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The timing of puberty in mammals marks the point at which reproduction becomes
possible. Abnormalities in the timing of puberty may exert a series of negative effects
on subsequent health outcomes. Alternative splicing (AS) has not only emerged as a
significant factor in the transcription of genes but it is also reported to play a role in the
timing of puberty. However, to date, the changes and dynamics of AS during the onset of
puberty is extremely seldom explored. In the present study, we used gilts as a research
model to investigated the dynamics of AS and differentially expressed AS (DEAS) events
within the hypothalamus–pituitary–ovary (HPO) axis across pre-, in-, and post-puberty.
We detected 3,390, 6,098, and 9,085 DEAS events in the hypothalamus, pituitary, and
ovary when compared across pre-, in-, and post-pubertal stages, respectively. Within
the entire HPO axis, we also identified 22,889, 22,857, and 21,055 DEAS events in
the pre-, in-, and post-pubertal stages, respectively. Further analysis revealed that the
differentially spliced genes (DSGs) associated with staged DEAS events were likely
to be enriched in the oxytocin signaling pathway, thyroid hormone signaling pathway,
GnRH signaling pathway, and oocyte meiosis signaling pathway. The DSGs associated
with DEAS events across the entire HPO axis were enriched in endocytosis signaling
pathway, the MAPK signaling pathway, and the Rap1 signaling pathway. Moreover. the
ASs of TAC1, TACR3, CYP19A1, ESR1, ESRRA, and FSHR were likely to regulate the
functions of the certain HPO tissues during the onset of puberty. Collectively, the AS
dynamics and DEAS events were comprehensively profiled in hypothalamus, pituitary,
and ovary across the pre-, in-, and post-pubertal stages in pigs. These findings may
enhance our knowledge of how puberty is regulated by AS and shed new light on the
molecular mechanisms underlying the timing of puberty in mammals.

Keywords: alternative splicing, differentially spliced genes, hypothalamus-pituitary-ovary axis, gilts, puberty

Abbreviations: AS, alternative splicing; DSG, differential splicing gene; DEAS, differentially expressed alternative splicing;
A3SS, alternative 3′ splice site; A5SS, alternative 5′ splice site; MXE, mutually exclusive exons; SE (Cassette), skipping exons;
Cassette multi, multi-cassette exons; IR, intron retention; AltStart, alternative start exon; AltEnd, alternative end exon; HPO,
hypothalamus–pituitary–ovary axis.
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INTRODUCTION

The timing of puberty in females relates to the first ovulation
and the attainment of reproductive capability (Euling et al.,
2008). Abnormalities in the timing of puberty exert a series
of different diseases (Cesario and Hughes, 2007), including
psychosocial disorders (Hankin et al., 2010), asthma (Al-Sahab
et al., 2011), tumors of the reproductive system (Bodicoat
et al., 2020), and hypogonadism (Abreu and Kaiser, 2016).
Previous studies have demonstrated that the hypothalamic–
pituitary–ovary (HPO) axis is responsible for controlling the
timing of puberty in females (Zhu et al., 2019). During the
onset of puberty, the hypothalamus releases gonadotropin-
releasing hormone (GnRH) to the pituitary gland. This process
promotes the release of follicle-stimulating hormone (FSH)
and luteinizing hormone (LH) into the circulating system
(Plant, 2015a). Subsequently, FSH and LH act to accelerate
ovarian folliculogenesis and regulate the ovulation of mature
follicles (Plant, 2015b; Avendaño et al., 2017; Zhu et al., 2019).
Previous researchers have found that GnRH deficiency can cause
delayed puberty (Balasubramanian et al., 2010). Furthermore,
girls with abnormal levels of LH and FSH are associated
to reduced ovarian weight and pubertal failure (Stagi et al.,
2016). In rats, the disruption of follicular dynamics results in
a delay in the onset of puberty (Lilienthal et al., 2006). These
observations indicate that abnormalities in the HPO may lead
to pubertal disorders, which in turn has a negative effect on
health outcomes.

