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The clinical heterogeneity of autism spectrum disorder (ASD) is closely associated with the
diversity of genes related to ASD pathogenesis. With their low effect size, it has been hard
to define the role of common variants of genes in ASD phenotype. In this study, we
reviewed genetic results and clinical scores widely used for ASD diagnosis to investigate
the role of genes in ASD phenotype considering their functions in molecular pathways.
Genetic data from next-generation sequencing (NGS) were collected from 94 participants
with ASD. We analyzed enrichment of cellular processes and gene ontology using the
Database for Annotation, Visualization, and Integrated Discovery (DAVID). We compared
clinical characteristics according to genetic functional characteristics. We found 266 genes
containing nonsense, frame shift, missense, and splice site mutations. Results from DAVID
revealed significant enrichment for “ion channel” with an enrichment score of 8.84.
Moreover, ASD participants carrying mutations in ion channel-related genes showed
higher total IQ (p � 0.013) and lower repetitive, restricted behavior (RRB)-related scores
(p � 0.003) and mannerism subscale of social responsiveness scale scores, compared to
other participants. Individuals with variants in ion channel genes showed lower RRB
scores, suggesting that ion channel genes might be relatively less associated with RRB
pathogenesis. These results contribute to understanding of the role of common variants in
ASD and could be important in the development of precision medicine of ASD.
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INTRODUCTION

Autism spectrum disorder (ASD) is a neurodevelopmental disorder whose essential features include
persistent impairment in reciprocal social communication and restricted, repetitive behaviors and
interests (American Psychiatric Association and DSM-5 Task Force., 2013). Although ASD is now
widely known to the public, with a reported prevalence of 18.5 per 1,000 children aged 8 years in the
United States (Maenner et al., 2020), proper diagnosis and treatment are still major challenges for
clinicians because of the heterogeneity of the disorder. Regardless of severity, most patients with ASD
require suitable therapy considering their individual symptoms (Lord et al., 2018). Among various

Edited by:
Devanand Sadanand Manoli,

University of California, San Francisco,
United States

Reviewed by:
Rezvan Noroozi,

Jagiellonian University, Poland
Claudia Lattig,

University of Los Andes, Colombia

*Correspondence:
Keun-Ah Cheon

kacheon@yuhs.ac

Specialty section:
This article was submitted to

Behavioral and Psychiatric Genetics,
a section of the journal
Frontiers in Genetics

Received: 18 August 2020
Accepted: 21 September 2021

Published: 12 October 2021

Citation:
Lee J, Ha S, Ahn J, Lee S-T, Choi JR
and Cheon K-A (2021) The Role of Ion

Channel-Related Genes in Autism
Spectrum Disorder: A Study Using

Next-Generation Sequencing.
Front. Genet. 12:595934.

doi: 10.3389/fgene.2021.595934

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 5959341

ORIGINAL RESEARCH
published: 12 October 2021

doi: 10.3389/fgene.2021.595934

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.595934&domain=pdf&date_stamp=2021-10-12
https://www.frontiersin.org/articles/10.3389/fgene.2021.595934/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.595934/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.595934/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.595934/full
http://creativecommons.org/licenses/by/4.0/
mailto:kacheon@yuhs.ac
https://doi.org/10.3389/fgene.2021.595934
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.595934


treatments applied for ASD patients, pharmacotherapy has
proven effective in reducing behavioral problems associated
with ASD (DeFilippis and Wagner, 2016). Previous studies
have reported that over 30% of ASD patients used at least one
antipsychotic drug and that the use of medication tends to be
higher in ASD children (Rosenberg et al., 2010; Schubart et al.,
2014). Pharmacologic treatment in ASD is usually focused on
controlling restricted, repetitive behaviors (RRBs), irritability,
and aggressive behaviors that are disruptive in behavioral
therapy, in social situations, and in daily life (Williamson and
Martin, 2012; Fung et al., 2016). Medications are more often
prescribed if ASD patients are diagnosed of other comorbid
psychiatric illnesses, and antipsychotics are the most
frequently prescribed pharmacotherapy in ASD with
intellectual disability (Houghton et al., 2017).

