known theory of infertility in endometriosis (de Ziegler
et al., 2010). We also discovered novel hub mRNAs, such
as TAS2R3, VSTM2B, and HCRTR2, and other specific EAI-
associated genes, such as ADCY6, ADCY1, and GLRA1, which
have not been previously reported in female infertility but have
been associated with important biological functions, including
meiotic arrest and neuronal signaling (Mircea et al., 2007;
Gentiluomo et al., 2017; Sethna et al., 2017; Dunietz et al.,
2020). These identified mRNAs warrant further investigation and
validation as they may elucidate novel mechanisms of infertility
in endometriosis.

The diagnostic role of lncRNAs in infertility in women with
endometriosis has not been studied. In our study, WGCNA was
used to recognize hub lncRNAs and reveal their functions by
showing lncRNA–mRNA interactions in the module. Some of
these hub lncRNAs have been reported in other diseases. For
instance, LOC390705 might be a candidate hub gene contributing
to tumorigenesis of colorectal cancers (Chen et al., 2017). Genes
in a module are closely related in function. Therefore, the
lncRNAs involved in the yellow or blue modules are considered
to have similar functions, which was further confirmed by our

analyses. Here, we showed the potential functions of the two top-
ranked lncRNAs, LOC390705 and LOC100505854. Many of these
functions may be correlated with infertility in endometriosis. For
example, GPCR is an important membrane protein that senses
signaling molecules, such as hormones, and GPCR methylation
may impair endometrial receptivity, which is an important risk
factor for infertility in endometriosis (Guo, 2019; Pathare and
Hinduja, 2020). Cellular response to stress, especially response
to oxidative stress, including apoptosis and DNA damage, was
shown to be involved in the mechanisms of infertility in
endometriosis (Gupta et al., 2008). Together, these hub lncRNAs
are likely to play roles in infertility in women with endometriosis
by regulating functions such as GPCR activity, which was
also identified in the GSEA. Our results may provide new
insights into the molecular mechanisms of infertility associated
with endometriosis.

Our study has several limitations. Firstly, the dataset we used
for the identification of endometriosis-associated infertility genes
did not have comprehensive clinical information, which may
have affected the evaluation of the data. Secondly, the controversy
regarding whether endometriosis, especially the milder stages of
endometriosis, is a cause of infertility or merely an incidental
finding is ongoing. As discussed by Gupta et al. (2008), this
controversy might be due to study design limitations, including
the lack of fertile endometriosis patients as controls, differences in
the severity of endometriosis, and heterogeneous patient groups.
To avoid or mitigate these problems, we chose the dataset
consisting of stage IV ovarian endometriosis patients without
any other endocrinological disorder or other complications of
comorbidities. Our identified hub genes were dysregulated in
infertile women with endometriosis compared to fertile women
with endometriosis. Thus, the biological functions of the hub
genes might be highly correlated with infertility in endometriosis.
We further searched the specific EAI-associated hub genes
by screening out the genes that were differentially expressed
between fertile and infertile patients without endometriosis.
The absolute cause-and-effect relationship as well as the unique
biomarkers for EAI need to be confirmed by future experiments.
Thirdly, we could not identify an independent public dataset
that contained information on both fertility and endometriosis
status to validate our endometriosis-specific infertility genes.
However, using an independent dataset of samples collected from
patients with known fertility status (unknown endometriosis
status), we were able to validate infertility genes that were
common to patients with and without endometriosis. It will be
necessary to further confirm these identified hub genes and co-
expression networks in large-scale clinical studies for application
in infertility management in women with endometriosis.

Our study, for the first time, systematically identified the
infertility-associated hub lncRNAs and mRNAs in women with
endometriosis using the WGCNA algorithm and explored
the functions of these genes. These findings provide new
resources for better understanding of the pathogenesis of
endometriosis-associated infertility and identification of new
diagnostic/therapeutic approaches that may help predict the
infertility outcome of endometriosis patients and eventually
improve fertility rates.
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