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Kawasaki disease (KD) causes acute systemic vasculitis and has unknown etiology.
Since the acute stage of KD is the most relevant, the aim of the present study was to
identify hub genes in acute KD by bioinformatics analysis. We also aimed at constructing
microRNA (miRNA)-messenger RNA (MRNA) regulatory networks associated with acute
KD based on previously identified differentially expressed miRNAs (DE-miRNAs). DE-
mMRNAs in acute KD patients were screened using the mRNA expression profile data of
GSE18606 from the Gene Expression Omnibus. The functional and pathway enrichment
analysis of DE-mRNAs were performed with the DAVID database. Target genes of
DE-miRNAs were predicted using the miRWalk database and their intersection with DE-
mRNAs was obtained. From a protein—protein interaction (PPI) network established by
the STRING database, Cytoscape software identified hub genes with the two topological
analysis methods maximal clique centrality and Degree algorithm to construct a miRNA-
hub gene network. A total of 1,063 DE-mRNAs were identified between acute KD
and healthy individuals, 472 upregulated and 591 downregulated. The constructed PPI
network with these DE-mRNAs identified 38 hub genes mostly enriched in pathways
related to systemic lupus erythematosus, alcoholism, viral carcinogenesis, osteoclast
differentiation, adipocytokine signaling pathway and tumor necrosis factor signaling
pathway. Target genes were predicted for the up-regulated and down-regulated DE-
miRNAs, 10,203, and 5,310, respectively. Subsequently, 355, and 130 overlapping
target DE-mRNAs were obtained for upregulated and downregulated DE-miRNAs,
respectively. PPl networks with these target DE-mRNAs produced 15 hub genes, six
down-regulated and nine upregulated hub genes. Among these, ten genes (ATM,
MDC1, CD59, CD177, TRPM2, FCAR, TSPAN14, LILRB2, SIRPA, and STAT3) were
identified as hub genes in the PPl network of DE-mRNAs. Finally, we constructed
the regulatory network of DE-miRNAs and hub genes, which suggested potential
modulation of most hub genes by hsa-miR-4443 and hsa-miR-6510-5p. SP1 was
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predicted to potentially regulate most of DE-miRNAs. In conclusion, several hub
genes are associated with acute KD. An miRNA-mRNA regulatory network potentially
relevant for acute KD pathogenesis provides new insights into the underlying molecular
mechanisms of acute KD. The latter may contribute to the diagnosis and treatment of

acute KD.

Keywords: Kawasaki disease, bioinformatical analysis, miRNA-mRNA network, differential expression genes,

hub gene

INTRODUCTION

Kawasaki disease (KD) is responsible for acute systemic vasculitis
and it is a high-risk factor of acquired heart disease in children
(Gordon et al,, 2009). The disease was first reported in 1967
and worldwide incidence has gradually increased in recent
years (Uehara and Belay, 2012; Lin and Wu, 2017). Diagnosis
of KD still relies on presentation of clinical symptoms, such
as persistent fever of more than 5 days, conjunctival non-
suppurative hyperemia, red bayberry tongue, rash, lymph node
enlargement, fingertip swelling, annular peeling, and systemic
vascular inflammatory lesions (McCrindle et al., 2017). Although
the etiology of KD remains unknown, the role of alteration of
genes and their regulation has become increasingly relevant.
The latter is based on the reported presence of susceptibility
genes and single nucleotide polymorphisms (Onouchi, 2018;
Kumrah et al., 2020) specific signaling pathways (Bijnens et al,,
2018; Lv et al,, 2019) and genetic predisposition (Uehara et al,,
2003). Therefore, diagnosis and treatment of KD will benefit
from a comprehensive understanding of the disease at the
molecular level.

The most serious complication of KD is coronary artery
injury. The latter can develop into coronary artery aneurysm-
like changes, coronary artery stenosis, thrombosis, myocardial
infarction, and even sudden death (Dietz et al., 2017). At the acute
stage, KD-induced vasculitis results in the rapid involvement
of inflammatory cells-mainly monocytes, macrophages and
activated neutrophils-into the arterial endothelium, which can
last for several days (Tsujimoto et al., 2001; Andreozzi et al.,
2017). Development of vascular disease and the transition from
the acute to the chronic stage correlates with the number of
inflammatory cells (Takahashi et al., 2018). In acute KD, vascular
endothelial damage may be triggered by inflammatory factors
in peripheral blood cells. Thus, exploration of the molecular
mechanisms leading to this endothelial vascular inflammation
from the perspective of peripheral blood cells should be
clinically significant.

