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Spina Bifida (SB) is a congenital spinal cord malformation. Efforts to discern the key
regulators (KRs) of the SB protein-protein interaction (PPI) network are requisite for
developing its successful interventions. The architecture of the SB network, constructed
from 117 manually curated genes was found to self-organize into a scale-free fractal
state having a weak hierarchical organization. We identified three modules/motifs
consisting of ten KRs, namely, TNIP1, TNF, TRAF1, TNRC6B, KMT2C, KMT2D, NCOA3,
TRDMT1, DICER1, and HDAC1. These KRs serve as the backbone of the network, they
propagate signals through the different hierarchical levels of the network to conserve the
network’s stability while maintaining low popularity in the network. We also observed that
the SB network exhibits a rich-club organization, the formation of which is attributed to
our key regulators also except for TNIP1 and TRDMT1. The KRs that were found to ally
with each other and emerge in the same motif, open up a new dimension of research
of studying these KRs together. Owing to the multiple etiology and mechanisms of SB,
a combination of several biomarkers is expected to have higher diagnostic accuracy
for SB as compared to using a single biomarker. So, if all the KRs present in a single
module/motif are targetted together, they can serve as biomarkers for the diagnosis of
SB. Our study puts forward some novel SB-related genes that need further experimental
validation to be considered as reliable future biomarkers and therapeutic targets.

Keywords: Spina bifida, protein-protein interaction network, topological analysis, rich-club analysis,
key regulators

INTRODUCTION

The vigorous efforts of researchers and an increase in research techniques have paved the way for
discoveries in the study of polygenic and other complex human diseases. However, there remain a
large fraction of genetic diseases with their molecular basis unknown, Spina bifida (SB) being one
of them. SB, a spinal cord malformation, falls into the category of Neural Tube Defects (NTDs).
This birth defect occurs when the neural tube of an embryo fails to close completely during the
4th week of pregnancy. As a result, the vertebral column remains split (bifid). Myelomeningocele
(MMC) is the most common and serious type of SB and is often used interchangeably with it.
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MMC causes partial/complete loss of all the functions below the
level of injury. Defective bladder and bowel functions, hindbrain
herniation (Chiari II malformation), hydrocephalus, orthopedic
abnormalities also exist in these patients (Copp et al., 2015;
Mohd-Zin et al., 2017). Apart from MMC, other open and closed
forms of SB are also there (Brei and Houtrow, 2017).

Etiologically, SB involves both genetic as well as
environmental factors. Though the genetic component of
SB is believed to be at 60–70%, yet, non-genetic risk factors
like reduced folate intake, maternal anticonvulsant therapy,
diabetes mellitus, and obesity, cannot be ruled out on account
of some important studies, for example, the one which states
that up to 70% of NTDs in the general population can be
prevented by periconceptional maternal supplementation with
folic acid. Although SB has received much attention over the
last decades because of its high prevalence of one case per 1,000
births globally, its exact causation is yet to be deciphered. The
mechanism by which folic acid protects against SB also remains
a challenge for the researchers despite its unambiguous impact
on the disorder (Beaudin and Stover, 2007; Copp et al., 2015).
Individuals with SB need medical management throughout their
lives apart from surgical treatment (Mitchell et al., 2004).

A disease is more often a consequence of the perturbations
of the complex intracellular network of interactions between
functionally related genes, rather than a single gene abnormality.
This led to the systemic approach to biological problems which
is based on the principle that to understand the contribution
of various genes/proteins in disease initiation and progression,
one has to look at the network of interactions of a living
system as a whole. Here comes into picture the concept of
Network medicine, which aims to explore the complexity of
a disease through the systematic identification of the disease
pathways and modules. Here, the protein interaction maps are
developed and later analyzed through graph/network theory
to understand the theoretical aspect of complex networks (Re
et al., 2008; Barabási et al., 2011). According to the graph
theory, analysis of the topological structure of a network
provides important information of the network through which
novel disease genes and pathways, biomarkers, and drug targets
for complex diseases can be identified (Browne et al., 2018;
Chen et al., 2019).

A recent study on the complex protein-protein interaction
(PPI) network suggests its conformity to scale-free topology
on a hierarchical scale. On these networks, the problem arises
that the central lethality rule does not apply where the stability
and dynamics of the network are disrupted but not completely
disrupted when the hubs are targeted (Ali et al., 2018). This may
be due to the hierarchical organization of modules/sub-modules
in complex networks and other biological networks at various
topological levels, where specific roles are associated with them
(Farooqui et al., 2018; Malik et al., 2019; Mangangcha et al., 2019,
2020). We followed similar methods while conducting this study.

Thus, the focus of our study is on the Protein-Protein
Interaction (PPI) network/graph of SB, constructed from
manually curated genes with an aim to understand the topology
or the architectural principle of the network/graph (random,
small world, scale-free or hierarchical) which is a prerequisite

to identify the main key drivers/regulators of the network.
We also analyzed a rich-club structural ordering of the SB
network that signifies an efficient higher-order organization
indicating the existence of the rich-club nodes which increase
the network’s stability as a whole. We further extended our study
to the identification of the modules/motifs consisting of the
important key regulators of the network that have fundamental
importance due to their activities and regulating mechanisms
in the network based on previous successful applications of
related methodologies.

MATERIALS AND METHODS

Data Mining and Manual Curation of the
Candidate Genes Involved in Spina
Bifida (SB)
The candidate genes of human SB were manually curated from
literature through databases i.e., gene, PubMed, and OMIM
(Hamosh et al., 2005), housed in NCBI. We got a list of 117
experimentally verified genes that we used as seed genes in the
construction of the SB network.

Construction of Protein-Protein
Interaction Network of SB
The candidate genes were mapped to their respective proteins to
construct the Protein-Protein Interaction (PPI) network of SB
in the STRING database (The Search Tool for the Retrieval of
Interacting Genes1) (Szklarczyk et al., 2017) with an interaction
score >0.50 as the threshold, following the concept of one gene-
one protein. To construct the primary PPI network from the
seed genes, we added 500 interactors in the first shell and 500
interactors in the second shell. Subsequently, the network was
visualized and analyzed in the Cytoscape software (version 3.6.1)
(Shannon et al., 2003).

Topological Properties Analysis of the SB
Network
Networks have some properties, called topological properties
which serve to unravel the information that they contain.
The topological properties which were studied to delve into
the important behavior of the constructed primary SB PPI
network are degree distribution, neighborhood connectivity,
clustering coefficient, betweenness centrality, closeness centrality,
and eigenvector centrality. All of these were calculated using
Network Analyzer, a plug-in in Cytoscape version 3.6.1,
except for eigenvector centrality, which was calculated using
CytoNCA (Tang et al., 2015), another plug-in in Cytoscape.
The topological properties analysis was required to validate that
the SB network is following the criteria of a scale-free and
hierarchical network because in biological systems, networks are
arranged in a scale-free manner. Al Barabasi et al. (Barabási
and Albert, 1999) proposed a model based on the mechanisms
that most real networks expand continuously by the addition

1http://string-db.org/
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of new vertices and the new vertices attach preferentially to
already well-connected sites. This led to the observation that
many large networks have a common property that their
vertex connectivities follow a scale-free power-law distribution,
meaning that in large complex networks the probability that a
vertex in the network interacts with k other vertices decays as a
power law, following P(k)∼ k−γ. The fitting parameter values are
given by rˆ2 = 0.410. This result indicates that large networks self-
organize into a scale-free state despite their continuous growth.