The diversity of genes related to ASD pathogenesis appears to
be closely associated with the clinical heterogeneity of ASD
(Persico and Napolioni, 2013). In addition to ASD-related
syndromes or rare chromosomal abnormalities, additive effects
from common genetic variants are also known to be related to
ASD etiology (Lovato et al., 2019). Moreover, as rare gene
variations with a high effect size account only for 10% of
idiopathic autism (Persico and Napolioni, 2013), a cumulative
effect for common genetic polymorphisms, such as single-
nucleotide polymorphism (SNP), with a low effect size are
thought to be important in explaining genetic components of
ASD (Klei et al., 2012; Gaugler et al., 2014). Meanwhile, recent
studies have indicated that common variants could be
informative in identifying and diagnosing ASD (Wang and
Avillach, 2021) and that cumulative dysfunction of genes by
common variants could affect the severity of ASD manifestations
(Toma, 2020). Additional research suggests that noncoding
variants, as well as single-nucleotide variants and mosaic
single-nucleotide variants, are implicated in autism
susceptibility (Dias and Walsh, 2020).

However, defining the role of common variants in ASD still
faces several obstacles. First, while common variants have been
found to be related to ASD etiology in several studies, results have
proven difficult to replicate, with an enormous number of genes
suspected to be involved in ASD (Lovato et al., 2019). Also, it can
be difficult to demonstrate the genetic contribution of a single
common gene variant to ASD alone, because ASD shares genetic
risks with other psychiatric illnesses, such as schizophrenia, and
other neurodevelopmental disorders (Lee et al., 2013). Moreover,
stochastic factors during gene expression and environmental
factors can also affect the onset of ASD (Geschwind, 2011).

In recent years, next-generation sequencing (NGS), such as
whole-genome sequencing, whole-exome sequencing, or clinical
exome sequencing, has found use in identifying novel mutations
in genes related to ASD (Jiang et al., 2013; Lovato et al., 2019).
Most of the genes shown to be associated with ASD can be
functionally classified into specific molecular pathways (Sahin
and Sur, 2015; Parenti et al., 2020): the pathways include protein
synthesis, transcriptional and epigenetic regulation, and synaptic
signaling, affecting the functions of neurons and synapses
important in neurodevelopment (De Rubeis et al., 2014; Sahin
and Sur, 2015). Nevertheless, despite advancements in

understanding of the molecular pathology of ASD, it is still
unclear how molecular pathway alterations affect ASD
phenotypes. For this reason, application of NGS in clinical
settings remains limited. Understanding of the linkage between
genotypes and ASD phenotypes, however, may help contribute to
finally achieving proper diagnosis and predicting prognosis and
individualized therapy.

In the present study, we investigated the role of genes in ASD
phenotype in consideration of genetic functions in molecular
pathways using NGS. We reviewed genetic results and clinical
scores clinically used for ASD diagnosis. By excluding rare ASD-
related syndromes and rare copy number variants, we only
focused on common gene variants. To examine the
relationship between ASD phenotype and genotype, we
analyzed clinical scores for social function, RRB, and cognitive
function in relation to the genetic results.

MATERIALS AND METHODS

Participants
In total, 197 children who underwent NGS for genetic evaluation
were included in this study. All children were diagnosed with
ASD by specialized child psychiatrists according to the diagnostic
criteria suggested in the Diagnostic and Statistical Manual of
Mental Disorders (DSM-5) (American Psychiatric Association
and DSM-5 Task Force., 2013). The diagnosis of ASD was
confirmed with Autism Diagnostic Interview-Revised (Lord
et al., 1994) and Autism Diagnostic Observation Schedule-2
scores (Lord et al., 2000). Only children who showed severe
autistic symptoms, morphologic problems, or other
comorbidities were recommended for genetic evaluation in our
clinical setting. Data were collected by retrospectively reviewing
medical records for the children. Information on demographics,
clinical symptom scores, genetics, comorbidities, and
medications was collected. Among 197 children with ASD, we
excluded children from analysis if any of the clinical symptom
scores described below were missing. Ninety-six children were
excluded before analysis due to insufficient clinical data.
Afterward, seven children who were diagnosed with ASD-
related syndromes (tuberous sclerosis or Rett syndrome) were
additionally excluded from this study. This study was approved
by the applicable institutional review boards for research with
human subjects at Severance Hospital, Yonsei University College
of Medicine, where this study was performed. Written informed
consent agreeing to donation of human biologic materials was
acquired from the participant’s legal guardian/next of kin.

