
ORIGINAL RESEARCH
published: 16 August 2021

doi: 10.3389/fgene.2021.596794

Frontiers in Genetics | www.frontiersin.org 1 August 2021 | Volume 12 | Article 596794

Edited by:

Shankar Subramaniam,

University of California, San Diego,

United States

Reviewed by:

Fuhai Li,

Washington University in St. Louis,

United States

Andras Szilagyi,

Hungarian Academy of Sciences

(MTA), Hungary

*Correspondence:

Jialiang Yang

yangjl@geneis.cn

Jianming Li

ljmingcsu@163.com

Bin-Sheng He

hbscsmu@163.com

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Computational Genomics,

a section of the journal

Frontiers in Genetics

Received: 24 August 2020

Accepted: 05 May 2021

Published: 16 August 2021

Citation:

Zhang Y, Xiang J, Tang L, Li J, Lu Q,

Tian G, He B-S and Yang J (2021)

Identifying Breast Cancer-Related

Genes Based on a Novel

Computational Framework Involving

KEGG Pathways and PPI Network

Modularity. Front. Genet. 12:596794.

doi: 10.3389/fgene.2021.596794

Identifying Breast Cancer-Related
Genes Based on a Novel
Computational Framework Involving
KEGG Pathways and PPI Network
Modularity
Yan Zhang 1,2,3†, Ju Xiang 1,3,4†, Liang Tang 4, Jianming Li 4*, Qingqing Lu 5,6, Geng Tian 5,6,

Bin-Sheng He 3,4* and Jialiang Yang 3,5,6*

1 School of Computer Science and Engineering, Central South University, Changsha, China, 2 School of Information Science

and Engineering, Changsha Medical University, Changsha, China, 3 Academician Workstation, Changsha Medical University,

Changsha, China, 4Neuroscience Research Center & Department of Basic Medical Sciences, Changsha Medical University,

Changsha, China, 5Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China, 6Geneis Beijing

Co., Ltd., Beijing, China

Complex diseases, such as breast cancer, are often caused by mutations of multiple

functional genes. Identifying disease-related genes is a critical and challenging task for

unveiling the biological mechanisms behind these diseases. In this study, we develop a

novel computational framework to analyze the network properties of the known breast

cancer–associated genes, based on which we develop a random-walk-with-restart

(RCRWR) algorithm to predict novel disease genes. Specifically, we first curated a set

of breast cancer–associated genes from the Genome-Wide Association Studies catalog

and Online Mendelian Inheritance in Man database and then studied the distribution

of these genes on an integrated protein–protein interaction (PPI) network. We found

that the breast cancer–associated genes are significantly closer to each other than

random, which confirms the modularity property of disease genes in a PPI network

as revealed by previous studies. We then retrieved PPI subnetworks spanning top

breast cancer–associated KEGG pathways and found that the distribution of these

genes on the subnetworks are non-random, suggesting that these KEGG pathways

are activated non-uniformly. Taking advantage of the non-random distribution of breast

cancer–associated genes, we developed an improved RCRWR algorithm to predict novel

cancer genes, which integrates network reconstruction based on local random walk

dynamics and subnetworks spanning KEGG pathways. Compared with the disease

gene prediction without using the information from the KEGG pathways, this method

has a better prediction performance on inferring breast cancer–associated genes, and

the top predicted genes are better enriched on known breast cancer–associated gene

ontologies. Finally, we performed a literature search on top predicted novel genes

and found that most of them are supported by at least wet-lab experiments on cell

lines. In summary, we propose a robust computational framework to prioritize novel

breast cancer–associated genes, which could be used for further in vitro and in vivo

experimental validation.
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INTRODUCTION

Complex diseases, such as cancers, are often caused by
dysfunction of multiple genes. The pathogenic mechanism
is often due to molecular abnormalities, which affect the
biological function of the body through biomolecular networks,
resulting in complex and diverse diseases (Taherian-Fard et al.,

2015). The gene families of RAS, MYC, ERBB, and FGFR
are common proto-oncogenes (Bi et al., 2018). Although
chemoradiotherapy remains the standard treatment for some
cancers, the majority of patients, who are sensitive initially,
develop resistance after multiple relapses, for example, platinum
resistance (Guan and Lu, 2018). Besides this, molecular
targeted therapy is expected to be more effective and less

toxic compared with chemoradiotherapy. The Food and
Drug Administration has approved several targeted medicines.
The research and wide application of EGFR-TKI (Tyrosine
kinase inhibitors) drugs, mainly including Gefitinib, Erlotinib,
Icotinib, Afatinib, Dasatinib, and Osimertinib, have greatly
improved the overall survival of patients with lung cancer

with the EGFR gene mutation. In this case, molecular targeted
therapy has brought us much closer to personalized therapy,
which will improve the therapeutic effect and prognosis for
patients (Colli et al., 2017). Therefore, identifying disease-
related genes is a critical and challenging task for the
study of complex diseases, which can help us understand
the mechanisms of diseases, identify treatment targets, and
develop novel treatment strategies (Aitman, 2002; Gill et al.,
2014).