Degree Distribution
The degree k of a node is a local measure of centrality of that node,
it is the number of edges by which that node is linked to other
nodes in a network (Raman, 2010). Degree distribution P(k), is
the distribution of the node degrees over the whole network. P(k)
gives the probability that a randomly selected node has exactly
k links and is calculated by dividing the number of nodes (nk)
having a degree k (with k = 1,2,3. . .) by the total number of nodes
(N) in the network;

P(k) =
nk

N
(1)

P(k) decays as a power-law P(k)∼k−γ for a scale-free network,
where, γ is the degree exponent, whereas, the value of γ becomes
close to γ∼ 2.26 (mean-field value) for hierarchical networks and
if a network is random then P(k) follows poisson distribution,
thus, P(k) can be used to distinguish between various network
topologies (Albert and Barabási, 2002).

Neighborhood Connectivity
The set of neighbors of a given node n is the node’s neighborhood
and the number of its neighbors is its connectivity. The
neighborhood connectivity of the node n is defined as the
average connectivity of all the nearest neighbors of n (Maslov and
Sneppen, 2002). Neighborhood connectivity is given by,

CN
(
k
)
= 6qqP

(q
k

)
(2)

where, P
( q

k
)

is the conditional probability that a link belonging
to a node with connectivity k points to a node with connectivity
q. While CN(k) obeys power law in the case of a hierarchical
network, CN(k) ∼ k−β with β∼ 0.5, for a scale-free network,
CN(k)∼ constant (Pastor-Satorras et al., 2001; Malik et al., 2017).
Positive and negative power dependence of CN(k) could be the
indicators of assortativity and disassortativity in the network
topology, respectively (Barrat et al., 2004), meaning that if CN(k)
follows power-law with a positive value of exponent β (i.e., CN(k)
∼ k+β) then edges between highly connected nodes prevail in a
network, this shows assortative nature of the network, whereas, if
CN(k) follows power-law with a negative value of exponent β (i.e.,
CN(k) ∼ k−β) then edges between lowly connected and highly
connected nodes prevail in a network, this shows disassortative
nature of the network.

Clustering Coefficient
The clustering coefficient, for a node n, is a notion of how
connected the neighbors of that node are, in a network. The

clustering coefficient for n is a ratio of the number of edges
between the neighbors of n, and the maximum number of edges
that could possibly exist between the neighbors of n. For an
undirected network, clustering coefficient C(kn) of a node n can
be calculated by,

C(kn) =
2en

kn
(
kn − 1

) (3)

where, en is the number of connected pairs between all nearest-
neighbors of the node n, and kn is the degree of the node n
(Ravasz and Barabási, 2003).

The clustering coefficient, when applied to an entire network
is called the average clustering coefficient and is defined as the
average of the clustering coefficients for all nodes in that network,
it gives a measure of the tendency of the nodes in that network to
cluster together.

Betweenness Centrality
Betweenness centrality is a measure of the frequency of
occurrence of a node on all shortest paths between all pairs of
nodes in a network (Brandes, 2001). The betweenness centrality
of a node indicates the amount of influence it has over the flow of
information in a network by behaving like an interaction bridge
between other nodes in the network. The betweenness centrality
CB(n) of a node n is given by the expression:

CB (n) =
∑

s 6=n 6=t

(
σst (n)

σst

)
(4)

where, s and t are nodes in the network other than n, σst is the
total number of shortest paths from s to t, and σst (n) is the
number of those shortest paths from s to t on which n lies (Albert
and Barabási, 2002; Maslov and Sneppen, 2002; Raman, 2010).

Closeness Centrality
Closeness centrality (CC) is a measure of how close a node is, to all
the other nodes reachable from it in a network, thus, it points out
the nodes which are able to spread information very efficiently
through a network (Canright and Engø-Monsen, 2004). CC(n) of
a node n is defined as the reciprocal of the average length of the
shortest paths between n and all other nodes connected to it in
the network, and is given by,

CC (n) =
N − 1∑

j dij
(5)

where, dij is the length of the shortest path between two nodes i
and j, and N is the total number of nodes in the network which
are connected to the node n.

Eigenvector Centrality
Eigenvector centrality is a measure of a node’s power to facilitate
the spread of information in a network. Eigenvector centrality
CE(n) of a node n in a network is proportional to the sum of it’s
nearest neighbors centralities, and is defined by the equation,

CE (n) =
1
λ

∑
j = nn(n)vj (6)
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where, nn(n) indicates the nearest neighbors of node n in
the network. In the eigenvalue equation, Avn = λvn, λ is the
eigenvalue of the eigenvector vi and A is the adjacency matrix
(connection matrix) of the network. The principal eigenvector
of A, which corresponds to maximum eigenvalue λmax, is
considered to have a positive eigenvector centrality score (Barrat
et al., 2004; Malik et al., 2017).

Community/Modules Detection
Characterization of the modular framework of the constructed
network was requisite to define its behavior as a hierarchical
network having several levels of hierarchy (Traag et al.,
2011, 2013). To detect communities that are distributed in a
hierarchical fashion within the constructed network, we followed
Newman and Girvan’s community finding algorithm (Newman
and Girvan, 2004) and the method used was Leading Eigen
Vector method (LEV) (Newman, 2006) in R using “igraph”
package2, LEV computation is considered fairly reliable since
it reckons the eigenvalue of each edge, thus, indicating the
significance of edges rather than nodes. We kept breaking the
network into modules and then sub-modules till the motif level
came which is the last level of network organization after which
the network can not be broken further. Identifying any sub-
module as a community was based on the criterion that it should
be found to contain at least one triangular motif [defined by G(3,
3) i.e., 3 nodes and 3 edges].

Modularity is used to estimate the strength of the division of
a network into communities (Newman and Girvan, 2004). If m
denotes the total number of edges in a community, Aij is the
adjacency matrix of size i × j, k represents degrees, and the δ

function yields 1 if nodes i and j are in the same community, then
Modularity (Q) of the community can be defined as,

Q =
1

2m

∑
ij

(
Aij −

kikj

2m

)
δ
(
Ci, Cj

)
(7)

Functional Enrichment and Pathway
Enrichment of the SB Network’s Seed
Genes
In the current study, we used The Database for Annotation,
Visualization and Integrated Discovery (DAVID) which extracts
biological meaning from large lists of genes (Newman, 2005;
Mason and Verwoerd, 2007) for the functional enrichment and
pathway enrichment analysis of the seed genes (Huang et al.,
2009a,b). The functions and pathways with adjusted Benjamini-
adjusted P-value < 0.01 were considered statistically significant.

Applying Local-Community-Paradigm
(LCP) Approach to Estimate the
Network’s Compactness
The LCP theory can be used to measure the self-organizing ability
of a network by means of providing information regarding the
number, size, and compactness of communities in the network.
Thus, to check for the self-organizing ability of the SB network at

2http://igraph.sf.net

each level of the organization, the LCP technique was employed
using MATLAB 8.2.

A Local Community (LC) is composed of a cohort of Common
Neighbors (CNs) of a given link and their cross-interactions-
Local Community Links (LCLs) (Cacciola et al., 2019). The CN
index between two nodes x and y, is the amount of overlap
between their sets of first-node-neighbors S(x) and S(y) given
by, CN = (Sx)∩S(y), a large value of CN indicates that these
two nodes are more likely to interact, therefore, increase in
CN reflects an increase in compactness in the network, which
eventually indicates faster information processing in the network.
The LCLs between x and y, whose upper bound is defined by,
max(LCL) = 1/2CN(CN-1), are the number of internal links in
the local-community (LC) (Cannistraci et al., 2013).

According to the LCP theory, the number of CNs of each link
in a complex network is positively correlated with the respective
number of LCLs, this led to a new network measure called
local-community-paradigm correlation (LCP-corr). High LCP-
corr values (usually >0.8) suggest rapid delivery of information
across the various network modules and local processing by
the formation of new links between CNs, thus, suggesting more
dynamic self-reorganization in a network. On the other hand,
low LCP-corr values (usually <0.4) characterize energetically
expensive connections, thereby, indicating weak interactions
between the nodes in non-LCP networks (Cacciola et al., 2019).
The LCP correlation (LCP-corr) is the Pearson correlation
coefficient between the variables CN and LCL and the formula
for computing it is:

LCPcorr =
cov(CN, LCL)

σCN .σLCL
(8)

with CN > 1, where cov(CN, LCL) is the covariance between
CN and LCL, σCN and σLCL are standard deviations of CN and
LCL, respectively.