Clinical Assessments
Autistic characteristics and intellectual function were assessed
using the scales and tests listed below. For the assessment of
intellectual function, the Korean-Wechsler Intelligence Scale for
Children-IV (K-WISC-IV) (Gwak et al., 2011) or the Korean
Wechsler Preschool and Primary Scales of Intelligence-IV
(K-WPPSI-IV) (Park et al., 2016) was administered depending
on the children’s age and ability to perform the test. The Korean-
Bayley-III scale was also used for participants who were unable to
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perform intelligence tests. The Childhood Autism Rating Scale
(CARS) was used to distinguish ASD from other developmental
disorders and to assess the severity of ASD. A cutoff score of 30
points was applied, and the reliability and validity of the Korean
version of CARS have been verified (Shin and Kim, 1998). The
Social Communication Questionnaire (SCQ), which is based on
the Autism Diagnostic Interview-Revised, was utilized to assess
ASD symptoms (Anthony and Catherine, 2003). The Korean
version of the SCQ was verified as a reliable and valid screening
tool for autism in the Korean population (Kim et al., 2015).

The Social Responsiveness Scale (SRS) is a 65-item
questionnaire of social interactions exhibited by children over
the past 6 months (Constantino and Gruber, 2012). The test
focuses on social impairments in naturalistic social settings and is
measured by parents or teachers. It consists of five subscales
(social awareness, social cognition, social communication, social
motivation, andmannerisms). Each question is scored from 0 to 3
points, and the sum of scores for the social awareness, social
cognition, social communication, and social motivation subscales
is considered reflective of social communication, a core symptom
of ASD in DSM-5. Similarly, the mannerisms subscale represents
RRB symptoms, which is also a core symptom of ASD. We
previously confirmed the clinical validity of the SRS in Korean
children and suggested the relevance of SRS subscales to DSM-5
ASD diagnosis (Cheon et al., 2016). T-scores are used to resolve
problems of differences in raw scores by sex or rater (parent or
teacher). In this study, we used T-scores of each subscale, as well
as total T-scores. T-scores over 75 indicate severe symptoms;
T-scores between 60 and 75 are considered indicative of mid-to-
moderate severity (Aldridge et al., 2012).

Next-Generation Sequencing
For exome sequencing, the xGen Inherited Diseases Panel
(Integrated DNA Technologies, Coralville, IA, United States)
including 4,503 candidate genes was used. The genes included
in this panel are known to be related to ASD, intellectual
disability, and other neurodevelopmental disorders.

The genomic DNA extracted from the children’s blood was
used for library preparation and target capture using a custom
panel targeting candidate genes. The NextSeq 550Dx System
(Illumina, San Diego, CA, United States) was used to perform
massively parallel sequencing. With our custom analysis pipeline,
quality control and sequence analysis were proceeded, and copy
number analysis was performed (Kim et al., 2019). The GRCh37
(hg19) built as the reference sequence was applied for mapping
and variant calling while using the Burrows–Wheeler alignment
(BWA) tool (version 0.7.12). HaplotypeCaller and MuTect2 in
the GATK package (3.8-0) and VarScan2 (2.4.0) were used to
identify single-nucleotide variations (SNVs) and insertion and
deletions (indels). Online databases including the Human Gene
Mutation Database (HGMD), Online Mendelian Inheritance in
Man (OMIM), Clinvar, dbSNP, 1000 Genomes, the Exome
Aggregation Consortium (ExAC), the Exome Sequencing
Project (ESP), and the Korean Reference Genome Database
(KRGDB) were used for analyses and variant annotation.