Traditional approaches to identification of disease-related
genes, such as linkage analysis, involves a candidate list consisting
of hundreds of genes, requiring a lot of cost and time for in-
depth validation (Gill et al., 2014; Opap and Mulder, 2017). As
such, disease-gene prediction has attracted much attention in
past decades, and many computational algorithms have been
developed to predict disease-related genes to minimize the cost
and time for the study of disease-related genes (Chen et al.,
2014; Gill et al., 2014; Opap and Mulder, 2017; Luo et al.,
2019a,b). Many studies show that genes associated with the
same or similar diseases often are more similar in function
than others (Goh et al., 2007). Functional similar genes as
well as their products often have physical interactions or
functional associations. At present, with the rapid development
of high-throughput technology, a large number of physical
and functional relationships between biomolecules have been
revealed, and these form complex biomolecular networks, e.g.,
protein–protein interaction (PPI) networks (Keshava Prasad
et al., 2009), gene co-expression networks, and pathway networks
(Kanehisa and Goto, 2000). It is found that a gene is more likely
to be related to a disease if there exists direct physical interactions
or strong functional associations between it and known disease-
related genes. Therefore, “guilt by association” becomes a popular
strategy for disease-gene prediction (Oliver, 2000;Wu et al., 2008;
Hu et al., 2018), and network propagation, such as random walk,
has become a widely used approach for disease-gene prediction
(Cowen et al., 2017). However, the existing PPI network is still
incomplete, and there is a lot of data noise. How to improve the

PPI network so as to enhance the ability to predict disease genes
is still a problem that needs further study.

Breast cancer is one of the common malignant tumors
among women all over the world. Surgery is still the preferred
treatment for breast cancer. However, patients with poor
systemic conditions, such as serious diseases in the main organs,
are prohibited from using surgical treatment. Therefore, to
expand the benefit population and improve the treatment effect
of breast cancer patients, targeted therapy occupies the most
important position in the treatment of breast cancer (Valencia
et al., 2017). To identify breast cancer–related genes more
effectively, we conduct analysis and prediction of breast cancer–
related genes based on the PPI network and KEGG pathway
because PPIs are proven to be very useful in disease-gene
prediction, and the physical and functional relationships between
genes in the KEGG pathways are stronger and more reliable
than others. After collecting disease-gene associations for breast
cancer as well as many other diseases, PPIs and KEGG pathway
data, we first analyze breast cancer–related genes from two
aspects: network and enrichment analysis. Then, to enhance
the ability for disease-gene prediction, we propose an improved
algorithm (RCRWR), which consists of network reconstruction
based on local random walk dynamics and random walk with
restart. Further, we also improve the prediction ability for
disease-related genes by integrating KEGG pathway data. Finally,
we conduct extensive analysis for candidate genes.

The rest of the paper is organized as follows. Section Materials
and Methods describes the materials and methods used in the
study, including the improved algorithm (RCRWR) for disease-
gene prediction. Section Results conducts the analysis of disease-
related genes by network and enrichment analysis and then
evaluates the performance of RCRWR when predicting genes
related to breast cancer and other diseases. The results confirm
the effectiveness of RCRWR and the important roles of KEGG
pathway data in enhancing the ability of disease-gene prediction.
Finally, Section Conclusion draws conclusions.

MATERIALS AND METHODS

Here, we first prepare the following data sets: known disease-gene
associations, PPIs, and KEGG pathway data. Then, we introduce
the methods for statistics of breast cancer-related genes and the
improved algorithm for predicting disease-related genes.

Data SOURCES
Disease-Gene Associations
The disease/trait associated genes were retrieved from the
National Institutes of Health Genome-Wide Association Studies
(GWAS) catalog (https://www.ebi.ac.uk/gwas/) (Danielle et al.,
2013) and Online Mendelian Inheritance in Man (OMIM)
(https://omim.org/) (Hamosh, 2004). Some GWAS catalog
disease categories are closely related but named differently by
different investigators, some of which have many overlapping
genes (e.g., see Supplementary Tables 1, 2). It is helpful to merge
the related groups of diseases. For that purpose, a hierarchical
clustering of diseases is applied to cluster these diseases according
to their common disease-related genes. Similar diseases in GWAS
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and OMIM are manually merged based on disease names. The
data set was obtained from the previous study (Yang et al., 2016).

PPIs
In the various types of data that have been used for the prediction
of disease genes, PPIs are the most widely used data. The PPI
network was obtained from the database of STRING (https://
string-db.org) (von Mering et al., 2003), which quantitatively
incorporates several studies and interaction types. In this study,
we consider only the undirected and weighted network.

KEGG Pathways
We downloaded the KEGG pathway data set from KEGG
(Kanehisa and Goto, 2000) (https://www.genome.jp/) and
MSigDB (https://www.gsea-msigdb.org) (Liberzon et al., 2011).
The KEGG pathway database is a collection of manually drawn
pathway maps representing our knowledge on the molecular
interaction, reaction, and relation networks for metabolism,
genetic information processing, environmental information
processing, cellular processes, organismal systems, human
diseases, and drug development. MSigDB provides gene sets of
canonical KEGG pathways derived from the KEGG pathway
database. This data set contains 5,267 unique genes.

Data preparation: We prepare the disease-gene associations,
PPI network, and pathway data. Analysis of breast cancer-related
genes: We conduct two types of analysis for disease-related genes
(network and enrichment). Prediction of breast cancer-related
genes: We evaluate the prediction performance based on the
PPI network and PPI & KEGG pathway, and then we prioritize
the candidate genes related to breast cancer by using all known
disease-related genes as a training set. Analysis of candidate genes
for breast cancer: We conduct three types of analysis for the
candidate genes related to breast cancer (enrichment analysis of
GO and KEGG as well as literature validation).