Tracking of the Seed Genes Through the
Networks
The path that each of the seed genes followed in the SB network,
was tracked through various modules and sub-modules of the
network and the ones which reached the motif level, as well as
their interacting partners, were identified as the Key Regulators
(KRs) of the network. In graph theory, KRs are considered
significant as they serve as the backbone of a network from
top to bottom organization and vice versa to maintain the
network’s stability.

Knock-Out Experiment of the Motifs
Consisting of the Key Regulators
The deletion of the KRs might result in lethality on account
of their regulatory role in a network. The regulation exerted
by the KRs in a network can be understood theoretically, by
studying the changes observed in the connections and topological
parameters of that network after the KRs being knocked-out
from it, compared to the corresponding unmodified network.
In this regard, the motifs consisting of the KRs that were
identified in the last level of the network organization were
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separately removed from the constructed primary network, and
the topological properties of the modified network were again
calculated to discern the perturbations led by the knock-out
of these motifs from the network. We repeated the in silico
knockout experiment of the motifs successively at each level of
the network systematization to comprehend the regulatory role
of the constituent KRs in the network.

Distribution of Energy in the Network:
Hamiltonian Energy Calculation
At each level of the organization of a network, be it a global
or a modular level, a certain level of energy is required to keep
the network organized at that level. This can be measured by
calculating Hamiltonian Energy (HE) of the network at that level
within the formalism of the Constant Potts Model (Newman
and Girvan, 2004; Canright and Engø-Monsen, 2006). HE of a
network/module/sub-module can be calculated by,

H[c] = −
∑

c
[ec − γn2

c ] (9)

where, c is any community containing ec and nc number of edges
and nodes, respectively, and γ is the resolution parameter acting
as edge density threshold which is set to be 0.5. To demonstrate
the regulation exerted by the KRs in the same combination as
they were found in the motifs, HE calculation and comparison
of the original and the motifs knockout networks were done
(Malik et al., 2019).

Rich-Club Analysis
The “rich-club” organization is attributed to the preferable
linking of high-degree nodes (rich nodes) among themselves to
form tight and well-interlinked sub-graphs (clubs) in a network
(Colizza et al., 2006). The rich-club organization of a network can
be discerned by computing the rich-club coefficient φ(k) across
the degree range. If N > k denotes the number of nodes having
a degree higher than a given value k and E > k stands for the
number of links connecting the N > k nodes then φ(k) can be
defined as:

φ
(
k
)
=

2E>k

N>k (N>k − 1)
(10)

The rich-club coefficient φ(k) measures the connectedness of the
rich nodes, by giving the ratio of the actual to the maximum
number of links possible between the N > k nodes. However,
a monotonic increase of φ(k) can often be misleading as it
may rather be a consequence of a higher probability of high-
degree nodes to share edges as compared to low-degree nodes.
Therefore, φ(k) should be normalized by comparing it with those
obtained from the maximally random networks with similar size
and degree distribution in order to precisely assess the rich-
club structural ordering. The normalized rich-club coefficient
φnorm(k) is computed as:

φnorm(k) =
φ(k)

φrand(k)
(11)

Where, φrand(k) is the average rich-club coefficient of the
maximally random networks (Nunes Amaral and Guimera,
2006). φnorm(k) > 1 is the signature of a rich-club organization
in a network. In contrast, φnorm(k) < 1 signifies a lack of
interconnectivity among the rich nodes. We evaluated the
existence of a rich-club structural ordering in the SB network
which is known to aid in increasing a network’s stability
(Mangangcha et al., 2019, 2020).

All the graphs were drawn using OriginPro 8.5 and the figures
using Adobe Illustrator CS6.

RESULTS

Data Acquisition Through Manual
Curation
A list of 117 genes that were experimentally verified to be involved
in Spina Bifida (SB) in humans was retrieved through manual
curation of literature (Table 1). These genes were used for the
construction of the SB network to understand the molecular
mechanism behind the occurrence of the malformation and
to provide a new angle for its future biomarkers and
therapeutic targets.

SB Network Architecture Reveals
Hierarchical Scale-Free Features
To construct the SB Protein-Protein Interaction (PPI) network,
the candidate genes of SB listed in Table 1, were fed into
STRING as seed genes. 116 of our seed genes got incorporated
in the constructed primary network composed of 1,116 nodes
and 40,886 edges, leaving TRPM6, which failed to make its way
into the network. To gain structural insights into the primary
PPI network of SB, we examined features of its topology or
architecture i.e., probability of degree distribution P(k), clustering
coefficient C(k), neighborhood connectivity CN(k), and centrality
measurements. To find if the network has the scale-free fractal
attribute and is hierarchical, the topological properties of the
network must obey power-law behaviors as a function of degree
k (Barabási and Albert, 1999) and it can be written as;

Topological Property (TP) ∼ k∧exp,

Where, degree distribution, neighborhood connectivity,
clustering coefficient, betweenness centrality, closeness centrality,
and eigenvector centrality are the topological properties and γ, β,
α, µ, δ, O are their exp (exponents), respectively.

We followed the standard statistical fitting technique put
forward by Clauset et al. (2009) to verify that the features of
the graph’s architecture follow power-law behavior. All statistical
P-values for all data sets, calculated against 2,500 random
samplings, are found to be larger than a critical value 0.1, and
goodness of fits are found to be less than and equal to 0.33. The
data points of all the topological parameters are found to fit power
law when plotted against the degree k of the SB network (First
row labeled as Level “0” in Figures 1A, 2A, 3A). The straight
line in the graphs represents the non-linear curve-fitting on the
formula Y = a0∗xˆa1. Here a1 is the coefficient of the topological
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TABLE 1 | List of genes reported as risk factors for SB in humans.