Alternative splicing (AS) is a post-transcriptional processing
mechanism that assembles multiple transcripts with different
functions from a single gene under the action of the spliceosome
(Lee and Rio, 2015). AS determines whether exons are retained
or skipped, excluded or included, and shortened or extended to
form mature mRNA (Carazo et al., 2019). There are evidence
reported that AS plays a vital role during the development
of the hypothalamus (Hasin-Brumshtein et al., 2016), pituitary
(Vazquez-Borrego et al., 2019), ovary (Wang et al., 2015),
and estrus (Tang et al., 2018). For example, a previous study
has shown that piRNAs regulate the pre-mRNA splicing of
transcripts and may result in the production of a non-
transposase-encoding mature mRNA isoform in germ cells
(Teixeira et al., 2017). Also, other researchers have identified two
alternative transcripts of the Lin28B gene (Lin28BS, encoding 247
amino acids (aa); and Lin28BL, encoding 261 aa) that regulate
the timing of puberty in mammals (Cao et al., 2013). Similarly,
another study has discovered that two Oct-2 transcripts (Oct-
2a and Oct-2c) act as control mechanisms in the hypothalamus
and regulate female puberty; these transcripts can act rapidly and
alternatively, thus exerting control on the onset of puberty in
the female mammal (Ojeda et al., 1999). Moreover, two isomers
of the KISS1R gene (Ss kiss1r_v1 and Ss kiss1r_v2) have been
shown to act as the gatekeeper for the onset of puberty, which also
exhibit different functions during puberty (Mechaly et al., 2009).
Collectively, these findings indicate that the different splicing
types caused by AS may have an impact influence on the onset
of puberty. However, little is known about the AS events that
regulate the onset of puberty.

The rapid development of next-generation sequencing (NGS)
technology has led to an increasing number of research studies
on sequence-based AS. A previous study used RNA-sequencing
(RNA-seq) to detect AS by accurately measuring the percent
spliced-in (PSI) score (Hardwick et al., 2019). Another study
also used RNA-seq to find that when a mutation occurred
at a splice site, the proteins became non-functional (Mayerle
et al., 2019). Furthermore, other researchers translated the
sequences of new splice junctions, derived from RNA-seq
into analogous polypeptide sequences, and created a database
that can be used to discover new splice junction peptides
that arise from AS (Sheynkman et al., 2013). In another
study, researchers used long read sequencing to reveal the
splicing status of introns in yeast (Oesterreich et al., 2016).
Subsequently, other researchers developed an AS platform
for regulating exons that undergo mutually exclusive exons
(MXE) AS, ultimately identifying a functionally diverse range
of RNA and protein isotypes (Mathur et al., 2019). In
addition, the action of the splicing factors (SFs) as “scissors”
can exert significant influence on AS. When the components
of the SFs undergo alterations, it is likely to affect the
occurrence of AS (Zhang et al., 2008). These results indicate
that with the development of NGSs, the research on AS
deserves more attention.

In the present study, we used gilts as a model and collected
HPO tissues from pre-, in-, and post-pubertal animals. Then,
we built strand-specific RNA libraries from the HPO tissues
and investigated differentially expressed AS (DEAS) events and
AS dynamics within the pubertal hypothalamus, pituitary, and
ovary. Furthermore, we analyzed the comprehensive changes and
dynamics of AS across pre-, in, and post-pubertal stages, as well
as along the HPO axis. Finally, we predicted the interactions
between several SFs and specifically spliced genes events might
associated with puberty. This study may provide new insights
into the mechanisms underlying the timing of puberty in female
mammals, particularly with regards to AS.

MATERIALS AND METHODS

Ethics Statement
Animal care and experiments were conducted in accordance
with the regulations for the administration of affairs concerning
experimental animals (Ministry of Science and Technology,
China; revised in June 2004) and were approved by the Animal
Care and Use Committee of the South China Agricultural
University, Guangzhou, China (permit number SCAU#2013-10).

Preparation of Animals and Samples
Pre-, in-, and post-pubertal stages were chosen during the onset
of puberty; these different stages were identified by measured
visually the reddening, swelling of the vulva, and by analyzing
standing reflex with the back-pressure test and boar contact
(Patterson et al., 2002). Nine Landrace × Yorkshire crossbred
gilts with good body condition were used in this study. All
gilts were raised in a clean, dry, and well-lit room with
equal conditions and maintained on a standard normal diet
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(isoenergetic corn–barley and soybean meal diet) and water
ad libitum. Three gilts without pubertal signs (no reddening, no
swelling of the vulva, no standing reflex) were selected as the pre-
pubertal gilts (age = 162 ± 3 days; weight = 81.38 ± 2.40 kg),
and three gilts exhibiting the first pubertal signs (reddening,
swelling of the vulva, standing reflex) were selected as the in-
pubertal gilts (age = 212 ± 14 days; weight = 110 ± 2 kg).
Gilts have regular estrus cycles, typically 18–23 days (Christenson
and Ford, 1979). We used 14 days after in-puberty as the post-
puberty, and this stage was diestrus in entire estrus cycles. Finally,
three post-pubertal gilts were selected (age = 216 ± 17 days;
weight = 122.82 ± 9.11 kg). All gilts were euthanized
with an intravenous overdose of barbiturates (≥90 mg/kg).
Subsequently, the hypothalamus, entire pituitary and ovary
(left and right) were immediately removed. Immediately after
decapitation, to dissect the hypothalamus regions, the cerebellum
was removed to expose the junction of the brainstem and
the cerebrum, so that the hypothalamus is visible, and the
hypothalamus is cut along the root as well as the entire
pituitary is taken from the pituitary fossa. Moreover, left
and right ovaries were taken out. Meanwhile, the biological
characteristics of these three stages were reconfirmed by the
morphology of ovary (Supplementary Figure 1). All tissues were
snap-frozen in liquid nitrogen and stored at −80◦C to await
subsequent sequencing.