In a previous paper, we reported ten differentially expressed
miRNAs (DE-miRNAs) from peripheral blood cells of acute KD
sufferers and healthy individuals (Chen Y. et al., 2018). miRNAs
are endogenous non-coding RNAs that post-transcriptionally
reduce gene expression through translational inhibition or
mRNA destabilization. MiRNAs are crucial modulators for
various cellular biological processes, such as inflammatory
response, cell growth or differentiation, which suggests that
miRNA-mRNA regulatory networks may play an important role
in the pathogenesis of acute KD. Although several miRNAs have

been reported to exert functions in the progress of KD (He et al.,
2017; Rong et al., 2018), to our knowledge, a systematic and
comprehensive analysis of miRNA-mRNA regulatory networks
in acute KD is still lacking.

In present study, we have used the mRNA expression profile
data of GSE18606 from the Gene Expression Omnibus (GEO)
to screen out DE-mRNAs between acute KD and normal
control samples. Subsequently, DE-mRNAs commonly appearing
as predicted target genes of DE-miRNAs were selected, and
hub genes were identified. Finally, integrative miRNA-mRNA
regulatory networks associated with acute KD were constructed.
Overall, this information should help elucidate the pathogenic
mechanism of the acute form of KD, contributing to the early
diagnosis and treatment of this disease.

MATERIALS AND METHODS

Microarray Data Source

To obtain the gene expression datasets of acute KD, we
searched the GEO database'’ using the following keywords:
“(Kawasaki disease) and “Homo sapiens” [porgn: txid9606]”,
and “Expression profiling by array”. After a systematic review,
the mRNA expression profile data of GSE profile (GSE18606)
was selected and downloaded. GSE18606 was based on
GPL6480 (Agilent-014850 Whole Human Genome Microarray
4x44K G4112F). The array data for GSE18606 included
nine healthy age-appropriate cases and 20 acute KD cases
(8 IVIG non-responding and 12 IVIG-responding cases;
Supplementary Table 1). The data were freely available
online, and this study did not involve any experiment
on humans or animals performed by any of the authors.
Ten DE-miRNAs were obtained from our previous study
(Chen Y. etal., 2018).

Differentially Expressed mRNAs

Identification

To identify the DE-mRNAs between normal controls and acute
KD samples, we used GEO2R-an interactive web tool for
comparing two groups of any GEO series. Data processing was
performed as described previously (Song et al., 2020). Genes that
met the cut-off criteria of adjusted P-value (adj. P) <0.05 and
| log fold change | > 1.0 were considered to be DE-mRNAs.
A visual hierarchical cluster analysis was used to show the
DEG volcano plot.

'https://www.ncbi.nlm.nih.gov/geo/
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GO Annotation and KEGG Pathway
Enrichment Analysis of DE-mRNAs

To obtain function and involved biological processes of DE-
mRNAs, Gene Ontology (GO) annotation was performed
using the DAVID database, whereas the Kyoto Encyclopedia
of Genes and Genomes (KEGG) was used for pathway
enrichment analysis. The GO analysis included three categories:
biological process (BP), cellular component (CC), and
molecular function (MF). P-value <0.05 was considered to
be statistically significant.

PPI Network Construction and Hub

Genes Identification

The functional protein association networks of DE-miRNAs
were obtained using the Search Tool for the Retrieval of
Interacting Genes (STRING). DE-mRNAs were first submitted
to the STRING database and PPI pairs were extracted with a
combined score >0.4. Subsequently, CytoHubba-a plugin in
Cytoscape v3.7.2-was used to identify the hub genes using both
maximal clique centrality (MCC) and degree methods (Chin
et al,, 2014). A Venn diagram was used to find the intersecting
hub genes.