Classification of variants was conducted using a scoring
algorithm implemented in the DxSeq Analyzer (Dxome, Seoul,

Korea), based on the standards and guidelines established by the
American College of Medical Genetics (ACMG) (Richards et al.,
2015). We excluded genetic variants classified as benign or likely
benign based on ACMG guidelines in NGS clinical reports by
physicians in laboratory medicine. Afterward, variants were lined
in order of higher probability of pathogenicity according to
ACMG guidelines. Among various variants, we selected five
variants with the greatest likelihood of being pathogenetic
from each patient.

Gene Ontology
Using the result of NGS, we analyzed enrichment of cellular
processes and gene ontology using the Database for Annotation,
Visualization and Integrated Discovery (DAVID) (Huang et al.,
2009; Sherman and Lempicki, 2009). Children were then
classified according to genetic characteristics.

Statistical Analysis
Independent t-tests were used to estimate group differences in
demographics and clinical scores. The chi-squared test was used
for comparing categorical variables. Logistic regression analysis
was applied to evaluate the relative risk of a group to another.
Statistical significance was defined at p < 0.05. All analyses were
performed using the Statistical Package for the Social Sciences
software (version 25.0; SPSS Inc., Chicago, IL, United States).

RESULTS

Applying the exclusion criteria, we excluded 94 children with
ASD from final analysis (Figure 1). Children with ASD were
about 6 years old on average (6.12 years, ranging from 3 years,
6 months to 15 years, 4 months). The male-to-female ratio was
about 3:1, and 41 participants were using antipsychotics
(aripiprazole or risperidone) because of excessive RRBs or
irritability. The average IQ score was 51.87, ranging from 31
to 85. The T-score for total SRS was 85.53 on average, and all
subscale T-scores in SRS exceeded 70 on average. CARS scores
varied widely, from 21.00 to 51.50 (Table 1).

Excluding known benign variants, we found that children carried
0 to 34 variants, with 14.44 variants per child on average. We
collected up to five SNVs in children with ASD that had the highest
probability of being pathogenic according to ACMG guidelines. In
total, we collected 266 genes containing nonsense, frame shift,
missense, and splice site mutations. More than one-third of genes
(91 genes) overlapped at least twice. Variants in TSC2 (12 times),
RAI1 (9 times), CHD7 (7 times), and RELN (7 times) were most
frequently found among ASD children.

Results from DAVID highlighted significant enrichment for
“ion channel” (UP_Keywords), with an enrichment score of 8.84
(corrected p � 1.9xe-13). In functional annotation clustering, 30
genes were involved in the ion channel cluster: CACNG2,
CACNA1A, CACNA1C, CACNA1D, CACNA1G, and
CACNA1H were associated with calcium voltage-gated
channels; SCN1A, SCN10A, SCN2A, SCN3A, SCN7A, SCN9A,
and SCN1B were involved in sodium voltage-gated channels;
KCNMA1, KCNT1, KCNH2, KCNQ2, KCNQ4, HCN1, HCN2,

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 5959343

Lee et al. Ion Channel Genes in Autism

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


and HCN4 were related to potassium channels; and CLCN2 and
CHRNA4 were involved in chloride channel function. GABRB3,
GABRG1, GABRR2, GRIN2B, P2RX7, RYR2, and RYR3 were also
highlighted in ion channel functional cluster annotation
(Figure 2). Details on variants of ion channel related genes
are described in Supplementary Material S1.