Statistics of Breast Cancer–Related Genes
Network Analysis
First, we extract the disease-gene subnetwork related to a
specific disease by retaining genes related to this disease and
removing all other genes from the PPI network. We calculate
six statistical measures of the network to evaluate the disease-
gene subnetwork: (a) the number of genes; (b) the number of
edges; (c) the average degrees of nodes; (d) clustering coefficient
in the subnetwork; (e) link density, which is defined as ratio of
the number of existing interactions to its maximum of possible
edges; and (f) a p-value is given to evaluate the significance of
interaction enrichment in the subnetwork.

Then, we analyze the distribution of breast cancer–related
genes in KEGG pathways (e.g., gastric cancer, cellular senescence,
human T cell leukemia virus 1 infection, breast cancer,
melanoma) by calculating (a) the number of common genes
between the pathway and the breast cancer–related gene set; (b)
the number of genes in KEGG pathway; (c) the number of edges
in the subnetwork of the KEGG pathway; (d) the average degrees
of nodes; (e) the clustering coefficient in the subnetwork; and
(f) the link density, which is defined as ratio of the number of
existing interactions to its maximum of possible edges as well as

(g) a p-value indicating the significance of gene enrichment in the
KEGG pathway.

To demonstrate the higher connectivity of the related
subnetworks, we compare these statistical quantities to those of
random subsets of genes mapped on the PPI network with the
same number of genes and same degree distribution.

Enrichment Analysis
Enrichment analysis is a widely used approach to identify
biological themes. We analyze the enrichment of the gene set
in GO and the pathway. P-values using the hypergeometric
distribution are defined as

p = 1−
k−1
∑

i=0

(

M
i

) (

N −M
n− i

)

(

N
n

) , (1)

where N is the total number of genes in the background
distribution, M is the number of genes with given annotations
in that distribution, n is the size of the list of genes of interest,
and k is the number of genes with the annotations in this list.
P-values are adjusted for multiple comparisons, and q-values are
also calculated for FDR control.

The clusterProfiler package was used to perform the
enrichment analysis for GO terms and KEGG pathways (Yu
et al., 2012). As such, the background genes are dependent
on the databases used by this package. This package depends
on the bioconductor annotation data GO.db and KEGG.db
to obtain the maps of the entire GO and KEGG corpus. It
provides functions, enrichGO and enrichKEGG, to perform the
enrichment test for GO terms and KEGG pathways based on
hypergeometric distribution. According to the description of
clusterProfiler, the background genes should be all genes within
a given annotation file, e.g., the GO annotation file. However,
the version of the specific annotation file is dependent on the
clusterProfiler package.

Improved Algorithm for Predicting Breast
Cancer-Related Genes
As shown in Figure 2, breast cancer–related genes tend to
be connected with each other in the PPI network. As such,
the network-based algorithms can often provide useful insight
to infer breast cancer–related (candidate) genes. In this case,
the PPI network is critical. Despite the rapid development of
biotechnologies, there is still a large amount of data noise in
the existing PPI network. Therefore, we propose an improved
algorithm (RCRWR), which consists of network reconstruction
based on local random walk dynamics and random walk with
restart (see Algorithm 1 for the workflow of RCRWR). We
try to use local random walks to extract the feature vectors
of nodes (i.e., genes or proteins) and then use the feature
vectors to calculate the similarity between nodes and reconstruct
the PPI network to reduce the impact of data noise so as to
improve the ability of disease-gene prediction based on the PPI
network. Furthermore, we use KEGG pathways to enhance the
ability to predict disease-related genes because the connections
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in the KEGG pathways tend to be stronger and more reliable
than others.

Algorithm 1 | RCRWR Algorithm.

Input: PPIs, known disease genes, and number (k) of nearest
neighbors.
Output: Probability scores.
1: Calculate behavior vectors (i.e., feature vectors) of all nodes by
local random walk dynamics in the PPI network.
2: Calculate similarity scores between all nodes by the behavior
vectors.
3: Generate a reconstructed PPI network by only retaining
similarity scores between each node i (= 1 ∼ n) and its k-nearest
neighbors.
4: Calculate probability scores of all nodes by applying
network propagation based on random walk with restart to
the reconstructed network, where known disease genes are used
as seed nodes.

Network Reconstruction Based on Local Random

Walks

Similarity Measure Based on Local RandomWalk Dynamics
Generally, similar behavior patterns appear when the dynamic
processes are triggered on similar nodes. Therefore, we applied
the local random walk dynamics to infer the similarity measure
between nodes (Lai et al., 2010; Xiang et al., 2016). The
probability of a walker from one node to others in k-step random
walk is determined by probability matrix Pk (k is random walk
length, determining the range of the local structure that will
be explored). Due to the small-world effect, good results can
generally be generated by using a small k-value (k = 2, 3, . . . ).
The element Pij of the transition matrix P is the ratio between
the weight of link (i, j) and the weighted degree of vertex i, Pij =
wij/

∑

j wij, where wij is the weight of edge (i, j). The behaviors

of the random walk dynamics from a node can be quantified by
a n-dimensional vector vi (i = 1∼n; n is the number of nodes in
a network), which is defined as the row of the matrix

∑k
τ=1 P

τ .
Here, all random walks whose steps vary from 1 to k are taken
into consideration to reinforce the contributions from the nodes
near the target nodes. The similarity measure between nodes
based on the local random walk dynamics can be calculated by,

Sij =
(

vi, vj
)

√
(vi, vi)

√

(

vj, vj
)

(2)

where, if the behavior vectors vx and vy are highly consistent, then
sij → 1; otherwise, sij → 0.