Prediction of Target Genes for Identified
DE-miRNAs and miRNA-mRNA

Construction

miRWalk 3.0 database (Dweep et al, 2011) was used to
predict the downstream target genes of identified DE-miRNAs
using score >0.95 as a cutoff criterion. A Venn diagram web
tool was used to obtain candidate genes, from intersecting
DE-miRNAs target genes and DE-mRNAs. Construction of
an miRNA-mRNA regulation network of these overlapping
genes and the corresponding DE-miRNAs was performed with
Cytoscape software.

Prediction of Potential Transcription
Factors of DE-miRNAs

Upstream transcription factors of screened DE-miRNAs were
predicted using FunRich software 3.1.3-a tool used mainly
for functional enrichment and interaction network analysis of
genes and proteins (Pathan et al., 2017). The top ten predicted
transcription factors were obtained from the input screened
upregulated and downregulated DE-miRNAs.

RESULTS
Identification of DE-mRNAs

As shown in Figure 1A, the black lines are almost on the
same straight line, which suggests that the standardization level
was satisfactory. The 3,731 genes in GSE18606 dataset were
plotted, and the red and blue ones represented the up and
down-regulation of genes, respectively, as showed in Figure 1B.
Among the up and down-regulation of genes, SI00A12, and
BCLI1A were the highest fold change mRNA, respectively.

A total of 1,063 DE-mRNAs were identified after GSE18606
dataset analyses, including 472, and 591 up- and down-regulated
genes, respectively, which was visualized in Figure 1B and
Supplementary Table 2.

GO Annotation and KEGG Pathway

Enrichment Analysis of DE-mRNAs

Gene ontology (GO) BP analysis showed that these 1,063 DE-
mRNAs were significantly enriched in various roles (Figure 2A).
For GO CC analysis, the top six significantly enriched terms
were nucleus, nucleoplasm, intracellular, nuclear chromatin,
and cell-cell junction (Figure 2B). The top six significantly
enriched MF terms included DNA binding, transcription factor
activity (sequence-specific DNA binding), protein binding,
nucleic acid binding, microtubule binding, and metal ion
binding (Figure 2C). The enriched KEGG items are listed
in Figure 2D, including Osteoclast differentiation, Axon
guidance, Regulation of actin cytoskeleton, p53 signaling, B
cell receptor signaling pathway, Hematopoietic cell lineage,
Cell cycle, and TNF signaling pathway. Functional and
pathway enrichment analyses of DE-mRNAs were obtained in
Supplementary Table 3.

PPl Network Construction and Hub

Genes Identification

A PPI network of DE-mRNAs was constructed utilizing
Cytoscape software based on the STRING database
(Supplementary Figure 1). The network included 985 nodes
(genes) and 3,550 edges (interactions), with PPI enrichment P
value < 1.0E-16. The Cytohubba plugin of Cytoscape was used
to rank the top 20 nodes in the PPI network. ITGB2 was the
most outstanding gene using the MCC method, followed by
MCEMP1, GPR84, STOM, CD59, CEACAM1, TRPM2, CD177,
FCAR, TSPAN14, TNFRSF1B, TOM1, AGPAT2, CEACAMS3,
SCAMP1, SLC2A5, ITGAX, LILRB2, SLCI11Al, and SIRPA
(Figure 3A). ALB has the highest connectivity degree (75),
followed by ATM (55), HIST2H2BE (53), STAT3 (51), MMP9
(47), SPI1 (45), ITGB2 (45), HIST2H2AC (45), ITGAX (40),
HIST1H2BD (38), RBBP7 (37), HIST1H2BN (35), SUPT16H
(34), SOCS3 (33), HISTIH2AD (32), RAC2 (32), CEP290
(31), HIST1H4C (31), MDC1 (31), and HP (30) (Figure 3B).
Pathway enrichment analysis of these hub genes suggested
involvement in pathway regulation, including Systemic lupus
erythematosus, Alcoholism, Viral carcinogenesis, Osteoclast
differentiation, Adipocytokine signaling pathway, and TNF
signaling pathway (Figure 3C).