RNA Sequencing, Quality Control, and
Transcriptome Assembly
Tissues of pre-, in-, and post-pubertal hypothalamus, pituitary,
and ovary were homogenized separately in liquid nitrogen.
Total RNAs were extracted from tissue extracts using Trizol
(Invitrogen, Carlsbad, CA, United States). Quality control tests
were carried out on the RNA using an Agilent Bioanalyzer
2100 system (Agilent, Palo Alto, CA, United States). Then, we
used an Epicenter Ribo-zero rRNA Removal Kit (Epicenter,
Madison, WI, United States) to remove rRNAs; total RNAs
were subsequently quantified. After total RNA extraction and
treatment with DNase I, we next used magnetic beads and
oligo (dT) to extract mRNAs. Fragmentation buffer was then
added to the purified mRNAs to cause fragmentation. Next,
we used random hexamer primers and the mRNA fragments
as templates to synthesize cDNAs. DNA fragments were then
adenylated at the 3’-ends and then ligated to adapters. We
then used cDNA fragments (100–200 bp in length) and PCR
to generate cDNA libraries. A total of 5 µg of cDNA per
sample was sequenced using the HiSeq 3000 Sequencer; this
system was operated as recommended by the manufacturer
(Illumina, San Diego, CA, United States) and 150 base paired-
end reads were generated. The quality control of the raw and
trimmed reads was performed using FastQC and Cutadapt
software. FastQC software checked the quality of directional
paired-end reads in the raw data (Ward et al., 2020). Cutadapt
software discarded the low-quality reads (unknown bases >10%;
low-mass bases > 50%) and the adapter contamination to
generate the high-quality reads termed as clean data thereafter
(Chen et al., 2014). Following quality control, the clean

reads were mapped to Sus scrofa 11.1 by HISAT2 software
(Kim et al., 2015).

Identification of DEAS Events
The PSI value is an important index with which to identify AS
events; significant pairwise differences can be identified using
PSI values (| delta-PSI [1PSI]| ≥ 10%; FDR ≤ 5%) (Sandberg
et al., 2008). The PSI metric represents the ratio of normalized
read counts and indicates exon inclusion as a fraction of the total
normalized reads for both exon inclusion and exon exclusion
(Pervouchine et al., 2013). In addition, CASH software that can
significantly improve the detection of DEAS events between
samples1 (Wu W. et al., 2018). Moreover, CASH can directly
identify different AS events by considering the value of 1PSI
as well as providing exon inclusion and exon exclusion reads
(Wu W. et al., 2018). Therefore, in the present study, we primarily
used CASH software to identify staged DEAS events across
pre-, in-, and post-pubertal tissues, and to identify DEAS events
across different tissues in the HPO axis. Then, we calculated
the PSI using normalized reads while considering inclusion and
exclusion data (FDR < 0.05). We used two specific modules
in CASH software: SpliceCons and SpliceDiff. The first module
detects eight different types of AS events that are classified
according to splicing at different sites, including alternative 3’
splice site (A3SS), alternative 5′ splice site (A5SS), mutually
exclusive exons (MXE), cassette exon (cassette, SE), multi-
cassette exons (Cassette multi), intron retention (IR), alternative
start exon (AltStart), and alternative end exon (AltEnd); these are
depicted in Supplementary Figure 1. Then, we used the second
module, SpliceDiff, to calculate the 1PSI between each sample
and thus identify DEAS events.

Analysis of DEAS and DSG Data
DEAS were identified using 1PSI (FDR < 5%), and differentially
spliced genes (DSGs) were defined as the parental genes from
DEAS events. We also used R (version 3.5.1) to perform
statistical analysis. Specifically, we used the functions of setdiff
and intersect to analyze the number of genes undergoing AS.
Next, we used the Venn Diagram package (Chen and Boutros,
2011) and the ggplot2 package (Villanueva and Chen, 2019)
to visualize data. Upset plots were created using TBTools
version 0.66836 software2. Stage-specific AS events were defined
as those that only occurred in one pubertal stage with the
screening condition of | MPSI| = 1. Similarly, tissue-specific
AS events were defined as those that only occurred in one
tissue with the screening condition of | MPSI| = 1 and
FDR < 0.05. Finally, statistical differences among multiple
groups were identified by ANOVA with Tukey’s multiple
comparison test.