S. no. Gene Name Gene ID Description Location References

1 ALDH1A2 8854 Aldehyde dehydrogenase 1
family member A2

15q21.3 Deak et al., 2005b

2 ALDH1L1 10840 Aldehyde dehydrogenase 1
family member L1

3q21.3 Franke et al., 2009

3 AMBRA1 55626 Autophagy and beclin 1
regulator 1

11p11.2 Ye et al., 2020

4 APAF1 317 Apoptotic peptidase activating
factor 1

12q23.1 Spellicy et al., 2018

5 APEX1 328 Apurinic/apyrimidinic
endodeoxyribonuclease 1

14q11.2 Olshan et al., 2005

6 APOB 338 Apolipoprotein B 2p24.1 Zou et al., 2020

7 BHMT 635 Betaine–homocysteine
S-methyltransferase

5q14.1 Shaw et al., 2009

8 BMP4 652 Bone morphogenetic protein 4 14q22.2 Felder et al., 2002

9 BRCA1 672 BRCA1, DNA repair associated 17q21.31 King et al., 2007

10 CARM1 10498 Coactivator associated arginine
methyltransferase 1

19p13.2 Lu et al., 2010

11 CASP8 841 Caspase 8 2q33.1 Wang et al., 2017

12 CBSL 875 Cystathionine beta-synthase 21q22.3 Martinez et al., 2009

13 CCL2 6347 C-C motif chemokine ligand 2 17q12 Jensen et al., 2006a; Lu et al., 2008

14 CDH2 1000 Cadherin 2 18q12.1 Hebert et al., 2020

15 CELSR1 9620 Cadherin EGF LAG seven-pass
G-type receptor 1

22q13.31 Lei et al., 2014

16 CFL1 1072 Cofilin 1 11q13.1 Zhu et al., 2007

17 CHKA 1119 Choline kinase alpha 11q13.2 Enaw et al., 2006

18 CITED2 10370 Cbp/p300 interacting
transactivator with Glu/Asp rich
carboxy-terminal domain 2

6q24.1 Lu et al., 2010

19 COMT 1312 Catechol-O-methyltransferase 22q11.21 Carter et al., 2011

20 CPE 1363 Carboxypeptidase E 4q32.3 Hebert et al., 2020

21 CREBBP 1387 CREB binding protein 16p13.3 Lu et al., 2010

22 CSNK1G2 1455 Casein kinase 1 gamma 2 19p13.3 Hebert et al., 2020

23 CUBN 8029 Cubilin 10p13 Franke et al., 2009

24 CYP26A1 1592 Cytochrome P450 family 26
subfamily A member 1

10q23.33 Rat et al., 2006

25 DACT1 51339 Disheveled binding antagonist
of beta catenin 1

14q23.1 Shi et al., 2012

26 DDB1 1642 Damage specific DNA binding
protein 1

11q12.2 Hebert et al., 2020

27 DHFR 1719 Dihydrofolate reductase 5q14.1 Martinez et al., 2009

28 DLC1 10395 DLC1 Rho GTPase activating
protein

8p22 Le et al., 2018

29 DVL1 1855 Disheveled segment polarity
protein 1

1p36.33 Chen et al., 2017

30 DVL2 1856 Disheveled segment polarity
protein 2

17p13.1 De Marco et al., 2013

31 EP300 2033 E1A binding protein p300 22q13.2 Lu et al., 2010

32 ERCC2 2068 Xeroderma pigmentosum D 19q13.32 Olshan et al., 2005

33 FERMT2 10979 Fermitin family member 2 14q22.1 Hebert et al., 2020

34 FKBP8 23770 FKBP prolyl isomerase 8 19p13.11 Tian et al., 2020

35 FOLH1 2346 Folate hydrolase 1 11p11.12 Guo et al., 2013

36 FOLR1 2348 Folate receptor alpha 11q13.4 Findley et al., 2017

37 FOLR2 2350 Folate receptor beta 11q13.4 O’Byrne et al., 2010

38 FOLR3 2352 Folate receptor gamma 11q13.4 O’Byrne et al., 2010

39 FOXN1 8456 Forkhead box N1 17q11.2 Amorosi et al., 2008

40 FUZ 80199 Fuzzy planar cell polarity protein 19q13.33 Seo et al., 2011

(Continued)
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TABLE 1 | Continued

S. no. Gene Name Gene ID Description Location References

41 FZD3 7976 Frizzled class receptor 3 8p21.1 Shangguan et al., 2015

42 FZD6 8323 Frizzled class receptor 6 8q22.3 De Marco et al., 2011; Juriloff and Harris, 2012

43 GCKR 2646 Glucokinase regulator 2p23.3 Fu et al., 2015

44 GLI2 2736 GLI family zinc finger 2 2q14.2 Lu et al., 2016

45 GNAS 2778 GNAS complex locus 20q13.32 Zhang et al., 2015

46 GPC5 2262 Glypican 5 13q31.3 Bassuk et al., 2013

47 GPR161 23432 G protein-coupled receptor 161 1q24.2 Kim et al., 2019

48 GRHL3 57822 Grainyhead like transcription
factor 3

1p36.11 Le et al., 2017

49 HK1 3098 Hexokinase 1 10q22.1 Davidson et al., 2008

50 HOXB7 3217 Homeobox B7 17q21.32 Rochtus et al., 2015

51 ITGB1 3688 Integrin subunit beta 1 10p11.22 Le et al., 2018

52 ITPK1 3705 Inositol-tetrakisphosphate
1-kinase

14q32.12 Guan et al., 2014

53 LEP 3952 Leptin 7q32.1 Lupo et al., 2012

54 LEPR 3953 Leptin receptor 1p31.3 Carter et al., 2011; Suazo et al., 2013

55 LMNB1 4001 Lamin B1 5q23.2 Robinson et al., 2013

56 LRP6 4040 LDL receptor related protein 6 12p13.2 Lei et al., 2015

57 MTHFD1 4522 Methylenetetrahydrofolate
dehydrogenase, cyclohydrolase
and formyltetrahydrofolate
synthetase 1

14q23.3 Parle-McDermott et al., 2006

58 MTHFD1L 25902 Methylenetetrahydrofolate
dehydrogenase (NADP+
dependent) 1 like

6q25.1 Parle-McDermott et al., 2009

59 MTHFD2 10797 Methylenetetrahydrofolate
dehydrogenase (NADP+
dependent) 2

2p13.1 Shaw et al., 2009

60 MTHFR 4524 Methylenetetrahydrofolate
reductase

1p36.22 Martinez et al., 2009; Carter et al., 2011; Cadenas-Benitez et al., 2014

61 MTR 4548 5-methyltetrahydrofolate-
homocysteine
methyltransferase

1q43 Shaw et al., 2009

62 MTRR 4552 5-methyltetrahydrofolate-
homocysteine
methyltransferase reductase

5p15.31 van der Linden et al., 2006

63 NAT1 9 N-acetyltransferase 1 8p22 Jensen et al., 2006b

64 NCAM1 4684 Neural cell adhesion molecule 1 11q23.2 Deak et al., 2005a

65 NKX2-8 26257 NK2 homeobox 8 14q13.3 Safra et al., 2013

66 NOG 9241 Noggin 17q22 Felder et al., 2002

67 NOS3 4846 Nitric oxide synthase 3 7q36.1 Brown et al., 2004

68 PAX1 5075 Paired box 1 20p11.22 Hol et al., 1996

69 PAX3 5077 Paired box 3 2q36.1 Agopian et al., 2013

70 PCMT1 5110 Protein-L-isoaspartate
(D-aspartate)
O-methyltransferase

6q25.1 Zhu et al., 2006

71 PCYT1A 5130 Phosphate cytidylyltransferase
1, choline, alpha

3q29 Enaw et al., 2006

72 PDGFRA 5156 Platelet derived growth factor
receptor alpha

4q12 Zhu et al., 2004; Carter et al., 2011

73 PLCB1 23236 Phospholipase C beta 1 20p12.3 Hebert et al., 2020

74 PON1 5444 Paraoxonase 1 7q21.3 Gonzalez-Herrera et al., 2010

75 PORCN 64840 Porcupine O-acyltransferase Xp11.23 Hebert et al., 2020

76 PPP2R1A 5518 Protein phosphatase 2 scaffold
subunit alpha

19q13.41 Hebert et al., 2020

77 PRICKLE1 144165 Prickle planar cell polarity
protein 1

12q12 Bosoi et al., 2011

(Continued)
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TABLE 1 | Continued