Network Reconstruction
We denote an undirected and weighted network by G = (V, E,
W), where V is a set of proteins, E is a set of interactions, and
W is a set of confidence scores of interactions in the original
network. By using the above similarity measure based on local
random walk dynamics (Equation 2), we calculate the similarity

scores between all nodes in the original PPI network and obtain a
similarity matrix S, where Sij records the similarity score between
nodes i and j. Then, we use the similarity scores to reconstruct
the PPI network by retaining only the connections/similarity
scores between each node i and its k-nearest neighbors (that is,
its k neighbors with the highest similarity scores to the node i).
The mathematical description of the reconstruction process is
as follows.

Definition 1. For each node i, according to the similarity
scores between the node and other nodes, all nodes are sorted
in a descending order. By the descending order of all nodes, we
define a ranking index vector, R

�,i = {Rj,i|j = 1, ..., n}, to record

ranking indices of all nodes about the node i (note that node
i itself is given a largest ranking index), where Rj,i records the
ranking index of node j in this case, and n is the number of nodes
in the network.

Definition 2. By combining the ranking vectors about all
nodes, we define a ranking matrix R = (R

�,1,R�,2, ...,R�,n), where
n is the number of nodes in the network.

Definition 3. By using the ranking matrix and the similarity
matrix S, we define a reconstructed and undirected network
Ĝ = (V̂ , Ê, Ŵ), where V̂ = V , Ê and Ŵ denote the set of
edges and the set of weights of edges in the reconstructed
network, respectively:

Ê = {(j, i)|i = 1 ∼ n, j = 1 ∼ n, Rj,i ≤ k },
Ŵ = {Sj,i|i = 1 ∼ n, j = 1 ∼ n, Rj,i ≤ k },

where Sj,i = Si,j, and k denotes the number of the nearest
neighbors (k= 50 for default).

In the reconstruction process for a given k-value, the newly
added edges can be denoted by Ê

add
= {(j, i)|i = 1 ∼ n, j =

1 ∼ n, Rj,i ≤ k and (j, i) /∈ E}; the removed edges can be

denoted by Êremove = E\Ê; the retained edges can be denoted

by Êretain = E
⋂

Ê; and the weights of the retained edges are
substituted by the similarity scores obtained by the similarity
measure based on local random walk dynamics.

By using the reconstruction process, we can generate
a reconstructed and undirected network. The reconstructed
network may enhance our ability for disease-gene prediction
because it can improve the original PPI network. To show the
effect of the reconstruction process on the PPI network, we have
generated a set of reconstructed PPI networks by using a series
of k-values, and then we calculate the mean score (in the String
database) of retained edges Êretain and removed edges Êremove

for each k value. The results show that the mean score (in the
String database) of the retained edges tends to be larger than
that of the removed edges (see Supplementary Figure 1). This
is consistent with our expectation: By using the reconstruction
process, PPIs with high reliability in the String database tend to be
retained, and PPIs with low reliability in the String database tend
to be removed, and the reconstruction process also supplements
some edges with high similarity scores that do not exist in the
original PPI network. Moreover, we have provided an example
figure to compare the original network with the reconstructed
one, which shows the effect of network reconstruction on the
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original network, so the reader can more clearly see what is being
done (see Supplementary Figure 2).

As a whole, this reconstruction process may reduce data
noise to a certain extent to optimize the PPI network so as
to improve the network data environment for disease-gene
prediction. In the following step, we apply network propagation
to the reconstructed network to predict disease-related genes
more effectively.

Network Propagation Based on Random Walk With

Restart
The random walk with restart can been seen as performing
multiple random walks over the PPI network, each starting
from a seed node associated to a known disease gene, iteratively
moving from one node to a random neighbor, and the stationary
distribution can be considered as a measure of the proximity
between the seed(s) and all the other nodes in the network. More
formally, the random walk with restart is defined as

pTt+1 = (1− r)MpTt + rpT0 (3)

Here, p0 is the initial probability distribution. M is the column-
normalized adjacency matrix of the graph. r ∈ (0, 1) is the restart
probability, and it is set to be 0.7 as suggested by previous studies
(Zhao et al., 2015). pt is the probability vector of the random
walker reaching all nodes at the end of the tth step. After several
iterations, the difference between the vectors pt+1 and pt becomes
negligible, the stationary probability distribution is reached, and
the element in the vector represents a proximitymeasure between
every graph node and the seed(s). In this work, iterations are
repeated until the difference between pt and pt+1 falls below 10-6

as used by previous studies (Zhao et al., 2015).
Note that for cross-validation, the known disease-related

genes in the training set are used as seed nodes to conduct the
random walk with restart, and all known disease-related genes
are used as seed nodes when predicting novel candidate genes.

Prediction Based on PPI Network
We first prepare the PPI network. The PPI network from the
String database retains edges with confidence scores >400, and
we normalize the confidence scores to be between zero and one
by dividing a value of 1,000. The PPI network is used as the
original PPI network. We use a weighted graph G = (V, E, W)
to denote the PPI network comprising a set of proteins V, a set
of interactions E, and a set of confidence scores W. Then, we
map known breast cancer–related genes into the PPI network
and conduct the random walk with restart to predict disease-
related genes. Finally, the probabilities of nodes are used to rank
candidate genes.