KEGG Pathway Enrichment and Splicing
Factor Analysis
Next, DSGs were used for Gene Ontology (GO) analysis and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

1https://sourceforge.net/projects/cash-program/
2http://www.tbtools.com/
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enrichment analysis using the FDR < 0.05 as a cutoff criterion.
Co-existing DSGs were identified with KOBAS 3.0 online
software. Furthermore, a list of splicing factors (SFs) was
extracted from the SpliceAid-F database3; this database supplies
the gene interactors of SFs (Giulietti et al., 2013). Finally, we
used Cytoscape software (version 3.4.0) to generate a network of
protein interactions between SFs and genes that are known to be
associated with puberty.

RT-PCR Analysis
Finally, we used RT-PCR to validate the reliability of the data
of RNA-seq. Upstream and downstream primers were designed
from the upper exon and lower exon of the target splicing
region using NCBI primer designing tool. PCR amplification
was performed using cDNA as a template. The PCR standard
procedure was denaturation 94◦C (3 min), 35 cycles at 94◦C
(30 s), 60◦C (30 s), and 72◦C (30 s), subsequently extending
it for 10 min at 72◦C. The PCR products were detected
via running 2.5% agarose electrophoresis. All reactions were
repeated three times.

RESULTS

Identification of AS Events in HPO
Tissues During Pubertal Transition in
Gilts
In total, we generated 27 RNA-seq libraries consisting of nine
hypothalamic tissues (611 million clean reads), nine pituitary
tissues (673 billion clean reads), and nine ovarian tissues (597
million clean reads) obtained from gilts undergoing pubertal
transition. These clean reads were subsequently mapped to the
Sus scrofa reference genome by using HISAT2 with an average
alignment rate of >90% (Supplementary Table 1).

In the present study, eight types of AS events were investigated
in total, including A3SS, A5SS, MXE, Cassette, Cassette multi, IR,
AltStart, and AltEnd events (Supplementary Figure 2). A total
of 278,721 AS events were detected in pubertal HPO tissues
across pre-, in-, and post-pubertal tissues (FDR < 0.05). In
total, 33,535, 33,254, and 33,405 AS events were detected in
the hypothalamus during pre-, in-, and post-pubertal stages,
respectively (Figure 1 and Supplementary Tables 2, 3); 30,251,
30,135, and 29,767 AS events were identified in the pituitary
during pre-, in-, and post-pubertal stages, respectively (Figure 1
and Supplementary Tables 2, 4); and 29,567, 28,684, and 30,123
AS events were detected in ovarian tissue during pre-, in-, and
post-pubertal stages, respectively (Figure 1 and Supplementary
Tables 2, 5). The most common AS event was Cassette
events, while the least common was MXE events in all stages
of HPO axis (Supplementary Table 6 and Supplementary
Figure 3A, Tukey’s test). Collectively, these data indicate
that we identified eight AS events during different pubertal
stages in HPO tissues.

3http://www.caspur.it/SpliceAidF/

Differentially Expressed AS Events
During Different Stages of Puberty
Transition
To explore the DEAS events in HPO tissues during different
stages of pubertal transition, we carried out pairwise comparisons
across the pre-, in-, and post-pubertal groups in three tissues
from the HPO axis. The distribution of DEAS events is
shown in Figure 2. When comparing pre- vs. in-puberty,
in- vs. post-puberty, and pre- vs. post-pubertal groups, we
detected 3,390 DEAS events in the hypothalamus (Figure 2A),
6,098 DEAS events in the pituitary (Figure 2B), and 9,085
DEAS events in the ovaries (Figure 2C). The most frequent
DEAS in the hypothalamus and pituitary were Cassette events
(Supplementary Table 7 and Supplementary Figures 3B,C,
Tukey’s test). Pairwise comparisons of pre- and post-pubertal
groups showed the highest frequency of DEAS events
(Supplementary Figure 3D, Tukey’s test). In total, there
were 18,573 DEAS involved in the pre-, in-, and post-pubertal
HPO axis. Further analysis showed that the prevalence of staged
DEAS was different when compared across the three tissues, thus
indicating that different AS events might play various roles in the
pubertal HPO axis.