In our data, 37 children with ASD had at least one variant in a
gene involved in ion channel function. ASD children carrying
variants in genes related to ion channels (ion channel group)
showed significantly higher IQ (p � 0.013) and mannerism
subscale scores in SRS (p � 0.003) than other children that did
not. Other clinical scores were not significantly different between

FIGURE 1 | Participants and gene selection. We first recruited 197 children with ASD who underwent next-generation sequencing analysis. In total, 1,092 genes
were detected with variants in NGS. We only included participants whose clinical assessment was complete with no missing data. After participant selection, we only
selected five variants that were most likely pathogenic in each patient based on ACMG guidelines. A total of 439 genes with variants were excluded. Only 266 genes
remained from participant and variant selection. The 266 genes were included in enrichment analysis using the Database for Annotation, Visualization and
Integrated Discovery (DAVID). ASD, autism spectrum disorder.

TABLE 1 | Demographic and clinical data for children with ASD and group comparisons.

All (n = 94) Variants in ion
channel genes

(n = 37)

No variants in
ion channel genes

(n = 57)

p value

Male:female 63:31 26:11 37:20
Age (years) 6y + 0.12m 5y + 6.81m 6y + 3.56m 0.141
IQ 51.87 55.22 49.70 0.013*
SRS_T 85.53 81.64 87.98 0.104
SCQ 16.42 15.92 16.76 0.563
CARS 32.09 31.55 32.45 0.404
Medication (n) 37 11 26 0.035*

Independent t tests were performed to compare average values for age, IQ, SRS_T, SCQ, and CARS between two groups. The chi-square test was proceeded to analyze correlations
between ion channel gene variants and medication use. ASD, autism spectrum disorder; IQ, Intelligence Quotient; SRS_T, Social responsiveness scale total score; SCQ, Social
Communication Questionnaire; CARS, Childhood Autism Rating Scales. *p < 0.05.

FIGURE 2 | Ion channel genes. Thirty genes were classified as ion channel-related genes. The genes were involved in the function of several ion channels.
*Numbers in brackets stand for number of overlapping genes among children with ASD. GABA, gamma aminobutyric acid; Ach, acetylcholine.
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groups (Table 1; Figure 3). Chi-square analysis indicated that the
ion channel group and medication use were significantly related
(p � 0.035). On the other hand, children with ASD who were on

pharmacotherapy showed significantly lower IQ (p � 0.009) and
higher CARS scores (p < 0.001). There were no differences in SRS
total/subscale scores between participants with and without
pharmacotherapy (Table 2). Univariate logistic regression
analysis revealed that the ion channel group was at a lower
risk of undergoing pharmacotherapy, compared to other
children (odds ratio � 0.381, p � 0.031). Logistic regression
also revealed that ASD children with lower IQ scores were
more prone to use medication (odds ratio � 1.058, p � 0.012)
and that higher CARS score were related to medication use (odds
ratio � 1.270, p < 0.001). Multivariable logistic regression analysis
for medication use in ASD children showed that only a high
CARS score was predictive of a greater likelihood of receiving
pharmacotherapy in ASD (odds ratio � 1.244, p � 0.002)
(Table 3).

DISCUSSION

In this study, we examined the role of common genetic variants in
ASD phenotype by comparing clinical scores in ASD children
with different genetic characteristics. Functional cluster
annotation revealed significant enrichment for genes involved
in ion channels. ASD children with ion channel-related genetic
variants presented with significantly higher IQ and less severe
RRBs, leading to less exposure to antipsychotics. Our findings
suggested that different molecular pathways regulated by related
genes are associated with the different aspect of ASD phenotype.
Finding the linkage between the molecular pathway and ASD
characteristics may contribute to predict prognosis and precision
medicine in ASD at the clinical site.

As NGS was proceeded for comparatively severe ASD patients
in clinic, the average of IQ was 51.87, and the average of SRS total
T-score was within severe criteria. Considering the result of

FIGURE 3 | Group comparison of Social Responsiveness Scale (SRS) total T-scores and subscale T-scores. Comparison of children with variants in ion channel-
related genes versus others. Only mannerism subscale scores were significantly different (*p � 0.003). Total: SRS total T-score; awareness: social awareness subscale
T-score; cognition: social cognition subscale T-score; communication: social communication subscale T-score; motivation: social motivation subscale T-score;
mannerism: mannerism subscale T-score.