Prediction Based on PPI Network and KEGG Pathway
Similarly, we prepare the related data sets, including the PPI
network, breast cancer–related genes, and KEGG pathway. The
PPI network still retains edges with confidence >400. We map
known breast cancer–related genes to the PPI network. Then,
KEGG pathways are mapped into the PPI network and intersect
with the above network. Finally, we perform the random walk
with restart to predict breast cancer–related genes.

Performance Evaluation
To evaluate the prediction performance of the algorithm, we
apply traditional 3-fold cross-validation in the benchmark. Each
time, the known disease genes are randomly split into three parts.
Each part is, in turn, used as test set and the rest as a training set.
Then, we use the genes in the training set as seeds to perform the
random walk with restart to predict disease-related genes. Note
that, in the process of predicting disease genes, only genes in the
training set are used as seed genes. For the cross-validation, the
training set made up of two thirds of all disease genes randomly
selected. For the prediction of novel genes, all known disease
genes are used as the training set.

For a disease d in disease set D, Td denotes the set of genes in
test set. The disease-gene prediction algorithm provides a ranking
list of candidate genes for disease d. We denote by Rd

(

k
)

the set
of top k candidate genes in the ranking list. Then recall in the top
k ranking list is defined as

Recall (k) =
∣

∣Td ∩ Rd
(

k
)∣

∣

|Td|
(4)

This metric is used to evaluate the performance of
prediction algorithms.

RESULTS

Here, we first conduct two types of analysis for breast cancer–
related genes: (1) network analysis of the breast cancer–related
subnetwork and KEGG pathways and (2) enrichment analysis
of GO and the pathway of breast cancer–related genes. Then,
we predict breast cancer–related genes on the (reconstructed)
PPI network with and without the KEGG pathways and analyze
the prediction performance, including (1) quantitative evaluation
on the known breast cancer–related gene set, (2) enrichment
analysis of GO and the pathway of candidate genes, and
(3) a literature validation of candidate genes. Figure 1 shows
the workflow.

Analysis of Breast Cancer-Related Genes
Network Analysis

Subnetwork of Breast Cancer-Related Genes
Breast cancer–related genes were obtained from Yang et al.
(2016). After mapping breast cancer–related genes into the
PPI network, there are only 127 breast cancer–related genes.
We first analyze the distribution of breast cancer–related genes
in the PPI network as well as KEGG pathways (Figure 2).
Supplementary Figures 3–7 provide larger plots so that gene
names can be identified more easily. Figure 2A displays the
subnetwork of breast cancer–related genes. The subnetwork is
extracted from the PPI network by only retaining breast cancer–
related genes. We quantitatively analyze the breast cancer–
related subnetwork by calculating six statistical measures of
networks (see Table 1). We find that the breast cancer–related
subnetwork has a higher value of the clustering coefficient
(CC) and higher link density compared with random sampling
on the whole network, showing significantly more interactions
than expected. These results quantitatively suggest that the
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FIGURE 1 | Workflow of the work.

breast cancer–related genes/proteins tend to interact with
each other, forming disease module with higher link density
than expected.

As we know, in PPI networks, proteins with similar functions
tend to connect or interact with each other. The occurrence and
development of disease is usually due to the abnormal function
of related genes or proteins, which leads to the change of related
signal pathways. These proteins usually have functional similarity
or correlation. Therefore, genes of the same disease or similar
diseases tend to connect with each other in the PPI network to
form disease modules.

We calculate the six statistical measures for subnetworks of
other diseases, such as rheumatoid arthritis, cholesterol, and
obesity (see Table 1). Similar conclusions can be obtained for
other diseases. Clearly, these diseases also have similar modular
property. This again confirms the modular property of disease-
related genes (Ghiassian et al., 2015; Xiang et al., 2016; Chen
et al., 2018; Hu et al., 2018, 2020; Choobdar et al., 2019;
Dwivedi et al., 2020). This is why guilt by association can
become a useful strategy in disease-gene prediction based on
PPI networks.

Subnetworks of KEGG Pathways Related to Breast Cancer
Moreover, we study subnetworks of KEGG pathways
related to breast cancer. We analyze the distribution of
breast cancer–related genes in KEGG pathways (also, see
Supplementary Figures 1–5).

We extract the subnetworks of the KEGG pathways from
the PPI network by using the sets of genes of the KEGG
pathways and calculate the statistical measures of networks
for these subnetworks. Table 2 lists five KEGG pathways
significantly related to breast cancer along with the statistical
measures of the subnetworks. The results show that these
subnetworks have similarly higher values of CC and higher
link density than the whole network, and it has significantly
more interactions than expected (p < 1.0e-16). This means the
genes/proteins in these KEGG pathways also tend to interact
with each other, forming modules with higher link density
than expected.

The values of CC and link density for most KEGG pathways
are higher than those of the above subnetwork of breast cancer–
related genes (see Tables 1, 2). This means the genes in the
KEGG pathways are more modular than breast cancer–related
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FIGURE 2 | (A) Subnetwork of breast cancer–related genes extracted from the PPI network. (B–F) Subnetworks extracted from the PPI network by using the sets of

genes of five KEGG pathways, respectively: gastric cancer, cellular senescence, human T cell leukemia virus 1 infection, breast cancer, and melanoma. Note that

green nodes with larger size denote known breast cancer–related genes.