DSGs in Different Stages of Puberty and
KEGG Analysis
In total, we identified that 1,737 DSGs in the hypothalamus
that were the parental genes of DEAS (Figure 3A), 3,088 DSGs
in the pituitary (Figure 3B), and 3,780 DSGs in the ovaries
(Figure 3C). It is noteworthy that several AS events might occur
in the same gene. Specifically, an upset plot of multiple interactive
sets demonstrated that 14.29% (Figure 3D), 22.72% (Figure 3E),
and 33.54% (Figure 3F) of DSGs featured two or more DEAS
events in the three tissues. In summary, these results showed
that DEAS events might provide the possibility for improving
diversity within the transcriptome.

To determine the biological functions of these staged DEAS
events within the HPO axis, we performed KEGG enrichment
analysis for the DSGs of DEAS events in the HPO axis
during different stages of puberty. KEGG enrichment analysis
showed that DSGs in the three tissues showed enrichment in
different pathways (Supplementary Tables 8–10). DEGs were
associated with the oxytocin signaling pathway, GnRH signaling
pathway, insulin signaling pathway, thyroid hormone signaling
pathway, and neurotrophin signaling pathway in the pituitary
(Figure 4). Moreover, the oocyte meioses were enriched both in
the hypothalamus and the pituitary. We also found that the tight
junction was enriched in all three tissues (Figure 4).

Differentially Expressed AS Events in
Different HPO Tissues During Pubertal
Transition
Next, we investigated DEAS events in different HPO tissues
during pubertal transition in gilts. AS events were compared
between the three different tissues by pairwise comparisons
during the three stages of puberty. When comparing the
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FIGURE 1 | Overview of alternative splicing (AS) events in the pubertal hypothalamus–pituitary–ovary (HPO) axis. The number of AS events in the hypothalamus,
pituitary, and ovary of gilts during pre-, in-, and post-pubertal stages.

FIGURE 2 | Staged differentially expressed alternative splicing (DEAS) events in the hypothalamus–pituitary–ovary (HPO) axis. Pairwise comparisons detected DEAS
events in the hypothalamus (A), pituitary (B), and ovary (C) of pre-, in-, and post-pubertal tissues.

hypothalamus vs. pituitary, pituitary vs. ovary, and hypothalamus
vs. ovary, we identified a total of 22,889, 22,857, and 21,055 DEAS
events in the pre-, in-, and post-pubertal stages, respectively

(Figures 5A–C). The most frequent DEAS events during pre- and
post-puberty were Cassette events; however, this event was not
significant in the in-pubertal stage (Supplementary Table 11 and
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FIGURE 3 | Characterization of the parental genes for staged differentially expressed alternative splicing (DEAS) events. The number of parental genes of the DEAS
detected in the hypothalamus (A), pituitary (B), and ovary (C). Upset plot of different types of DEAS events, and their parent genes, in the hypothalamus (D), pituitary
(E), and ovary (F). The abscissa is the number of genes that have occurred corresponding to AS, the ordinate represents the number of genes that occurred multiple
AS. One gene may have up to six types of alternative splicing.

Supplementary Figures 2E,F, Tukey’s test). In total, we detected
66,801 DEAS events in different HPO tissues. The differences
between tissues with regards to AS patterns indicate that AS
might play a different role in different HPO tissues during
pubertal transition.

DSGs in Different HPO Tissues and
KEGG Analysis
To characterize the biological functions of DEAS in different
HPO tissues, we performed KEGG enrichment analysis for
the DSGs of DEAS events in different HPO tissues across the
three stages of puberty. We identified the top 30 significantly
enriched pathways (Figure 6). Analysis of the three stages of
puberty revealed that the DSGs were significantly enriched in

endocytosis, the MAPK signaling pathway, the Rap1 signaling
pathway, and axon guidance, in three stages (Figure 6). In
particular, several tissular DSGs were enriched in the oocyte
meiosis pathway during the pre-pubertal stage (Figure 6A and
Supplementary Table 12). Some tissular DSGs were enriched in
the spliceosome pathway during the in-puberty stage (Figure 6B
and Supplementary Table 13). Finally, some tissular DSGs
were enriched in the lysosome and peroxisome pathways
during the post-pubertal phase (Figure 6C and Supplementary
Table 14).

DEAS Events in Pubertal Genes
Next, we selected 36 pubertal genes and investigated how
these genes underwent DEAS events. To do this, we screened
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FIGURE 4 | KEGG analysis of differentially spliced genes in three tissues from gilts (FDR < 0.05).