Prediction of DE-miRNAs Downstream

Target Genes

We previously have identified ten DE-miRNAs between
acute KD and normal control, including seven up-regulated
DE-miRNAs (hsa-let-7b-5p, hsa-miR-223-3p, hsa-miR-765,
hsa-miR-4485-3p, hsa-miR-4644, hsa-miR-4800-5p, and
hsa-miR-6510-5p) and three down-regulated DE-miRNAs
(hsa-miR-33b-3p, hsa-miR-4443, and hsa-miR-4515) (Chen
Y. et al, 2018). The predicted downstream target genes for
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FIGURE 1 | The value distribution of the selected samples, and the volcano plot of the identified DE-mRNAs in GSE18606. (A) The blue boxes represent normal
samples and the pink boxes represent acute KD cases. Black lines show the median of each data and its distribution represents the standardization degree of the
data. (B) Volcano plot of the identification of DE-mRNAs. Red, upregulation; green, downregulation.
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the ten DE-miRNAs were 10,203 for the up-regulated and
5,310 for the down-regulated DE-miRNAs (see Table 1 and
Supplementary Table 4).

After combining the analysis of DE-mRNAs and target genes
of DE-miRNAs (Supplementary Table 5), we further screened
355 candidate target genes for upregulated (Figure 4A) and
130 candidate target genes for downregulated DE-miRNAs
(Figure 5A). Subsequently, the candidate miRNA-mRNA
regulatory network associated with the development of acute

KD was constructed (Figures 4B, 5B and Supplementary
Table 6).

Further Analysis of the Overlapping
Genes for the Target Genes of
DE-miRNAs and DE-mRNAs

The 485 candidate target genes corresponding to upregulated
(355) and downregulated (130) DE-miRNAs were submitted to

Frontiers in Genetics | www.frontiersin.org

March 2021 | Volume 12 | Article 585058


https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Ma et al. miRNA-MRNA Network in Acute KD
A B GO CC enrichment analysis
GO BP enrichment analysis
nucleus: [ ]
transcription, DNA-templated [ ]
cytoplasm: ®
regulation of transcription, DNA-templated [ ]
~log10(pvalue) nucleoplasm Y —_—
positive regulation of transcription from RNA polymerase Il promoter { [ ] % ® 10
e intracellular { ° @ 20
positive regulation of transcription, DNA-templated 1 ° s'ﬂ 2 @ 300
2 N 2 microtubule .
i) Tcell activation 1 * i 8 ~log10(pvalue)
% O nuclear chromatin- . @
o regulation of intracellular pH < . count [} -
o ® 25 s X
positive regulation of Notch signaling pathway | ® 50 eolF-cellunction: 3,
[ B H 25
t athway © @ 100 lamellipodium { -
o pathway @ s
cytokine production 1 * nucleosome
regulation of mast cell degranulation 1 * cell-cell contact zone1
o 5 10 15 o 10 20 30
Gene Ratio (%) Gene Ratio (%)
C D
GO MF enrichment analysis KEGG pathway enrichment analysis
protein binding [ ] Regulation of actin cytoskeleton [ ]
acdlonbioing = . Osteoclast differentiation [ ] “log10(pvalue)
DNA binding ° i G(Pva"e’ 28
I 5 ") Axon guidance 20
transcription factor activity, sequence-specific DNA binding: ° o " g |
. g
E . 3 z °
i_z nucleic acid binding . H 5 Z Cell cycle w
g microtubule binding: ok 5 TNF signaling pathway o cont
© 1
RNA polymerase Il regulatory region sequence-specific DNA binding E 25 g JE— 2 : ::
RNA polymerase Il core promoter sequence-specific DNA binding | * ® : ::
solute:proton antiporter activity{ * P63 signaing
sodium:proton antiporter activity] * B cell receptor signaling pathway
o 20 0.75 1.00 1.25 150 175
Gene Ratio (%) Gene Ratio (%)
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the STRING database. For the 355 candidate target genes of
upregulated DE-miRNAs, a network with 355 nodes (genes) and
454 edges (interactions) (PPI enrichment P value < 5.73E-10)
was obtained (Figure 6A and Supplementary Table 6). The
top 10 hub genes were shown according to MCC (Figure 6B)
and Degree (Figure 6C) methods. Six overlapping hub genes
were obtained: ATM, WRN, PRKDC, MDC1, RPAI, and
RAD54B (Figure 6D).