S. no. Gene Name Gene ID Description Location References

78 PRICKLE2 166336 Prickle planar cell polarity protein
2

3p14.1 Hebert et al., 2020

79 PSMD3 5709 Proteasome 26S subunit,
non-ATPase 3

17q21.1 Hebert et al., 2020

80 PTCH1 5727 Patched 1 9q22.32 Wang et al., 2013b

81 PTK7 5754 Protein tyrosine kinase 7 6p21.1 Lei et al., 2019

82 PTPRS 5802 Protein tyrosine phosphatase
receptor type S

19p13.3 Le et al., 2015

83 PTPRU 10076 Protein tyrosine phosphatase
receptor type U

1p35.3 Hebert et al., 2020

84 RAD9B 144715 RAD9 checkpoint clamp
component B

12q24.11 Cao et al., 2020

85 RFC1 5981 Replication factor C subunit 1 4p14 De Marco et al., 2003

86 SARDH 1757 Sarcosine dehydrogenase 9q34.2 Franke et al., 2009

87 SCRIB 23513 Scribbled planar cell polarity
protein

8q24.3 Lei et al., 2013

88 SDC1 6382 Syndecan 1 2p24.1 Hebert et al., 2020

89 SEC24B 10427 SEC24 homolog B, COPII coat
complex component

4q25 Yang et al., 2013

90 SHMT1 6470 Serine hydroxymethyltransferase
1

17p11.2 Rebekah et al., 2017

91 SHROOM2 357 Shroom family member 2 Xp22.2 Chen et al., 2018

92 SHROOM3 57619 Shroom family member 3 4q21.1 Le et al., 2015

93 SLC19A1 6573 Solute carrier family 19 member 1 21q22.3 O’Byrne et al., 2010

94 SLC2A1 6513 Solute carrier family 2 member 1 1p34.2 Davidson et al., 2008; Suazo et al., 2013

95 SMO 6608 Smoothened, frizzled class
receptor

7q32.1 Wang et al., 2013a

96 SOD1 6647 Superoxide dismutase 1 21q22.11 Kase et al., 2012; Kase et al., 2013

97 SOD2 6648 Superoxide dismutase 2 6q25.3 Kase et al., 2012; Kase et al., 2013

98 SOSTDC1 25928 Sclerostin domain containing 1 7p21.2 Hebert et al., 2020

99 SOX18 54345 SRY-box transcription factor 18 20q13.33 Rochtus et al., 2016

100 SOX3 6658 SRY-box transcription factor 3 Xq27.1 Bauters et al., 2014

101 T 6862 T-box transcription factor T 6q27 Carter et al., 2011

102 TFAP2A 7020 Transcription factor AP-2 alpha 6p24.3 Lu et al., 2010

103 TLE3 7090 TLE family member 3,
transcriptional corepressor

15q23 Hebert et al., 2020

104 TNIP1 10318 TNFAIP3 interacting protein 1 5q33.1 Francesca et al., 2016

105 TNRC6B 23112 Trinucleotide repeat containing
adaptor 6B

22q13.1 Hebert et al., 2020

106 TP53 7157 Tumor protein p53 17p13.1 Pangilinan et al., 2008

107 TRDMT1 1787 tRNA aspartic acid
methyltransferase 1

10p13 Franke et al., 2009

108 TRIM26 7726 Tripartite motif containing 26 6p22.1 Zhang et al., 2015

109 TRIM4 89122 Tripartite motif containing 4 7q22.1 Zhang et al., 2019

110 TRPM6 140803 Transient receptor potential cation
channel subfamily M member 6

9q21.13 Saraç et al., 2016

111 TXN2 25828 Thioredoxin 2 22q12.3 Wen et al., 2009

112 TYMS 7298 Thymidylate synthetase 18p11.32 Martinez et al., 2009; Shaw et al., 2009

113 UCP2 7351 Uncoupling protein 2 11q13.4 Volcik et al., 2003

114 VANGL1 81839 VANGL planar cell polarity protein
1

1p13.1 Bartsch et al., 2012

115 VANGL2 57216 VANGL planar cell polarity protein
2

1q23.2 Kibar et al., 2011

116 ZIC2 7546 Zic family member 2 13q32.3 Klootwijk et al., 2004

117 ZIC3 7547 Zic family member 3 Xq26.3 Klootwijk et al., 2004
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FIGURE 1 | (A) showing probability of degree distribution P(k), clustering coefficient C(k), neighborhood connectivity CN (k), betweenness centrality CB(k), closeness
centrality CC(k), and eigenvector centrality CE (k) as a function of degree (k) for primary original network (level 0) and TNIP1 motif knockout networks at different levels
of the organization (level 1–4). (B) showing changes in the values of the topological properties’ exponents of the TNIP1 motif knockout networks (colors
corresponding to the ones used in the topological properties plots i.e., blue for P(k), red for C(k), yellow for CN (k), magenta for CB(k), green for CC(k) and turquoise
for CE (k)) compared with the topological properties’ exponents of the corresponding original networks (black) at different levels of the organization. γ, α, β, µ, δ, and
O are the exponents of the degree distribution, clustering coefficient, neighborhood connectivity, betweenness centrality, closeness centrality, and eigenvector
centrality, respectively.

properties and we plot degree (k) on the X-axis. If these data fit
well as stated by Al Barabasi et al., it is concluded that the network
is scale-free and is hierarchical. In our study, it was seen that the
topological properties of the network obey the power-law, thus,
we conclude that the SB network is hierarchical and has scale-
free fractal attributes. The values of the power-law exponents for
each of the topological properties of the complete network were
calculated: P

C
CN

 ∼
K−γ

K−α

K+β

 ;
 γ0

α0
β0

→
 0.416

0.138
0.123

 (12)

The values of the exponents of P(k), C(k), and CN(k), i.e., γ,
α, and β, lead to the conclusion that the network though not
having a strong hierarchy, still falls into the category of a weak
hierarchical scale-free network, reflecting the presence of well-
defined successive interconnected communities with meagerly
distributed hubs (nodes with a high degree of interaction) in the
network (Pastor-Satorras et al., 2001; Ravasz et al., 2002; Nafis
et al., 2015). The negative values of γ (γ < 2) and α, indicate
the hierarchical nature of the SB network. The negative value of
α means that as k is increasing, C(k) is decreasing, indicating
that nodes with a high degree have a low tendency to cluster,
further showing a hierarchy of hubs, in which the most densely
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FIGURE 2 | (A) showing probability of degree distribution P(k), clustering coefficient C(k), neighborhood connectivity CN (k), betweenness centrality CB(k), closeness
centrality CC(k), and eigenvector centrality CE (k) as a function of degree (k) for primary original network (level 0) and TNRC6B motif knockout networks at different
levels of the organization (level 1–3). (B) showing changes in the values of the topological properties’ exponents of the TNRC6B motif knockout networks [colors
corresponding to the ones used in the topological properties plots i.e., blue for P(k), red for C(k), yellow for CN (k), magenta for CB(k), green for CC(k), and turquoise
for CE (k)] compared with the topological properties’ exponents of the corresponding original networks (black) at different levels of the organization. γ, α, β, µ, δ, and
O are the exponents of the degree distribution, clustering coefficient, neighborhood connectivity, betweenness centrality, closeness centrality, and eigenvector
centrality, respectively.

connected hub is linked to a small fraction of all other nodes.
The power-law obeyed by P(k) is also a sign of the scale-free
nature of the SB network since scale-free networks are defined by
a power-law degree distribution, the negative value of γ means
that a minor section of the nodes exhibits a high degree with
most of the nodes having a low degree which is in accordance
with the definition of a scale-free network (Barabási and Albert,
1999). The positive value of β indicates the assortative nature
of the SB network, which means that edges between heavily
connected nodes predominate in the network to regulate the
latter (Pastor-Satorras et al., 2001).

Centrality measurements, namely betweenness centrality
CB(k), closeness centrality CC(k), and eigenvector centrality
CE(k) are also observed to exhibit power-law or fractal behavior:

CB
CC
CE

 ∼
Kµ

Kδ

Kθ

 ;
µ0

δ0
θ0

→
 2.452

0.108
1.072

 (13)

The positive values of the exponents µ, δ, and θ of the three
distributions CB(k), CC(k), and CE(k), respectively, also show
that the network exhibits hierarchical scale-free or fractal features
(Bonacich, 1987). The positive values of these exponents mean
that CB, CC, and CE when plotted against degree k, increase as
k increases. The increasing value of CB as k increased indicates
that nodes with a high degree have high CB, thus, these larger
hubs have major influence over the information transmission in
the network than the nodes with a low degree. Similarly, direct
proportionality between CC and k points toward the high CC of
the hubs further indicating that these high-degree nodes are the
quick spreader of the information in the network. CE is also in
favor of highly connected nodes as reflected by the positive value
of θ, showing that nodes with a high degree have high CE as
well, thus indicating that these nodes are more influential in the
network on account of their power of spreading information in
the network. The positive value of θ signifies the connectedness
between the high degree nodes, this is in agreement with the
assortative mixing in the network.
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FIGURE 3 | (A) showing probability of degree distribution P(k), clustering coefficient C(k), neighborhood connectivity CN (k), betweenness centrality CB(k), closeness
centrality CC(k), and eigenvector centrality CE (k) as a function of degree (k) for primary original network (level 0) and TRDMT1 motif knockout networks at different
levels of the organization (level 1–3). (B) showing changes in the values of the topological properties’ exponents of the TRDMT1 motif knockout networks [colors
corresponding to the ones used in the topological properties plots i.e., blue for P(k), red for C(k), yellow for CN (k), magenta for CB(k), green for CC(k) and turquoise
for CE (k)] compared with the topological properties’ exponents of the corresponding original networks (black) at different levels of the organization. γ, α, β, µ, δ, and
O are the exponents of the degree distribution, clustering coefficient, neighborhood connectivity, betweenness centrality, closeness centrality, and eigenvector
centrality, respectively.