FIGURE 5 | Tissular differentially expressed alternative splicing (DEAS) events during pubertal transition. Pairwise comparison–detected DEAS events were detected
pre-puberty (A), in-puberty (B), and post-puberty (C) in the hypothalamus, pituitary, and ovary.
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FIGURE 6 | KEGG analysis of tissular differentially spliced genes and a network of splicing factors. KEGG analysis of DEAS in pre-puberty (A), in-puberty (B), and
post-puberty (C) (FDR < 0.05). (D) Network of splicing factors (SFs) and pubertal genes of specific AS. Blue nodes represent stage-specific; purple nodes represent
tissue-specific; and red nodes represent both stage- and tissue-specific AS.

literature and databases by hand. During the pubertal transition
in pigs, as shown in Supplementary Table 15, AVP, BDNF,
MSMB, and TAC1 genes respectively produce the A5SS,
AltStart, and MXE of AS exclusively in the hypothalamus;
FMR1, NCOA1, NOS1, PGR, TACR3, and TGFHR1 genes
harbor the Cassette, AltStart, and A3SS of AS specially in
the pituitary; and ADM, CYP19A1, DICER1, ENPP2, ESRRA,
GDF9, PPARG, RIPK2, and STAT5B genes mainly have the
IR, AltEnd, AltStart, A3SS, and Cassette of AS in the ovary
(Supplementary Table 15). Besides, we found that 16 genes
underwent only one AS event: ADM, APOE, APP, AVP, COMT,
BDNF, FMR1, FSHR, MSMB, NOS1, NR5A1, PPARG, PTPN11,
SLC6A4, STAT5A, and TACR3. These 16 genes were subjected
to IR, Cassette, AltStart, A5SS, AltEnd, and MXE DEAS
events, respectively. However, other genes exhibited complex
DEAS events, such as ESR1 mediated by AltEnd, AltStart,
A5SS, and Cassette events. In addition, 20 genes underwent
DEAS only in certain tissues, including ADM, AVP, BDNF,
COMT, CYP19A1, DICER1, ENPP2, ESR2, ESRRA, FMR1, GDF9,
MSMB, NCOA1, NOS1, PGR, PPARG, PIPK2, STAT5B, TACR3,
and TGFBR1. We also found that APOE, COMR, ESRRA,
FSHR, NOS1, MSMB, SLC6A4, PGR, and NR2C2 only exhibited
DEAS events in specific stages. These results demonstrated that

diverse patterns of AS events occurred in a range of genes
associated with puberty.

Specific AS Events and Splicing Factor
Analysis
To investigate stage-specific and tissue-specific AS events in
pubertal gilts, we screened our libraries for specific AS events
(| MPSI| = 1, FDR < 0.05). We found that several stage-
specific AS events were uniquely expressed in pre-, in-, and
post-pubertal stages, of which specific MXE events repeatedly
occurred (Supplementary Figure 4A). Similarly, some AS events
were uniquely expressed in the three tissues, of which AltStart
events repeatedly occurred (Supplementary Figure 4B). Notably,
we found that the same gene could experience specific AS events
at different sites (Supplementary Tables 16, 17).

To explore the relationship between SFs and specific AS, we
went to screen the parental genes of specific AS that interacted
with SFs by databases (Supplementary Table 18). We found that
multiple SFs interact with specific splicing genes. For instance,
the AS of ACTB in ovary is specific AltEnd, and SFs Sam68,
hnRNP D, YB-1, etc. protein were predicted to interact with
ACTB (Figure 6D and Supplementary Table 18). Moreover, the
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AS of RPS3 is exclusive A3SS, and SFs YB-1, hnRNP U, SLM-
1 etc. protein were predicted to interact with RPS3 (Figure 6D
and Supplementary Table 18). According to this analysis, several
SFs were predicted to interact with specific spliced genes in
specific stage or specific tissue. Future research should focus on
investigating interactions between SFs and specific AS events.

RT-PCR Validation of DEAS Genes
To validate the reliability of the high-throughput RNA
sequencing data, three puberty-related DEAS genes were
randomly selected for validation experiments. RT-PCR was
used to measure the expression of different transcripts that
occurred in DEAS events. The primer from the upper and lower
exon of the alternative exon was designed (Supplementary
Table 19). Among them, TAC1 occurred different AltStart events
of AS in pre-, in-, and post-puberty in hypothalamus, and the
phenomenon of the first exon being jumped was most obvious
in the pre-puberty (Figure 7A). TACR3 occurred in different
Cassette events of AS in pre-pubertal hypothalamus and ovary,
and the phenomenon of the exon being jumped was most obvious
in the pre-pubertal ovary (Figure 7B). ESR1 occurred in different
AltEnd events of AS in pre-pubertal ovary and post-pubertal
ovary, and the phenomenon of the last exon being jumped
was most obvious in the post-pubertal ovary (Figure 7C). The
RT-PCR results showed that most of the AS events were in line
with our prediction, confirming the reliability of sequencing.
Further study should be focus on puberty-related DEAS.