TABLE 1 | Statistics of disease-gene subnetworks related to breast cancer as well as other diseases.

Disease #Genes #Interactions Degree CC Link density p-value

Breast cancer 130 477 (232 ± 24) 7.3 0.55 (0.42 ± 0.04) 5.7% (2.8% ± 0.3%) <1.0e-16

Rheumatoid arthritis 115 607 (87 ± 15) 10.6 0.45 (0.36 ± 0.04) 9.3% (1.3% ± 0.2%) <1.0e-16

Cholesterol 221 1,152 (245 ± 27) 10.4 0.47 (0.37 ± 0.03) 4.7% (1.0% ± 0.1%) <1.0e-16

Obesity 102 764 (65 ± 14) 15.0 0.62 (0.35 ± 0.05) 14.8% (1.3% ± 0.3%) <1.0e-16

Hypertension 104 234 (64 ± 9) 4.5 0.44 (0.35 ± 0.05) 4.4% (1.2% ± 0.2%) <1.0e-16

Metabolic traits 135 439 (70 ± 10) 6.5 0.38 (0.34 ± 0.04) 4.9% (0.8% ± 0.1%) <1.0e-16

Crohn’s disease 194 847 (198 ± 27) 8.7 0.50 (0.38 ± 0.04) 4.5% (1.1% ± 0.1%) <1.0e-16

Inflammatory bowel disease 220 1,653 (251 ± 32) 15.0 0.52 (0.38 ± 0.03) 6.9% (1.1% ± 0.1%) <1.0e-16

Metabolite levels 95 366 (44 ± 10) 7.7 0.50 (0.34 ± 0.05) 8.2% (1.0% ± 0.2%) <1.0e-16

Prostate cancer 238 589 (300 ± 24) 5.0 0.44 (0.39 ± 0.03) 2.1% (1.1% ± 0.1%) <1.0e-16

Disease-gene subnetworks are extracted from the PPI network by retaining genes related to specific disease, e.g., breast cancer. #Genes and #Interactions denote the number of genes

and edges in the subnetworks, respectively. Degree and CC denote the average degrees of all nodes and CCs in the subnetwork, respectively. Link density is defined as ratio of the

number of existing interactions to its maximum of possible edges in the subnetwork. p-value evaluates the significance of interaction enrichment in the subnetwork. “(x ± y)” denotes

the mean and standard deviation of statistics in random sampling.

genes. The reason may be that genes in these KEGG pathways
are more closely related than other genes in functions.
Moreover, we can find that there exist submodule structures
in the subnetworks of the KEGG pathways (see Figures 2B–F).

This means that there exist functional subunits in the
KEGG pathways.

We label known breast cancer–related genes in the
subnetworks of the KEGG pathways. Other unlabeled genes
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TABLE 2 | Statistics of KEGG pathways related to breast cancer.

Pathway ID Pathway Name #Matched Genes #Genes #Interactions Degree CC Link density p-value

hsa04218 Cellular

senescence

13 156 2,377 (1,136 ± 69) 30.5 0.65(0.52 ± 0.02) 19.7% (9.6% ± 0.6%) <1.0e-16

hsa05224 Breast cancer 12 147 3,169 (1,059 ± 79) 43.1 0.72(0.57 ± 0.03) 29.5% (9.9% ± 0.7%) <1.0e-16

hsa05226 Gastric cancer 15 149 3,042 (953 ± 74) 40.8 0.71(0.55 ± 0.03) 27.6% (9.0% ± 0.7%) <1.0e-18

hsa05166 Human T-cell

leukemia virus 1

infection

13 217 3,872 (1,516 ± 96) 35.7 0.63(0.49 ± 0.02) 16.5% (6.6% ± 0.4%) <1.0e-17

hsa05218 Melanoma 9 72 1,112 (385 ± 39) 30.9 0.77(0.61 ± 0.04) 43.5% (15.1% ± 1.5%) <1.0e-16

The KEGG pathways used in analysis are selected based on the number of matched genes between the pathways and known disease gene set.

#Matched Genes denotes the number of common genes between gene set of pathway and breast cancer–related gene set; #Genes in Pathway denotes the number of genes in

pathway; #Edges denotes the number of interaction in the PPI subnetwork consisting of genes in pathway; Degree and CC denote the average degrees of all nodes and CCs in the

subnetwork, respectively. Link density is defined as ratio of the number of existing interactions to its maximum of possible edges in the subnetwork. p-value evaluates the significance

of interaction enrichment in the subnetwork. “(x ± y)” denotes the mean and standard deviation of statistics in random sampling.

in the KEGG pathways are also likely to be related to breast
cancer because they are likely to jointly affect breast cancer–
related functions. One can see that some subunits have more
breast cancer–related genes. This means that the known breast
cancer–related genes may be non-randomly distributed in the
subnetworks of KEGG pathways, and some subunits in the
KEGG pathways may be more related to breast cancer.

Overall, the physical and functional connections between
genes in the KEGG pathways are stronger and more reliable
than others. Therefore, we make use of information of KEGG
pathways in disease-gene prediction.