Thus, through meticulous study of these topological
properties, the SB network was found to self-organize into a
scale-free fractal state, having a weakly hierarchical organization.

Key Regulators Uncovered Through
Clustering and Tracing
Through clustering using Newman and Girvan’s algorithm, the
network got divided into communities and sub-communities
distributed in six hierarchical levels (Figure 4A). It appeared
that both modularity (Q) and Hamiltonian Energy (HE) decrease
from top to bottom organization when plotted against the level of
organization (Figures 5A,B). When the seed genes were traced
from top to bottom organization of the SB network through
these levels of hierarchy, only three of them were found to reach
the last sixth level (motif level) of the SB network, namely,
TNIP1, TNRC6B, and TRDMT1. These three seed genes along
with their interacting partners in the last level of the network

organization, namely, TNF and TRAF1 (interacting partners of
TNIP1); KMT2C, KMT2D, and NCOA3 (interacting partners of
TNRC6B); and DICER1 and HDAC1 (interacting partners of
TRDMT1) were revealed to be the KRs of the SB network, the
criterion being their ability to make triangular motifs [defined
by G(3, 3)] (Figure 6A) and their presence at every topological
level (Figure 4B). This is in agreement with the definition of KRs,
according to which, KRs are the genes/proteins which are deeply
rooted from the top to bottom organization of the network.
These KRs are considered to be the backbone in maintaining
a network’s stability as they capacitate the network to combat
any unacceptable alterations in it. Five more of our seed genes
namely, ITPK1, FKBP8, TLE3, FOLH1, and TP53, reached the
sixth level but they could not be considered as KRs because of
their shortcoming to form triangular motifs.

The regulating ability of each of the KRs was estimated
by defining the probability PKR(xl) of the KRs to regulate
the networks at different levels (Figure 6B). PKR(xl) gives
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FIGURE 4 | (A) illustration of the hierarchical organization of the SB network into 6 different levels that resulted after clustering. The gray-colored circle in the center
represents the primary network of SB which is level 0, the primary network got divided into seven modules after clustering making it the next level of hierarchy i.e.,
level 1. Each subsequent circle represents the next level of the SB network’s organization and arrows indicate submodules emerging from the previous module.
(B) tracing of the seed genes through different hierarchical levels of the SB network starting from the main network (SB) i.e., level 0 up to the motif level i.e., level 6.
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FIGURE 5 | Features of the SB network (A) modularity (Q) plotted against levels of the hierarchical organization of the SB network. (B) Hamiltonian Energy (HE)
plotted against levels of the hierarchical organization of the SB network. (C) variation in the calculated average LCP-corr coefficient as a function of levels of the
hierarchical organization of the SB network.

the proportion of the edges count (x), the KR has in the
network/community/sub-community compared to the total
edges count (E) present in the network/community/sub-
community at l level of organization:

PKR(x[l]) =
x[l]

E[l] (14)

PKR(xl) of all the KRs was found to be increasing with an
increase in the level of organization. This suggests that the
regulatory role of the KRs is even more powerful at deeper levels,
thus these behave as active workers at the grassroots level.

Low Popularity Maintained by the
Identified Key Regulators
All of our KRs had a somewhat low degree in the main network
which dramatically changed in the subsequent levels of the

organization. Of our six KRs, TNF has the popularity-rank (rank
on the basis of degree) of 42 in the main network, decreasing
as we move to HDAC1(70), NCOA3(374), KMT2D(559),
KMT2C(612), TNRC6B(652), DICER1(735), TRAF1(806),
TNIP1(1072), and TRDMT1(1099). Surprisingly, the first 41
leading hubs at the complete network-level, failed to make their
way to the last level of the organization leading us to infer that the
popularity-rank of leading hubs does not assure the emergence
of the hubs as KRs (Figure 7A).

Emergence of Low Degree Nodes
Accompanied by High Degree Node as
Key Regulators
In a network, when a node’s degree is low, the node gains what
strength it has from its neighbors and thus the influence it
has over the network is a function of its neighbors’ degree. In
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FIGURE 6 | (A) modular path of the KRs starting from the main network to the motif level. The seed-gene-KRs are shown in red and their interacting-partner-KRs
are shown in green. (B) KRs probability distribution as a function of levels of the hierarchical organization of the SB network.

addition, a low-degree bridge node, connecting two high-degree
nodes, is very important in a network despite its lower degree (Liu
et al., 2016). Thus, a node’s degree is not the sole determinant
of its essentiality, rather, it depends on the topological position
of that node. This is reflected in our results, where, the three
seed genes, i.e., TNIP1, TNRC6B, and TRDMT1 have a relatively
low degree compared to their interacting partners in the primary

network, but all three of these genes, as well as their interacting
partners, are found out to be the KRs of the SB network based
on their ability to make it to the last level of the network
organization. TNIP1 which has quite a low degree of 6, formed a
motif in the last level of the organization with TNF and TRAF1
which have degree 197 and 31, respectively; likewise, TNRC6B
which has a degree of 49 formed motifs with KMT2C, KMT2D,
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FIGURE 7 | (A) showing the seed genes in the decreasing order of their degree with TP53 having the highest degree. (B) comparison of the Hamiltonian Energy (HE)
of the original (black) and the corresponding motifs knockout networks (red) at different levels of the hierarchical organization of the SB network.

and NCOA3 which have degree 52, 59, and 87, respectively; and
TRDMT1 which has such a low degree of 3 formed a motif with
DICER1 and HDAC1 which have degree 40 and 168, respectively,
in the primary network. This shows that the three low degree seed
genes were regulated by their relatively high degree interacting
partners from top to bottom organization of the SB network
indicating that the until now unverified interacting partners
could be directly or indirectly related to the pathophysiology
of SB in humans.

Perturbations Driven by the Knockout of
the Motifs Consisting of the Key
Regulators
The hierarchical topology of the SB network saves it from
breaking down completely after the removal of the KRs from
it, owing to the strong self-organizing nature of a hierarchical
network (Ravasz et al., 2002). However, when KRs are removed
from a network it may lead to certain local and global
disturbances in the network which will propagate through
various levels of the hierarchy starting from top to bottom or
bottom to top, causing changes in the network’s topology.

Based on the property of a module that its function is
different from other modules and that its nodes have more
relations to each other than to members of other modules

(Dong and Horvath, 2007), we knocked out the KRs-containing
modules/motifs that were found in the last level of the SB network
organization from the main network-level till the last level and
then studied the changes in the topological properties of the
SB network due to the motifs knockout to comprehend the
regulatory role of the KRs in the same combination as they were
found in the motifs.