For the 130 candidate target genes of downregulated DE-
miRNAs, a network with 130 nodes (genes) and 99 edges
(interactions) (PPI enrichment P value <1.61E-05) was obtained
(Figure 7A and Supplementary Table 6). The hub genes were
obtained according to MCC (Figure 7B) and Degree (Figure 7C)
methods. Nine overlapping hub genes were obtained: CD59,
CD177, TRPM2, FCAR, TSPAN14, LILRB2, SIRPA, CSF1, and
STATS3 (Figure 7D).

Identification of the miRNA-Hub Gene
Regulatory Network in Acute Kawasaki

Disease

From the predicted miRNA-mRNA pairs, the miRNA-hub gene
regulatory network associated with the development of acute
KD was constructed (Figure 8A and Supplementary Table 6)
resulting in seven DE-miRNAs. The upstream transcription
factors of these seven DE-miRNAs, including hsa-miR-6510-5p,
hsa-miR-765, hsa-miR-4800-5p, hsa-miR-223-3p, hsa-miR-4515,
hsa-miR-33b-3p, and hsa-miR-4443, were further predicted by

using FunRich software. The top 10 transcription factors for
these seven DE-miRNAs are shown in Figure 8B. The present
study identified the four significant transcription factors for these
seven DE-miRNAs. These included transcription factor PAX6,
POU2F1, NR6A1, and SP1.

DISCUSSION

Children suffering acute stage KD experience outbreaks of
inflammatory factors in peripheral blood, and also inflammatory
changes of small and medium-sized blood vessels in the
whole body. In the clinic, specific inhibitors of tumor necrosis
factor (TNF) infliximab and enalapril have been used to treat
children with intravenous immunoglobulin (IVIG)-insensitive
KD (Tremoulet et al., 2014; Portman et al., 2019). Cyclosporine,
an inhibitor of the calmodulin in the NFAT signaling pathway,
is an alternative treatment for children with refractory KD
and IVIG-unresponsive KD (Aoyagi et al., 2015). Despite these
treatments, the role of gene alteration in the pathogenesis of
KD remains to be elucidated. Recently, microarray technology
coupled with bioinformatics tools has been used to identify
the novel genes associated with the pathogenesis, diagnosis and
treatment of KD (Wu et al., 2019; Yazdan et al., 2020). Herein, we
have used mRNA expression profile data of GSE18606 to identify
hub genes in whole blood that are associated with acute KD.
KEGG pathways enriched by these hub genes included systemic
lupus erythematosus, alcoholism (Diniz et al., 2012), osteoclast
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differentiation (Chang et al., 2019), and TNF signaling pathway
have been reported to be associated with KD. Using the screened
DE-miRNAs from our previous study (Chen Y. et al, 2018),
an miRNA-mRNA regulatory network was constructed which is
potentially relevant in the pathogenesis of acute KD.

At the current study, 38 hub genes were identified in the PPI
network of DE-mRNAs through using MCC and degree methods.
Among these hub genes, CEACAM]1, SLC11A1, and MMP9 were
reported to be associated with KD etiology. CEACAMI1 was
identified to be upregulated in acute KD at the current study.
In agreement with our results, higher CEACAMI expression
levels were associated with KD etiology including an increased
percentage of unsegmented neutrophils, fewer days of illness,
and higher levels of C-reactive protein (Popper et al., 2007).
Allele 1 of the (GT) n repeat sequence of the 5 promoter of
SLCI11ALl is highly expressed in KD patients and the gene has
weak promoter activity, which explains the possible infectious
etiology of KD and the possible genetic risk in the Japanese
population (Ouchi et al,, 2003). In the present study, we also
found that SLC11A1 was upregulated in plasma of acute KD

patients. MMP9 is an independent risk factor for coronary artery
disease in KD (Korematsu et al., 2012), and the MMP-9 mRNA
level was increased in KD patients with coronary artery disease

TABLE 1 | The target gene count for each DE-miRNA.