Enrichment Analysis
To analyze the relatedness of disease-gene sets to functional
units, we perform GO enrichment analysis and KEGG
pathway enrichment analysis. Figure 3 shows the results of
GO enrichment analysis and KEGG pathway enrichment
analysis (obtained by clusterProfiler; Yu et al., 2012).

According to the GO terms in Figure 3, breast cancer–related
genes are enriched in the following GO terms, e.g., “double-
strand break repair,” “replicative senescence,” “cell aging,” “aging,”
“cell cycle checkpoint,” “cell cycle arrest,” “gland development,”
“signal transduction by p53 class mediator,” “mitotic cell cycle
checkpoint,” and “protein kinase B signaling.”

According to the KEGG pathways in Figure 3, breast cancer–
related genes are enriched in cancer-related KEGG pathways,
e.g., gastric cancer, endometrial cancer, colorectal cancer,
thyroid cancer, pancreatic cancer, prostate cancer, central carbon
metabolism in cancer, proteoglycans in cancer, bladder cancer.

BRCA gene mutations, which are commonly present in breast
cancer, are associated with significantly increased susceptibility to
tumors, including prostate, pancreatic, gallbladder/cholangioma,
and stomach cancer as well as malignant melanoma. These
tumors share a common pathogenic gene network in which the
BRCA gene plays an important role as it is a member of the
mismatch repair gene family. The prediction of breast cancer–
related genes can discover the interaction between tumors and
enrich the relationship network, which is of great significance for
finding therapeutic targets for tumors.

Prediction of Breast Cancer Genes Based
on PPI Network
To evaluate the prediction performance of our algorithm, we
first apply RCRWR to the PPI network. The results show that
RCRWR significantly outperforms the original RWR algorithm
(Wu et al., 2008) on the PPI network for the top 1, 5, and
10% lists of candidate genes (see Figure 4). This means that the
network reconstruction indeed can improve the PPI network so
as to enhance the ability to predict breast cancer–related genes.
Moreover, it is clear that RCRWR and RWR are significantly
better than that in the random case.

Prediction of Breast Cancer Genes Based
on PPI Network and KEGG Pathway
Further, we intersect genes in the KEGG pathways with genes in
the PPI to obtain a more reliable PPI network and then apply
RCRWR to the PPI network. The results show that RCRWR is
significantly better than the RWR algorithm on the PPI network
for top 1, 5, 10, and 20% lists of candidate genes (see Figure 5).
This again proves that the network reconstruction can indeed
enhance the ability to infer breast cancer–related genes on the
PPI network. Moreover, it is clear that the results of RCRWR and
RWR are also significantly better than in the random case.

Compared with the results on the PPI network with and
without KEGG pathway data (see Figure 6), it is very clear that
the prediction performance of both RWR and RCRWR can
be enhanced due to the addition of information of the KEGG
pathway. The information of the KEGG pathway is very helpful
for the prediction of disease-related genes.

Analysis of Candidate Genes of Breast
Cancer
Here, we use all known breast cancer–related genes as training set
to predict candidate genes. We map breast cancer–related genes
into the PPI network and map the KEGG pathway onto the PPI
network because the KEGG pathway is helpful for disease-gene
prediction. We perform our improved algorithm RCRWR in the
network to score all candidate genes. Then, we generate a ranking
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FIGURE 3 | Enrichment analysis of known breast cancer–related genes: (A) GO enrichment analysis and (B) pathway enrichment analysis.
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list of candidate genes for breast cancer. The higher the ranking of
genes, the more likely they are to be associated with breast cancer.

We list the top 10 predicted genes in Table 3, which are
considered to be most closely associated with breast cancer
according to the scores from prediction algorithm. To check the
effectiveness of prediction for the candidate genes, we search the

FIGURE 4 | Top-k Recall (k = 1, 5, 10, 20%) of the original and improved

algorithms in the PPI network.

FIGURE 5 | Top-k Recall (k = 1, 5, 10, 20%) of the original and improved

algorithms in the PPI network with KEGG pathway (PPI_ KEGG).

literature and try to find the connections between these genes and
breast cancer.

DNA damage repair is an important cellular defense
mechanism, and its dysfunction has been linked to a variety of
diseases, including breast cancer. Most of the top 10 candidate
genes for breast cancer are related to the DNA damage repair
function. RAD51 is a eukaryotic protein that plays a role in
DNA repair, neuronal development in the motor system, and
innate immune response (Liang et al., 2016). At present, studies
on the RAD51 gene mainly focus on the interaction between
tumor suppressors, the cell cycle, and apoptotic regulators to
promote the transformation of normal breast epithelial cells into
tumor molecules (Bhattacharya et al., 2017). Genetic association
studies confirm that the RAD51 polymorphisms contribute to
the susceptibility of breast cancer in multiple populations (Gao
et al., 2011; Wong et al., 2011; Wu et al., 2015). RAD52
and RAD54B are key homologous recombination repair (HRR)
proteins, which is closely related to the annealing of homologous
complementary sequences. RAD52 is shown to be associated with
breast cancer susceptibility genes BRCA1 and BRCA2. When
RAD52 is knocked out in BRCA1- or BRCA2-deficient tumor

TABLE 3 | Predicted top 10 candidate genes for breast cancer using PPI and

KEGG pathway.