In the case of the TNIP1 motif (consisting of TNIP1, TNF, and
TRAF1 KRs) the network/modules/submodules keep adapting
themselves functionally to cope up with the removal of this
motif till the fourth level, from the fifth level its knock-
out causes the sub-communities it is present in, to almost
fall apart. Whereas, speaking of TNRC6B motif (consisting
of TNRC6B, KMT2C, KMT2D, and NCOA3) and TRDMT1
motif (consisting of TRDMT1, DICER1, and HDAC1) the
submodules from the fourth level itself lose their ability to
adapt functionally in response to the loss of these motifs and
thus break down. In all the cases a considerable change in the
network’s topological parameters was noticed, however, somehow
the network reorganizes itself thereby proving to have an error
tolerance. In all the motifs knockout networks, the value of
γ is found to turn positive in the deeper organization levels,
reflecting the loss of scale-free topology of the communities
in the deeper levels of the organization (Barabási and Albert,
1999). For all the motifs, a consistent pattern is seen in the
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value of α in the knockout networks, an initial increase in the
value of α indicates increased compactness of the networks so
as to rescue the networks from falling apart but with a decrease
in the level of organization, α is also found to be decreasing
which points toward decreasing compactness of the communities
(Ravasz and Barabási, 2003). The value of β becoming negative in
the deeper levels of the organization shows that the networks have
become disassortative in nature (Pastor-Satorras et al., 2001).
The value of µ is noted to be decreasing in the deeper levels of
the organization upon knock-out of the motifs, indicating the
decreasing significance of the remaining hubs’ regulatory roles
in the networks (Borgatti and Everett, 2006). The increase in
the value of δ reveals faster information processing within the
network upon removal of the motifs so as to reorganize the
perturbed network and rescue it from falling apart (Canright and
Engø-Monsen, 2004). Lastly, the value of θ which is found to
be decreasing, shows that information transmission is reduced
because the KRs-containing motifs are removed (Canright and
Engø-Monsen, 2006; Figures 1A, 2A, 3A).

In all the motifs knockout experiments, the exponent values
of all of the topological properties showed drastic changes in
lower levels of the hierarchy, signifying that local perturbation
increases as we go to deeper levels starting from top to bottom in
the network (Figures 1B, 2B, 3B).

By calculating and comparing the Hamiltonian energy (HE)
of the original network/community/sub-community with the
corresponding modified network/community/sub-community
that resulted after the motifs knockout experiments, we observed
a slight reduction in HE in the knockout networks at each level
of organization (Figure 7B). This demonstrates that the KRs
knockout experiments result in loss of wiring/rewiring energy at
all levels of the network organization.

Functional Enrichment and Pathway
Enrichment of the SB Network’s Seed
Genes
We identified different molecular functions, biological pathways,
and cellular components as well as KEGG pathways in which
the seed genes (candidate genes for SB) are significantly enriched
using DAVID functional annotation tool, listed in Table 2. It
was found that most of the seed genes are enriched in neural
tube closure, folic acid-binding, and regulation of transcription.
These functions and pathways may serve important roles in the
pathogenesis of SB.

Evidence of Self-Organization:
Local-Community-Paradigm (LCP)
Approach
Local-community-paradigm correlation of all the
communities/sub-communities at each level of the hierarchy
was computed. The average values of the LCP-corr for all
the modules at each level are found to be greater than 0.95
and these values do not vary with an error bar (modules with
zero LCP-corr were excluded while calculating the average)
(Figure 5C). The high values of the calculated LCP-corr for
all the modules/sub-modules reflect strong compactness of

these modules/submodules, this means that these modules/sub-
modules are composed of tightly connected nodes, which
strongly favors the preservation of the network properties and
adaptation of the network against any unfavorable changes in it
to prevent the network from breaking down.

Rich-Club Organization in SB Network
When a PPI network related to a disease exhibits a rich-
club formation, it evinces the existence of a pathological
powerhouse within the network, composed of the most
influential components which have to their credit of providing
the network robustness and stability (Alawieh et al., 2015). We
evaluated the existence of a rich-club structural ordering in the
SB network using brainGraph package in R and the network was
found to exhibit a rich club structural ordering as indicated by an
increasing rich-club coefficient φ(k) as k increased (Figure 8A).
Further, the relevance of the uncovered rich-club organization
was examined by assessing the normalized φ(k) (φnorm(k))
(Figure 8B). φnorm(k) was calculated for the lowermost degree
(1) to the third-highest degree (364) in the SB network with a
rich-club showing between degrees 25 to 364. The degree found
to have the highest φnorm(k) is 240 and the node having the
highest φnorm(k) corresponding to the degree 240 is CTNNB1.
The subnetwork of nodes with degrees corresponding to the
normalized rich-club coefficient ≥1.1 is shown in Figure 8C and
defined as the rich-club nodes. Besides being the KRs of the
SB network, TNF, TRAF1, KMT2C, KMT2D, NCOA3, TNRC6B,
DICER1, and HDAC1 emerged as rich-club nodes as well.

DISCUSSION

A dearth of knowledge about the genetic etiology of Spina bifida
(SB) demands exploration of its genetic aspects. Though several
candidate genes for SB have been reported in recent years,
however, the potential mechanism underlying SB development
remains unclear. To the best of our knowledge, our in silico
study is the first attempt toward investigating the Protein-
Protein Interaction (PPI) network of SB and identifying the Key
Regulators (KRs) of SB through topological and rich-club analysis
that regulate the whole network.

The study of the topological properties of our primary
network (SB) consisting of 1,116 nodes and 40,886 edges, suggests
that the network follows a weak hierarchical and scale-free
fractal nature. The hierarchical topology indicates the two-tier
organization of the network with one level representing local
clustering of mostly low degree nodes into well-defined successive
communities or modules and the other level representing more
global connectivity in which the hubs serve as higher-order
communication points between the interconnected communities.
The fractal state of the network signifies a self-similar
organization of the network and scale-free nature has to its
credit of making the network stable. These topological properties
allow efficient information processing within the network. The
topological properties analysis of the SB network was essential
to know the behavior of the network and to validate that the
network is following the criteria of a scale-free and hierarchical
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TABLE 2 | Functional and pathway enrichment of the SB network’s seed genes.

Category S. no. GO Term Seed Gene Count Benjamini-adjusted P-Value

Biological Process 1. Neural tube closure 21 1.46E-23

2. Positive regulation of transcription from RNA polymerase II promoter 19 0.006187585

3. Positive regulation of transcription, DNA-templated 18 0.0000199

4. Negative regulation of transcription from RNA polymerase II promoter 16 0.006187585

5. Oxidation-reduction process 15 0.003218669

Cellular Component 1. Cytoplasm 57 0.000444

2. Cytosol 46 0.000033

3. Caveola 6 0.003341129

Molecular Function 1. Beta-catenin binding 7 0.003585258

2. Folic acid binding 6 0.0000059

3. Damaged DNA binding 6 0.006137571

4. Wnt-protein binding 5 0.006137571

KEGG Pathway 1. Pathways in cancer 17 1.33E-04

2. Wnt signaling pathway 14 1.58E-07

3. One carbon pool by folate 9 2.46170877161806E-09

4. Basal cell carcinoma 9 5.06271234450916E-06

5. Melanogenesis 8 0.003208

network which further was requisite for the identification of the
most significant KRs of the network. After clustering, the self-
organizing behavior of the SB networks was investigated through
the LCP technique which led us to infer that the networks
sustain self-organization based on their dynamic nature and are
tightly packed with efficient information processing. Through
Gene Ontology and pathway enrichment analysis it was found
that the seed genes are enriched in neural tube closure and
regulation of transcription. These functions and pathways may
serve important roles in the pathogenesis of SB.

Key regulators are the regulatory entities within a network
that are sufficient to induce a complete complex developmental
pathway. Out of our 117 seed genes, 3 genes, namely, TNIP1,
TNRC6B, and TRDMT1, were found to reach the motif level of
the SB network hierarchical organization. Though all the seed
genes are involved in SB, however, the above-mentioned three
seed genes are specifically considered to be the backbone of the
SB network with regard to maintaining the network’s stability
based on their ability to make it to the grassroots level. Also,
the importance of their interacting partner genes, namely, TNF
and TRAF1 (interacting partners of TNIP1); KMT2C, KMT2D,
and NCOA3 (interacting partners of TNRC6B); and DICER1 and
HDAC1 (interacting partners of TRDMT1) cannot be ruled out
as they formed motifs with these seed genes in the last level of
the hierarchical organization of the SB network which means
that these seed genes work in combination with their interacting
partners and hence these genes, as well as their interacting
partners, were revealed to be the KRs of the network. Since there
is no direct strong evidence in the pre-existing literature for
these interactor genes’ involvement in SB to date, our study is
indicating the potential role of these genes in SB.