miRNA ID Target gene count

Upregulation

hsa-let-7b-5p 2815
hsa-miR-223-3p 654
hsa-miR-765 4393
hsa-miR-4485-3p 1176
hsa-miR-4644 2225
hsa-miR-4800-5p 2872
hsa-miR-6510-5p 5286
Downregulation
hsa-miR-33b-3p 1977
hsa-miR-4443 2710
hsa-miR-4515 1967
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and decreased at least 3 weeks after IVIG treatment (Kuo et al.,
2017). In the heart of KD mouse models, MMP-9 was reported
to be up-regulated (Shangguan et al., 2014). Thus, MMP9 may be
related to the etiology of coronary artery disease in KD. In acute
KD, the MMP-9 mRNA expression was shown to be upregulated
at the present study, which suggests that MMP-9 may also be
related to the KD etiology. In addition, several evidences have
documented the upregulation of S100A12 in plasma of acute KD
patients (Foell et al., 2003; Ye et al., 2004; Wittkowski et al., 2007),
which has been identified to be upregulated with the highest
fold change mRNA at the current study. Furthermore, SI00A12
become decreased after gammaglobulin treatment (Foell et al.,
2003). S100A12 was reported to induce sterile inflammatory
activation of HCAECs in an IL-1B-dependent manner, suggesting
the role of SI00A12 in the pathogenesis of KD (Armaroli
et al., 2019). Thus, S100A12 could serve as a novel target for
future therapeutic interventions in KD. At the present study, the
downregulation of BCL11A with the highest fold change mRNA
was identified in acute KD. The BCL11A expression level in KD
has not been reported in the literature so far. Thus, the role of
BCLI1A in KD deserves to be further studied.

We obtained 355, and 130 overlapping target DE-mRNAs for
upregulated and downregulated DE-miRNAs, respectively. PPI
networks with these overlapping target DE-mRNAs identified 15
hub genes. Out of these, ten were identified as hub genes in the
PPI network of DE-mRNAs, and included two downregulated
(ATM, and MDCI1) and eight upregulated (CD59, CD177,
TRPM2, FCAR, TSPANI14, LILRB2, SIRPA, and STAT3) DE-
mRNAs. Four of these (CD177, FCAR, STAT3, and CD59) have
been found to be linked to KD.

CD177 is an adhesion molecule that binds to CD31 on
the surface of endothelial cells, platelets and leukocytes, and
participates in the adhesion and migration of neutrophils to
endothelial cells (Pliyev and Menshikov, 2012). Upregulation of
CD177 in plasma of acute KD patients is supported by high
abundance of CD177 transcript (Ko et al., 2019). A case-control
study also found that CD177 was up-regulated in KD patients,
whereas levels decreased after IVIG treatment (Huang et al.,
2019). High expression of CD177 may also be related to IVIG
insensitivity (Huang et al., 2019). Higher FCAR mRNA levels in
KD patients have also been reported (Chang et al., 2021). FCAR
plays an important role in IgA-mediated immune regulation
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and effector function. FCAR receptor binds to immunoglobulin
(Ig) A to mediate mucosal immunity in asthma (Jasek et al,
2004). STAT3 has been widely studied in tumors, where an
abnormal STAT3 signaling pathway induces inflammation and
immunosuppression (Yu et al., 2014). STAT3 was activated in T

cells of child KD patients (Qi et al., 2017) and Candida albicans
water-soluble fraction-induced the mouse KD model (Suzuki
et al,, 2017). Our previous work confirmed that miR-223 can
inhibit the activation of the STAT3 signal pathway by targeting
the inhibition of IL6ST, thus inducing vascular endothelial cell
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injury, suggesting that STAT3 may play a role in endothelial
vascular inflammatory injury in KD (Wang et al., 2019). CD59,
a complement regulatory protein, maintains the integrity of
blood vessels by protecting endothelial cells from injury in local
inflammatory sites. However, CD59 levels in plasma were found
to be low at the early stage of KD (Song et al., 2016). In agreement
with our results, plasma CD59 concentrations increased in acute-
phase KD patients compared with subacute-phase KD patients
(Zou et al, 2015). Therefore, this inconsistent result requires
further investigation.