DISCUSSION

Puberty marks the achievement of sexual maturity and fertility
and is mainly driven by the hypothalamic–pituitary–gonadal
axis (Blakemore et al., 2010). Moreover, puberty is a very
important biological process, irrespective of whether we consider
reproduction, development, or disease (Nonneman et al., 2016;
Vijayakumar et al., 2018). An increasing body of evidence now
indicates that AS may be involved in regulating the function of
HPO tissues and the onset of puberty in mammals (Ojeda et al.,
1999; Mechaly et al., 2009; Cao et al., 2013). Previous studies
have demonstrated that AS plays a crucial role in mammalian
development, particularly AS events involving the ICE gene
(Wang et al., 1998), the Bcl-2 gene family, the Ced-4 gene,
and the family of caspase genes during the process of cellular
apoptosis (Jiang and Wu, 1999). However, the AS profiles of
tissues in the HPO axis have not been identified during pubertal
transition in mammals. In this study, we systematically profiled
AS events and analyzed DEAS events in pubertal HPO tissues
from gilts. First, we found that the Cassette event was the most
common form of AS in pubertal HPO tissues, which is in line
with previous analysis of the human transcriptome showing that
Cassette events were the most common form of AS (Sultan et al.,
2008). Indeed, it has been reported that Cassette is the most
common AS event due to the loss of functional domain/sites
or the transfer of open reading framework, and the disruption
of Cassette is one of the causes of mammalian disease (Kim
et al., 2020). Next, we investigated AS events in different tissues

FIGURE 7 | RT-PCR of alternative splicing (DEAS) events for validation.
(A) DEAS of TAC1 in pre-, in-, and post-pubertal hypothalamus. (B) DEAS of
TACR3 in pre-pubertal ovary and hypothalamus. (C) DEAS of ESR1 in pre-
and post-pubertal ovary.

of the HPO axis, and during different stages of puberty. We
found that tissular DEAS events were much more than staged
DEAS events, indicating that the degree of AS is greater between
tissues. It is possible, therefore, that the underlying reason that
the three tissues of HPO axis play different roles during puberty
can be revealed by AS.

AS events exhibit spatiotemporal specificity, which means
that AS events vary across different tissues or different stages
of development (Chakradhar, 2018). Our DEAS analysis showed
that the Cassette event was the most frequent DEAS event in the
hypothalamus and the pituitary, but not in the ovary, indicating
that AS events might play different regulatory roles within the
pubertal HPO axis. We found that the staged DEAS events were
likely to occur on genes involving the signaling pathways that
have all been reported to regulate the timing of puberty (Parent
et al., 2008; Sun et al., 2009; Singh et al., 2015; Aliberti et al.,
2019; Gioacchini et al., 2019). For example, previous studies
have shown that tight junctions form in cells to create a major
component of the blood–testis barrier during puberty in males
(McCabe et al., 2012), and the blood–brain barrier also plays
a crucial role in the microenvironment required to maintain
neuronal function at puberty (Seker et al., 2016). Furthermore,
growing ovaries that ingest ovoproteins from the blood stream
were mediated by receptor-dependent endocytosis (Mizuta et al.,
2013). These observations indicate that genes may be involved in

Frontiers in Genetics | www.frontiersin.org 9 April 2021 | Volume 12 | Article 592669

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-592669 April 26, 2021 Time: 15:54 # 10

Pan et al. Alternative Splicing in Pigs

regulating onset of puberty in certain different splicing patterns
during mammalian puberty. According to our analysis of DEAS
events within the entire HPO axis, one interesting finding is that
the transcription of HPO tissues might undergo dramatic changes
during the in-puberty stage. Furthermore, we found that DEAS
events at the tissue level were more likely to occur on genes
related to signaling pathways that have all been reported to affect
cell apoptosis or the synthesis of the thyroid gland (Wu D.M.
et al., 2018; Fan et al., 2019). It may be the case therefore that AS
events affect the synthesis of the thyroid gland and, subsequently,
the onset of puberty.