TABLE 2 | Differences in clinical scores between ASD children with and without
antipsychotics use.

Antipsychotics
use (n = 41)

No antipsychotics
use

(n = 53)

p value

IQ 48.66 54.36 0.009*
SRS_T 88.02 83.56 0.244
SCQ 17.44 15.61 0.202
CARS 34.41 30.22 <0.001*

ASD, autism spectrum disorder; IQ, Intelligence Quotient; SRS_T, Social responsiveness
scale total score; SCQ, Social Communication Questionnaire; CARS, Childhood Autism
Rating Scales. *p < 0.05.

TABLE 3 | Logistic regression analysis for antipsychotics use in ASD.

Variables Antipsychotics use

OR 95% CI p value

Univariable logistic regression analysis

IQ 1.058 1.012–1.105 0.012*
CARS 1.270 1.113–1.450 <0.001*
Ion Channel Group 0.381 0.159–0.914 0.031*

Multivariable logistic regression analysis

CARS 1.244 1.085–1.426 0.002*

ASD, autism spectrum disorder; OR, odds ratio; CI, confidence interval; IQ, Intellectual
Quotient; CARS, Childhood Autism Rating Scales. p values are calculated using analysis
of logistic regression. In multivariable logistic regression analysis, IQ, CARS, and ion
channel group were adjusted for antipsychotics use. *p < 0.05.
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genetic analysis that children with ASD possess more than 10
variants on average, additive genetic burdens of variants might
have played a role in severe symptoms (Pizzo et al., 2019).

Impacting brain development in the prenatal period, defects in
ion channels in the brain are critical not only in the pathogenesis of
epilepsy but also in other neurodevelopmental disorders, including
ASD (D’Adamo et al., 2020; Smith andWalsh, 2020). Mutations in
ion channel-related genes seem to induce loss of function or gain of
function of cell signaling (Imbrici et al., 2016), resulting in
impairment of neuronal networks (Sanders et al., 2018).
Although it would be difficult to discriminate the specific
function of a particular ion channel in ASD pathogenesis,
imbalances in excitation and inhibition have been emphasized
in the development of neurodevelopmental disorders (Rubenstein
andMerzenich, 2003). Additionally, both excitation and inhibition
might play roles in complex neuronal circuits (Nelson and Valakh,
2015). In this study, genes associated with several ion channels
were included in a functional cluster. Among 30 genes in the ion
channel functional cluster, several genes appeared repeatedly in
more than two children with ASD. GABRG1, one of the most
frequently detected genes in our data, is a gamma-aminobutyric
acid (GABA) receptor subunit gene. Although it is not yet clear
whether mutated GABRG1 directly affects ASD pathogenesis,
studies have highlighted GABA receptor genes as potentially
important in ASD (Ma et al., 2005): for example, GABA
receptor density was found to be reduced in ASD (Blatt et al.,
2001). Interestingly, a GABA gene cluster on human chromosome
4 was shown to be related to vulnerability to social context in youth
(Villafuerte et al., 2014; Trucco et al., 2020), suggesting that these
genes affect social functioning. Another frequently detected gene in
our data wasRYR2, which is involved in calcium channel activation
in the outermembrane of the endoplasmic reticulum (George et al.,
2003). The gene is usually associated with dysregulation of cardiac
muscles, but when expressed in the brain, the genemay take part in
social functioning and delayed development (Lu and Cantor,
2012). Mutations in calcium voltage-gated channel-related genes
(CACNA1A, CACNA1C, CACNA1D, CACNA1G, and CACNA1H)
and sodium voltage-gated channel-related genes (SCN1A, SCN2A,
SCN3A, SCN7A, SCN9A, SCN10A, and SCN1B) were also detected
by our clinical exome sequencing, in line with previous studies
reporting genetic associations with ASD (Schmunk and Gargus,
2013). Although it is unclear how much these genes contribute to
actual ASD pathogenesis, they do, at the very least, appear to
enhance susceptibility to ASD (Schmunk and Gargus, 2013).