The remaining six hub genes, i.e., two downregulated DE-
mRNAs (ATM, and MDC1) and four upregulated DE-mRNAs
(TRPM2, TSPAN14, LILRB2, and SIRPA) have not been directly
linked to KD. However, they are likely to be involved in
vascular endothelial function, inflammatory response or immune
regulation. ATM, SIRPA, and LILRB2 are potential targets in
tumor immunotherapy (Chen H. M. et al., 2018; Logtenberg
et al, 2019; Zhang et al, 2019). In particular, there are
many unanswered questions in the role of the SIRPA-CD47

signal pathway in autoimmune diseases. MDCI, a nuclear
mediator/junction protein, plays an important role in mediating
DNA damage (Jungmichel and Stucki, 2010). TRPM2 is an M2
transient receptor potential located on vascular endothelium, and
its high expression in endothelial cells plays an important role
in immunity, endothelial barrier and endothelial cell apoptosis
(Yamamoto et al., 2008; Wang et al., 2016). TSPAN14 is a
member of the TspanC8 subgroup, and its interaction with
ADAMI0 is important in embryonic development and related
to inflammatory diseases (Noy et al., 2016). Thus, these six hub
genes may be potentially linked to KD.

MicroRNA (miRNA) participates in a variety of biological
processes through post-transcriptional regulation. In our
previous work, we analyzed the expression profile of miRNA in
peripheral blood of acute KD and screened out ten DE-miRNAs
(Chen Y. et al, 2018). From that study, we predicted target
genes of DE-miRNAs, and in combination with the DE-mRNAs
obtained from data mining we have constructed an miRNA-
mRNA regulatory network that will help in the diagnosis or
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treatment of acute KD. In this network, hsa-miR-4443 may play
an important role in KD since it had the highest connectivity
with DE-mRNAs, seven of which are upregulated (SIRPA, CD59,
FCAR, CD177, TSPAN14, and STAT3), although no studies on
this potential direct regulatory action have been performed so
far. It has reported that miR-4443 is involved in T cell-mediated
immune response (Shefler et al., 2018) that is associated with
the pathogenesis of KD (Galeotti et al., 2016), suggesting that
miR-4443 may play a role in immune regulation in KD. Five
downregulated DE-mRNAs may be candidate target genes of
hsa-miR-6510-5p, and one of them is a hub gene ATM. However,
no relevant reports were found between miR-6510-5p and
vascular inflammation or immune response. Two downregulated
DE-mRNAs, ATM, and MDCI, are possibly negatively targeted
by hsa-miR-223-3p. The latter has been verified by RT-PCR to be

upregulated in our previous study (Chen Y. et al., 2018). Together
with other studies (Chu et al., 2017; Parra-Izquierdo et al., 2020;
Zhang et al., 2020), our recent find (Wang et al., 2019) supported
that miR-223 is an important regulator of vascular endothelial
cell injury in KD. Thus miR-223 may be a novel target for the
treatment of KD. In our previous study, hsa-miR-765 has been
identified to be upregulated in acute KD (Chen Y. et al.,, 2018).
It has reported that the level of circulating miR-765 in patients
with coronary heart disease is upregulated (Infante et al., 2019).
Since KD is one of the important risk factors of acquired heart
disease in children, miR-765 may be a pathogenetic mechanism
linking KD with the development of acquired heart disease. The
role of the remaining six DE-miRNAs we previously identified
including hsa-let-7b-5p, hsa-miR-4485-3p, hsa-miR-4644, hsa-
miR-4800-5p, hsa-miR-33b-3p, and hsa-miR-4515 in KD have
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not been reported in the literature so far. More work is needed to
further explore the role of these identified DE-miRNAs in KD.
In summary, our in silico analysis has identified hub
genes associated with acute KD. Among these hub genes,
two downregulated DE-mRNAs (ATM, and MDC1) and four
upregulated DE-mRNAs (TRPM2, TSPANI14, LILRB2, and
SIRPA) have been linked firstly to KD. The present study, for
the first, constructed an miRNA-mRNA regulatory network
associated with acute KD, which provides new insights into the
molecular mechanisms of acute KD, contributing to its diagnosis

and treatment. However, we point out that the screened DE-
miRNA and DE-mRNA came from different clinical samples,
which limits the analysis. Only one GEO dataset was chosen
at the current study, and we understand that this represents
one more limitation of the current study. Also, the miRNA
target genes were predicted by the software database, and its
relevance has not been confirmed experimentally. Finally, the
core genes predicted in our miRNA-mRNA network must be
verified by a large number of clinical KD samples. This is ongoing
work in our lab.
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