The TNF (tumor necrosis factor) gene encodes a protein
named TNF-α which is an inflammatory cytokine. This cytokine
is responsible for a diverse range of signaling events within cells
through the NF-κB pathway that ultimately leads to necrosis or

apoptosis (Idriss and Naismith, 2000). TNF-α induces TNFAIP3,
tumor necrosis factor-α-induced-protein 3 which is also known
as A20, TNFAIP3 interacts with TNIP1 gene-encoded TNFAIP3
interacting protein 1 (TNIP1 protein), TNFAIP3 and TNIP1
then in conjunction regulate NF-κB dependent gene expression
negatively (Heyninck et al., 1999). When NF-κB is active, it turns
on the expression of those genes that keep the cell proliferating.
So, a constitutively active state of NF-κB leads to various types
of human tumors. Since TNIP1 is a negative regulator of the
NF-κB pathway, so when the TNIP1-TNFAIP3 complex inhibits
NF-κB, anti-apoptotic genes are not activated by NF-κB and
hence apoptosis happens. TRAF1 gene-encoded tumor necrosis
factor receptor-associated factor 1 (TRAF1) is an adapter in signal
transduction and has roles in apoptotic processes in different cell
types as well as in immunity. TRAF1 is one of the anti-apoptotic
genes that are induced by NF-κB and its encoded protein,
TRAF1, is responsible for resistance to apoptosis downstream
of CD30 which is a protein of the tumor necrosis factor family
(Zhang et al., 2014; Edilova et al., 2018). Hence, defects in all
these three genes TNF, TRAF1, and TNIP1 are related to the
formation of cancer in one way or the other. Also, a clear positive
association has been shown in a study between SB and pediatric
cancer pointing toward an overlap between genes impacting both
development and malignancy. Therefore, these genes may have
important roles in SB (Johnson et al., 2017).

NCOA3, Nuclear receptor coactivator 3, a member of the
p160 family of coactivators facilitates the upregulation of
gene expression by functioning as a transcriptional coactivator
protein. It is recruited to the DNA promotion sites by ligand-
activated nuclear receptors, where it acylates histones making
the downstream DNA more accessible to transcription (Zhang
et al., 2018). Like NCOA3, KMT2C (lysine methyltransferase 2C)
and KMT2D (lysine methyltransferase 2D) proteins also modify
histones by functioning as H3K4me1/2 methyltransferases, these
two proteins have pivotal roles in embryonic morphogenesis,
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FIGURE 8 | (A) raw rich-club coefficient (φ) of the SB network as a function of degree k. (B) normalized rich-club coefficient (φnorm) of the SB network as a function
of degree k. (C) rich club nodes of the SB network, the KR genes which emerged as rich-club nodes are highlighted in red.

central nervous system development, and post-natal survival
(Lavery et al., 2020). TNRC6B, Trinucleotide Repeat Containing
Adaptor 6B protein participates in RNA-mediated gene silencing
through both miRNA-dependent translational repression and
siRNA-dependent endonucleolytic cleavage of complementary
mRNAs by argonaute family proteins. It needs to be mentioned
here that the TNRC6B paralog TNRC6A protein has been found
to interact with histone-modifying complexes (Hicks et al., 2017).
Hence, it is evident that these four genes, namely, NCOA3,
KMT2C, KMT2D, and TNRC6B are interrelated to each other in
their function. Also, it has been reported that the TNRC6B gene
shows an association with myelomeningocele in the Mexican
American population (Hebert et al., 2020). Therefore, these genes
might have roles in SB.

HDAC1 (Histone Deacetylase 1) protein localizes into
the nucleus and regulates eukaryotic gene expression via
deacetylation of all the four core histones. It forms a complex
with retinoblastoma tumor-suppressor protein and controls
cell proliferation and differentiation. Also, in conjunction

with metastasis-associated protein-2, it deacetylates and
destabilizes p53 and modulates its effect on cell growth and
apoptosis (Milazzo et al., 2020). The DICER1 gene encodes the
endoribonuclease Dicer protein of the ribonuclease III family.
MicroRNAs (miRNAs) are created by the Dicer endoribonuclease
protein, which are known to control gene expression by binding
to specific mRNAs in order to inhibit the access of ribosomes
to these mRNAs and their subsequent translation (Robertson
et al., 2018). TRDMT1 gene codes for a methyltransferase, tRNA
aspartic acid methyltransferase 1, that methylates as the name
suggests, a specific RNA molecule, the aspartic acid transfer RNA
(tRNAAsp). It has been reported in a study carried out in a Dutch
population that the A allele of the disease-associated rs2295809
polymorphism in TRDMT1 was associated with an increased
RBC folate in the control population, which is in accordance
with its risk-reducing effect observed in this study (Goll et al.,
2006; Franke et al., 2009). So it is quite evident that one thing is
common in these three genes that all of these are gene expression
regulators and one of these i.e., TRDMT1 has been shown to be

Frontiers in Genetics | www.frontiersin.org 18 April 2021 | Volume 12 | Article 597983

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-597983 March 29, 2021 Time: 15:59 # 19

Tamkeen et al. Network Analysis of Spina Bifida

involved in SB. Therefore, these genes can be considered to have
roles in the occurrence of SB.

Low popularity exhibited by all of the KRs in the main
network leads us to infer that these KRs outrun the leading
hubs in their significance to propagate signals through the
different hierarchical levels of the network in order to conserve
the network’s stability and intrinsic properties. Motifs knockout
experiments imparted maximum local perturbation in the deeper
levels of the hierarchy but their removal did not trigger off the
networks to break down, this substantiates the self-organizing
ability of the networks that somehow kept harmonizing and
coping with the motifs (consisting of the KRs) knockout.

The essentiality of the identification of rich-club nodes in a
network lies in the fact that these nodes create a sub-structure
within the network that increases the stability of the whole
network and improves the efficacy of information transmission
among high degree nodes. Through rich-club analysis, it was
found that TNF, TRAF1, KMT2C, KMT2D, NCOA3, TNRC6B,
DICER1, and HDAC1, apart from being the KRs of the SB
network, also emerged as rich-club nodes. This finding further
adds significance to our study as these KRs have proven out
to be involved in the formation of the rich-club organization
within the SB network to boot. This evinces that these key
genes take part in becoming a transit backbone of the network
and increase the network’s stability as a whole thus providing
robustness to the network.

CONCLUSION

In this study, we have employed graph theory to identify
important functional modules/motifs consisting of the novel
key regulators of SB. While our study puts forward the most
important genes from among the candidate seed genes of
SB, namely, TNIP1, TNRC6B, and TRDMT1, it also uncovers
novel genes, namely, TNF, TRAF1, KMT2C, KMT2D, NCOA3,
DICER1, and HDAC1 which can be directly or indirectly
related to SB as these genes have been found to regulate
the above-mentioned seed genes till the last level of the SB

network, hence all of these genes are concluded to be the
KRs of SB. As it is well known that the proteins in the same
module share the same function so if all the KRs of a single
module/motif are targetted together, they can serve as biomarkers
for the diagnosis of SB. Since SB has multiple etiology and
mechanisms so the combination of several biomarkers may have
high diagnostic accuracy for SB compared to using a single
biomarker. Experimental validation of these hypotheses would
confirm the credibility of the identified KRs which may serve
as the key targets for therapeutic interventions and as putative
prognostic biomarkers.
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