One particularly noteworthy finding in this study is that
children with variants in ion channel-related genes showed
significantly lower RRB scores, suggesting that channelopathy
is unlikely to be associated with RRB pathophysiology. In this
study, lower RRB scores were significantly related to less use of
antipsychotics, an important issue in managing ASD children.
Genes related to RRB etiology have been shown to be highly
heritable (Ronald et al., 2006) and to be independent of genes
affecting social functioning (Ronald et al., 2005). Genetic
differences in ASD core symptoms are also supported by
differences in RRB symptom severity by sex (Szatmari et al.,
2012). Although it remains difficult to explain the genetic
differences between social impairment and RRBs,

neurobiological factors, such as cortical–basal ganglia
pathways, might be closely related (Turner et al., 2006).
Considering it is the phenotypic heterogeneity and complex
pathophysiology of RRBs in ASD, various genes may be
involved (Lewis and Kim, 2009). In addition,
neurotransmitter genes, such as dopamine (Lewis and
Bodfish, 1998), glutamate (Purcell et al., 2001), serotonin (Di
Giovanni et al., 2006), and GABA (Shao et al., 2003) genes, have
been shown to be associated with RRBs (Lewis and Kim, 2009).
While the cumulative burden of common genetic variants likely
affects ASD phenotype the most, we assume that ion channel-
related genes may be less connected to RRBs. Although the ion
channel group was significantly associated with medication use
in our study, the overall severity of ASD represented by CARS
scores was more strongly associated with pharmacotherapy of
ASD than the RRB score. This might be because RRBs are not
the only reason for pharmacotherapy in ASD: emotional
problems can also account for antipsychotic use (Stepanova
et al., 2017).

There are several limitations to this study. First, the sample
size was relatively small, compared to other genetic studies. As
this study reviewed medical records retrospectively, we made an
effort to include only ASD children with sufficient clinical scores.
Also, NGS was only conducted for severe ASD patients at our
clinic. As such, the average IQ score was 51.87, and the average
total T-score for SRS fell within severe criteria. This limits the
generalizability of our results to individuals with less severe ASD.
Second, we used both K-WISC-IV and K-WPPSI-IV for
intelligence tests because of differences in age at examination,
resulting in un-unified subscales of IQ. Third, as reports on
genetic results of NGS in Korean individuals with ASD are
scarce, we were unable to compare our results within this
population. Also, as we only reviewed medical records, we
could not compare our results with a healthy control group.
Similar studies including healthy controls should be followed to
avoid false-positive results. Fourth, considering the preschool age
and the low intellectual function, we did not evaluate the
comorbidity of attention-deficit/hyperactivity disorder
(ADHD) because of the diagnostic instability (Bunte et al.,
2014). As ADHD could also possess genetic variants related to
the ion channel pathway (Thapar et al., 2016), longitudinal
follow-up of comorbidities should be followed. Fifth, we
analyzed common variants in genes that seemed to have a
low-to-moderate effect size, rather than rare variants. Our
selection thereof may put into question if the genetic variants
truly affect ASD etiology. Also, considering that genetic analysis
has indicated that children with ASD possess more than 10
variants on average, we suspect that additive genetic burden
from variants might have played a role in the more severe
symptoms seen in our patients (Pizzo et al., 2019). In spite of
these weaknesses, we present one possible way in which to
interpret the meaning of numerous common variants in ASD.
Also, we attempted to discriminate relatively pathogenic variants
using ACMG guidelines.

In conclusion, we found several ion channel-related genes
to be involved in ASD etiology. Although mutations in ion
channel genes are expected to present low-to-moderate
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effect sizes, they might enhance susceptibility to ASD.
Moreover, participants with variants in ion channel genes
showed lower RRB scores, suggesting that ion channel genes
might not be strongly associated with RRB pathogenesis.
These results contribute to helping further understanding of
the role of common variants in ASD and could prove to be
important in the development of precision medicine
for ASD.
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