We also analyzed AS events in 36 genes that are known to be
involved in puberty (Mechaly et al., 2009; Balasubramanian et al.,
2010; Lomniczi et al., 2013; Plant, 2015b; Abreu and Kaiser, 2016;
Chakradhar, 2018; Tang et al., 2018; Lents, 2019). Furthermore,
the differential splicing of TAC1 can make it produce two
isoforms (Page, 2005). The tachykinins encoded by these two
isoforms have been shown to regulate the release of prolactin
(PRL) in vivo, and these PRL secretagogues act on primary
pituitary cells (Dupre et al., 2010). In the present study, we found
that Cassette of TAC1 was more specifically identified in pituitary
in in-pubertal stage, compared with that of hypothalamus
(Supplementary Table 15). The AltStart in PGR gene, which has
been shown to be affected by pituitary-specific Esr1 knockout
(Sanchez-Criado et al., 2012), more exclusively occurred in
pre-pubertal pituitary. The AltEnd of FSHR, which has been
demonstrated to be involved in folliculogenesis (Candelaria
et al., 2020), has been more specifically observed in ovaries in
in-puberty, compared with hypothalamus. These finding and
observations indicate that the ASs are expressed in a tissue-
specific pattern based on their own functions during the onset
of puberty. Moreover, each tissue is composed of different cells,
and it is supposed that these ASs are cell specific in the cells of
hypothalamus, pituitary, and ovary during the timing of puberty.
A previous study has showed that cell-specific AS was essential
for the function of cells (Lah et al., 2014; Gracida et al., 2016).
Therefore, the more comprehensive profiles of AS changes and
dynamics during the onset of puberty is supposed and proposed
with the transcriptome data of single cells in HPO tissues.

In addition, the estrogen-related receptor alpha (ESRRA) gene
encodes an orphan nuclear receptor that is involved in the release
of GnRH in hypothalamus of marmoset monkey (Wahab et al.,
2019). In the present study, the AltEnd event in ESRRA more
exclusively occurred in pre-puberty, compared with post-puberty
in ovary. It has been reported that TACR3 directly regulates the
release of GnRH and the onset of puberty (Hietamaki et al., 2017).
In the present study, we found that Cassette of TAC3R was more
specifically identified in post-puberty in pituitary, compared with
that of pre-puberty. The AltEnd and AltStart occurring in ESR1
gene, which is essential in response to normal onset of puberty
and estrogen feedback (Cheong et al., 2015), more exclusively
occurred in pre-puberty, compared with post-puberty in the
ovary. These results suggest that ASs of genes exhibit in a specific
pubertal stage during the timing of puberty in pigs.

Besides, we found that MXE and AltStart events highly
occurred in HPO tissues during the pubertal transition of pigs.
For example, COL3A1, which encodes the pro-α 1 chain of

collagen III and is involved in the development of follicles (Yao
et al., 2019), was identified as one of the genes that exclusively
underwent MXE events in post-puberty. The CYP19A1 gene,
which is involved in the estradiol biosynthesis (Sutherland et al.,
2017), uniquely harbors AltStart in hypothalamus. Alternatively,
a previous study shows that GH1 is involved in regulating onset
of puberty (Hu et al., 2019), and we found that A5SS and MXE
occur at different sites of GH1 by interacting with four SFs at the
post-puberty in the present study. ACTB has been demonstrated
to regulate the reproductive function of the ovary (Hassanpour
et al., 2019), and the ACTB gene specially shows AltEnd in ovary
by intersecting with five SFs at the post-puberty (Supplementary
Tables 16–18). These results suggest that SFs might be involved
in the onset of puberty by regulating specific splicing of genes.
These results provide AS level data for a clearer understanding of
the mechanisms underlying onset of puberty in the future.

CONCLUSION

Collectively, in this study, the AS dynamics and DEAS events
were comprehensively profiled in hypothalamus, pituitary, and
ovary across the pre-, in-, and post-pubertal stages in pigs.
The related genes of DEAS were enriched in GnRH signaling
pathway, thyroid hormone signaling pathway, oocyte meiosis,
and oxytocin signaling pathway, which are all involved in the
regulating and timing of puberty. Moreover, the ASs of TAC1,
TACR3, CYP19A1, ESR1, ESRRA, and FSHR were likely to
regulate the functions of certain HPO tissues during the onset
of puberty. These findings may provide a step forward in our
understanding of how molecular events, such as AS, can regulate
the timing of puberty in mammals.
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Supplementary Figure 1 | The ovarian histology structure. (A) Pre-pubertal
ovary. (B) In-pubertal ovary. (C) Post-pubertal ovary.

Supplementary Figure 2 | Representative model of eight different alternative
splicing types. The black solid lines represent connections between exons that
have undergone alternative splicing. The colored dotted line refers to the
original connection.

Supplementary Figure 3 | Boxplots of number of AS and differentially expressed
alternative splicing (DEAS). (A) AS in all pubertal tissue. (B) DEAS in
hypothalamus. (C) DEAS in pituitary. (D) DEAS in ovary. (E) DEAS in pre-puberty.
(F) DEAS in post-puberty. ∗∗FDR < 0.01, ∗∗∗FDR < 0.001.

Supplementary Figure 4 | Specific alternative splicing (AS) events in the
pubertal hypothalamus–pituitary–ovary (HPO) axis. (A) Stage-specific AS.
(B) Tissue-specific AS.
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