Gene References

CDK4 Ullah Shah et al., 2015

RAD51 Gao et al., 2011; Wong et al., 2011; Wu et al., 2015; Liang

et al., 2016; Bhattacharya et al., 2017

ATR Di Benedetto et al., 2017

TOP3A Broberg et al., 2009

BLM Ding et al., 2009

XRCC6 Willems et al., 2009; He et al., 2012

RAD52 Huang et al., 2016

EXO1 Wang et al., 2009

MRE11A Podralska et al., 2018

RAD54B Zhang et al., 2019

FIGURE 6 | Comparison of top-k Recall (k = 1, 5, 10, 20%) in the PPI network with and without KEGG pathway by the (A) original algorithm and (B) improved

algorithm.
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FIGURE 7 | Enrichment analysis of top 10 candidate genes for breast cancer: (A) GO enrichment analysis and (B) pathway enrichment analysis.
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cells, HRR frequency is significantly reduced (Huang et al., 2016).
For RAD54B, Zhang et al. show that RAD54B protein expression
in breast cancer tissues was higher than that in adjacent normal
tissues through bioinformatics analysis of multiple relevant
databases and experiments related to immunohistochemistry and
breast cancer cell lines (Zhang et al., 2019). In addition, the
X-ray repair cross-complementing 6 (XRCC6) protein was also
a key molecule on the non-homologous end-joining (NHEJ)
repair pathway (Bau et al., 2011). Studies show that the
XRCC6 polymorphism is correlated with the occurrence and
development of breast cancer (Willems et al., 2009; He et al.,
2012). Ataxia-telangiectasia mutated and Rad3-related protein
(ATR) is an important regulator of the response mechanism
of DNA damage repair. The ATR molecular pathway regulates
cell DNA damage repair through a variety of cytokines, thus
leading to the development of normal cells into tumor cells.
High ATR expression was found to be associated with late breast
cancer stage and poor prognosis (Di Benedetto et al., 2017).
Furthermore, Exonuclease 1 (EXO1), a kind of multifunctional

FIGURE 8 | Top-k Recall performance for all diseases in the PPI network.

enzyme, is mainly used in clearing double-stranded DNA or RNA
molecules that exist in the single sequence. Wang et al. report
that the A allele EXO1 K589E conferred a significantly increased
risk of breast cancer (Wang et al., 2009). Apart from the above
genes, the CDK4 (Ullah Shah et al., 2015), MRE11A (Podralska
et al., 2018), BLM (Ding et al., 2009), and TOP3A (Broberg et al.,
2009) are shown to be associated with the pathogenesis of breast
cancer. These results show that our predictions are in concert
with existing reports, and the algorithm is valuable for predicting
the new disease-gene associations.

To further evaluate our predictions, we perform GO and
KEGG pathway enrichment analysis on the top 10 ranked genes.
The results of GO enrichment analysis show that the genes are
mostly enriched in DNA recombination in its biological process,
PML body in its cellular component and catalytic activity, acting
on DNA in its molecular function (Figure 7A). GO analysis
shows that these genes are involved in DNA damage repair
and cell growth and transformation, which are important in the
pathogenesis of cancers. According to the KEGG pathways listed
in Figure 7B, the top 10 candidate genes are enriched in cells
divide and grow pathways including homologous recombination,
NHEJ, and cell cycle pathways, which are shown to play
important roles in the division and growth of cancer cells.

Application to Other Diseases
Moreover, we apply the above RCRWR algorithm to other
diseases, such as inflammatory bowel disease, metabolite levels,
and cholesterol. To display the prediction performance in the
diseases, we still apply 3-fold cross-validation to the diseases.
Figure 8 shows average top-k Recall prediction performance
for all diseases in the data set. The results show that RCRWR
outperforms the original algorithm on the whole. As examples,
Figure 9 shows the top 1% Recall prediction performance for
some diseases. The results show that RCRWR can improve the

FIGURE 9 | Top 5% Recall for different diseases in the PPI network with KEGG pathway.
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ability of predicting disease-related genes for most diseases such
as inflammatory bowel disease and rheumatoid arthritis.

CONCLUSION

In this study, we have conducted analysis and prediction
of breast cancer–related genes based on the PPI network
and KEGG pathway. First, we analyzed the distribution of
breast cancer–related genes from the aspects of network and
enrichment analysis. The results show that the subnetwork of
breast cancer–related genes has larger link density than that
of the whole network. This means that the breast cancer–
related genes tend to cluster together in the network, forming
a disease module related to breast cancer. This is the case for
other diseases. We also analyzed the structures of the KEGG
pathways significantly related to breast cancer and visually
display the distribution of breast cancer–related genes in KEGG
pathways, which may help to understand how breast cancer–
related genes affect related biological processes and functions in
breast cancer.

Further, we propose the improved algorithm RCRWR to
predict genes related to breast cancer as well as other diseases
in the PPI network with and without the KEGG pathway.
The results show that RCRWR can effectively improve the
ability of predicting genes related to breast cancer and other
diseases in the PPI network, and the KEGG pathway is
very useful in enhancing disease-gene prediction. We used
known breast cancer–related genes as a training set to predict
candidate genes. For the top 10 candidate genes, we conducted
enrichment analysis of the GO and KEGG pathways as well
as literature validation and confirmed the connections between
these candidate genes and breast cancer. This means that the
list of candidate genes is closely related to breast cancer. We
believe that these results may provide useful insights into the
study of breast cancer–related genes and the understanding of its
molecular mechanism.
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